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Introduction

In this document, we desribe the design of SecSPeer, a sacdrecalable, un-
structured, peer-to-peer system. The document orgamizegtias follows:
Chapter 1 provides an overview of this document.
Chapter 2 provides a brief description of the main archites used today in
unstructured P2P systems.
Chapters 3 and 4 describes the proposals tthat make Sec®akdle.
Chapter 5 describes the mechanisms designed to make SecsPae.
Chapter 6 correlates this document with SecSPeer Deliketalh: Systems
Requirements document.
The document ends with the Bibliography.



Chapter 1

Overview of the architecture

In this chapter, we describe the overall architecture ofsystem. At the same
time, we present, in brief, the structure of this document.

1.1 System Objectives

In more traditional distributed, content delivery systelike the World Wide Web,
each participant in the system plays a distinct role. Welessiplay the role of the
content providers, while clients (web browsers) requesterd from the servers.
In a peer-to-peer (P2P) system, each participant offertenbmo the rest of the
participants and at the same time can also request contenttfrem. As a con-
tent delivery system, one of the most important functionarof P2P system is the
search for a piece of data offered by anyone of the partitipa&ince, each partic-
ipant offers any and whatever content he/she likes, thaemédata can be on any
participant of the network. For that reason, the prevailimethod used is broad-
casting (i.e.: trying to ask everyone in the system). Sirzahearticipant is aware
of only a few other participants, this broadcast is impletaérby having each par-
ticipant that receives the message forward it to all of itgmegors (participants
of the network it is aware of and connected to) and so forthe ain Achilles’
heel in peer-to-peer system scalability is the number oangess required for these
broadcasts. The objectives of SecSPeer is to improve pgmer scalability and
also tackle peer-to-peer security issues, such as DDo&katta

1.2 System Architecture

The SecSPeer architecture is comprised of several imprewvenon today’s pre-
vailing, peer-to-peer architectures, with the purposengfroving their scalabil-
ity and security. For this reason, in Chapter 2, we provideief lbescription of
the main architectures used today in unstructured P2Prsgstén the following
chapters (3-4-5), we describe the design of SecSPeer, whilds on today’s un-
structured P2P architectures. Chapters 3 and 4 try to inepteeyscalability of the
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system by reducing the number of "worthless” messages sgimgda broadcast.
"Worthless” messages are messages that do not increashangecof locating the
required piece of data.

In Chapter 3, we describe the first architectural changeqzeg by SecSPeer,
to improve P2P system scalability. As is explained in thatptér, the broadcast-
ing mechanism results in the transmission of redundantagess(i.e.: sending the
same message to the same participant more than once). Tpespusf the pro-
posed algorithm is the elimination of those redundant nggssan order to reduce
the number of worthless messages during a broadcast. Ttersyiges to avoid
forwarding a message to a participant that may have alrezxBived it by learn-
ing from traffic history, through the use of explicit duplieanotification from the
receiving participant.

In Chapter 4, we describe another scalability improvemégdrahm, which
tackles the issue of blind broadcast, by adding semantarrmtion to the net-
work, so as to be able to broadcast to only a subset of patitspof the network.
This way we try to avoid generating another type of worthieessages, namely
messages sent to participants that do not have the datalbelwegl up.

Chapter 5 describes SecSPeer’s proposals of dealing weitiigeissues, such
as spam generation and DDoS attacks. Broadcasting crégéfecant amount of
traffic which is shared by all the nodes of the system, on lhelithe broadcasting
node. To avoid exploitation, it is essential that amountaffic load a node injects
in the system be relative to other nodes’ amount of trafficl ldeserves. Spam
generation is created from malicious nodes that reply taigsidor content they
do not have. Since the amount of results they send is anpititsis reduces the
amount of "good” results the requesting node receives. dbiziment concludes
with some analysis of possible, future directions and aetation of the design
with Deliverable 1.1: System Requirements Document[6].



Chapter 2

Brief Description and Analysis of
today’s Peer-to-Peer architectures

In this chapter, we provide some background knowledge aftiegi P2P systems,
required for the understanding of the SecSPeer design.

2.1 Introduction

P2P networking has generated tremendous interest wordavitbng Internet users
as well as computer networking professionals and resea.cP2P software sys-
tems like Kazaa and Gnutella clients rank amongst the mastippsoftware appli-
cations ever. Numerous businesses and Web sites have pob'R@P” technology
as the future of Internet networking.

The basic notion behind peer-to-peer systems and the onhelitimguishes
them from more traditional client/server architectureshist those two roles are
not cleanly separated. Each user that participates in ttveorie offers its own
pieces of data to the rest of the network, and thus acts averskut is also at the
same time, able to request data from rest of the users in tv@rie and thus, acts
as a client. This was the idea behind the adoption of the temest (SERVer-
cliENT), to characterize each participant in the network.

2.2 Unstructured systems

2.2.1 Centralized

The first P2P system, to make an impact in the world, was Napgte Napster
was not completely decentralized, since the knowledge ®fiadbation of every
piece of data (which user possesses which data) resided iogle, svell-known
server (and not servent). Each participant notified theraksérver for the data it
serves, during its bootstrapping process. For that redBere was no need for a
broadcasting technique, since every search for some pfetataowas directed to



Figure 2.1: Unstructured, decentralized P2P network tapolWithout Ultrapeers.
(). Ais connected to and aware of only B and C.

(i). A initiates the flooding process, At the first phase oé tiftooding, A will
send its request to B and C. At the second phase, B and C wdl is¢a all of
their neighbours, except the one they got it from (A). Sincies Doth B and C's
neighbour, it will receive the message twice (the secondgagsbeing redundant).
(iif). Assuming that servent E contains the piece of data Pdaking for, it will
send the reply to D (assuming the message from D arrivedd#iermessage from
Fin (ii) ). D will forward it to B (again, assuming that B's ms&age to D in (ii)
arrived before C’s message to D) and B finally to A.

that server. We use the past tense in describing Napstee, wia refer to the "old”
Napster, instead of its reincarnation as a subsriber gervic

2.2.2 Decentralized

The next generation of unstructured P2P systems includesetnand KaZaA
[11] [5]. Both these systems are completely decentralirethé sense that there
is no central server like the one in Napster, to facilitate ttokup of data. This
made those systems more robust, but also made looking upndag difficult,
since each participant in the network was aware only of ite data. In these
systems, each servent knows of and is connected to a smsditaftother servents
in the network. In turn, each servent in that subset is caeddo another subset of
servent (which includes the first one, since the connectmedidirectional), and
SO on.



Lookup in decentralized systems - Flooding

Since there is no centralized server to know the locationl ofsda, a servent look-
ing for a piece of data needs to ideally ask every other séimehe network for
it. Since each servent is aware of only a few other servemdyrioadcast is carried
out by all the servents in the network, each sending eaclestifueceives to all of
its neighbours (except the one it received it from) and soldrs leads to the phi-
losophy of "all for one and one for all”, since all the sensnboperate to forward
the broadcast of a single servent and every servent forvesety broadcast it re-
ceives, from the rest of the network. This results in a floothetsages spreading
through the network. Each servent, that contains the pibdata being requested,
sends a message back to the requesting servent. Since tigempssage does not
contain the identity of the servent that initiated the flomgithe answering servent
sends the reply to the neighbor it received the request fwdmich in turn forwards
it to the servent it received the request from and so fortlufei@. 1.

In the same way, each servent is able to learn of the existe#ratber servents.
Each servent that wishes to connect to the network need oy khe existance
of one other servent. This it learns from well-known seryvesdled web-caches.
When the address of one servent in the network is known, adbasa can be
initiated, requesting each servent that receives it, tdambrthe first servent and
notify it of their existence.

This broadcast technique used in these systems, calledritpddhs two obvi-
ous drawbacks. The number of messages during the progressirajle flooding
increases exponentially and since two different serverag o connected to the
same third servent, that servent will receive the broaddastessage twice. The
number of messaged created is bounded by adding to eachgaes3aL (Time
To Live) field. This field is similar to the TTL field of IP pacleand contains the
number of times the message can be forwarded before it iardisd. This method
does reduce the number of messages generated, but alsesdtecnumber of
servents that can be contacted.

As explained in Figure 1, a servent may receive a messagedietpto the
same flood, more that once. A servent that receives the savaddasted message
more than once simply ignores the copies other than the filsssages belonging
to different floodings are distinguished from a global ID. 9dages belonging to
the same flooding have the same ID.

To improve the scalability of this algorithm, both systemsaduced the no-
tion of UltraPeers [1](SuperNodes in KaZaA), which we diémeiater on in this
document. In short, since servents with low bandwidth redbe speed at which
flooding progresses and thus, the scalability of the systiease servents were re-
moved from the network as such, and instead, were connezxtetthtough another
servent with better network capabilities. Since thesef”lsarvents are connected
to their parent servent only and not to each other, there iseea to forward any
message they receive from the parent servent. What is nidieg ime they con-
nect to a parent servent, they send it a hashed index of tbheiewts, so that the
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parent servent will only forward searches to them if they rhaye the piece of
data being looked for. Thus, flooding is only used at the gaservents’ level. If

the UltraPeer/SuperNode of a leaf fails, the leaf recomntectanother one. The
leaf receives a list of UltraPeers/SuperNodes from eaclnpar connects to as
alternatives. If this list is empty, Webcaches are condulte

2.3 Structured systems

Finally, it must be noted that there is a family of decentedi P2P systems that
do not require broadcasting a message in every directionrder to find some
piece of information, even though there is no centralizeagiese This is possible
by imposing some order among the stored information. Inghssuctured P2P
systems, even though a requesting servent may not be awtre efact location
of the data it is looking for, it knows in which "direction” tan be found. This
way, lookup is performed by propagating a single messageeimight direction,
instead of flooding. However, the increased state infoilmnatequired by those
systems make them much more vulnerable to failures. Sec@iPeg at making
unstructured P2P systems as scalable as structured, im ¢ématwork load, while
maintaining unstructured systems’ scalability, in terrheobustness. Examples of
structured systems are [7], [10] and [9].
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Chapter 3

A feedback-based approach to
reduce duplicate messages

In this chapter, we present SecSPeer’s approach to elimgne¢dundant traffic
during the flooding process. Throughout the rest of this dwmt, we model the
topology of an unstructured P2P network as a graph, whetessagent is a node
of the graph and there is an edge between any node/serveritsameighbours.
Since communication is bidirectional on those connectisnsare the edges in the
graph.

3.1 Problem Description

As mentioned before, one drawback of the flooding mechanigmth is blatant,
is the generation of duplicate messages. In Figure 2.%(&)gave simple demon-
stration of how duplicate messages are generated, sincel B amodes both sent
the same message to D. What is more, and not readily obvious the figure,
is the fact that D will forward the first message it receivessaon as it receives
it. Assuming that B's message reached D before C’'s mesdaigayill mean that
D will forward the message to all of its neighbours, except dine it received it
from (that is B), which includes C. This results in the getieraof two duplicates,
one from C to D and one from D to C (Figure 3.1). In general, iretwork of
N servents with d connections per servent, on average, tteinanessages, of a
flood intending to reach every node in the network (boundi@ds) will be d + (N-
1)(d-1). This is because every servent will receive the agsat least once, and
will forward it to every neighbour except one. Only the seviaitiating the flood
will send it to all of its neighbours. The minimum number ofsaages required to
flood the network is N-1 (the number of servents in the netwarikius the servent
initiating the flood). Thus, the number of (redundant) degtie messages is d +
(N-1)(d-2). The ratio of duplicate messages versus totasages is (d-2)N + 2 /
(d-1)N + 1. For large N, this roughly equals (d-2)/(d-1). THigher the degree, the
more the duplicates. This is a problem, because unstrut®2® networks have
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Figure 3.1: Example of duplicates’ generation. Duplicdiage been generated on
whichever node lies at the end-point of more than one arrow.

much to gain from having high degree nodes, with the most itapbbenefit being
robustness.

3.2 Problem characteristics/attributes

3.2.1 Introduction to clustering

In a random graph, each node has the same probability of loemgected to any
of the rest of the nodes. In contrast, in small-world grafd®,[each node is more
likely to connect to nodes close to him, as defined by someepkss criterion,
than nodes that are far away from him. Notice that this kindlo$eness is de-
fined by some other criterion than hops distance. Since, adg s close to most
of his neighbors (with high probability) and they are closeheir neighbors, it
follows that the first node is also close to his neighborsghbors, and thus they
may also be his neighbors with high probability. The abowasl | two interest-
ing conclusions. One is that since in random graphs we haks tio any node
with the same probability, random graphs have the smallastetet. In a small
-world graph with the same average degree, most of the edgesdaa node lead
to nodes inside the "neighborhood” and so we have very few®tiglead us to the
other "neighborhoods”, which leads to longer diameter. &kient of clustering
inside a graph is measured by a metric called "clusterindficamt”. The cluster-
ing coefficient of a graph is defined as the average of everg'adakcal clustering

1The longest of all the shortest paths between any two nodée igraph
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Regular Small-world Random

Increasing randomness

Figure 3.2: p is the probability of rewiring an edge to a randwde in the graph.
In random graphs, all edges connect random nodes.

coefficient. A single node’s local clustering coefficienthis ratio of the number of
existent edges among that node’s neighbors only, to thermaxrinumber of possi-
ble edges, which can exist, between the neighbors. Thus|ubtering coefficient
of a node with degree k is:

Number of edges between the k neighbors
kx(k—1)

(3.1)

A sparse random graph has very small clustering coefficightclustered,
where all edges lead to closeby nodes, has very high coeff@me extremely high
diameter. A small-world graph is defined as a graph with higistering coeffi-
cient and yet a diameter comparable to random’s. A smallohgndph is generated
by using a regular graph and rewiring a small fraction of diges to random nodes
inside the graph, as in random graphs. This is illustratgeigare 3.2. Since most
of the edges still point to closeby nodes, clustering cdefiicremains high. How-
ever the rewiring of a few edges is enough to greatly redueelidmeter and bring
it close to the diameter of a random graph. This is shown imfeig3.3. Notice
that a dense random graph will have a high clustering coefficisince there are
edges among the majority of all the possible node-pairs.

The important thing to note here is that, in small-world dpsms noted before,
there are not many edges to connect any two "neighborhoctisis means that
most shortest paths between nodes of different "neighloai$iowill use the same
edge to travel from one "neighborhood” to the other. Thibésfact that the horizon
criterion that we mention below tries to exploit.

The small-world graphs we used, were generated accorditiget&trogatz-
Watts model. Each node is assigned a number. Two nodes anedi@ibe close to
each other is the difference of their numbers is small. Fé@th node is connected

14
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Figure 3.3: The x axis is the rewiring probability. We sed tiesviring a few edges
to random nodes is enough to greatly reduce the diametereafrdph, without
greatly affecting the clustering coefficient.

to the k closest nodes. For any node i, these are all nodeswitiber i+ j, where
j=1to k/i2. Then, for each node, we consider only the edgeslehd to nodes
with higher number, i.e. edges to nodes i + j. For each of tkdges, we rewire
them to some random node in the graph, with probability ptirf@ep equal to 0
generates a completely clustered graph, whereas settingg) ® 1 generates a
random graph.

3.3 Related Work

We have yet to find some other work whose main goal is to recieeuplicates
generated during the process of flooding. Today, duplicatesonly reduced by
the fact that flooding is bounded by the TTL field, which medrmvers a small
part of the network. Since the paths traveled by the flood agessare short, there
is small probability that those paths will form circles ahdg$ generate duplicates.
However even this does not hold for small-world graphs asudised below.
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Figure 3.4: Node A's shortest path tree. The red, thick eflyes A's shortest path
tree.

3.4 Algorithm description and preliminary results

3.4.1 Introduction

During a single flooding process (originating from any nodeia message trav-
eling over and edge, reaches a node Y, which has yet to reaeivessage of this
flood, this edge is part of X’s shortest path tree in that grafpiine network. The
reason for this is that if there was some other shorter path X to Y, not includ-
ing the aforementioned edge, some other message would teaeted that path
and reached the node first. On the other hand, if the nodedbeaites the message
has already received another message of the same flood, risntieszt the edge
traveled by the duplicate message to reach the node is rtaifpéis shortest path
tree. (See Figure 3.4 for a simple example of a shortest paf. tEven if there
are two shortest paths from a node X to a node Y, Y will prockesiiessages that
arrive at the same time, sequentially, which means that #lie gpsed by the first
message to be processed, will be deemed shortest. Any reesmatgover an edge
which is not part of the shortest path tree of the node théated the query, will
be a duplicate. Each node has a different shortest pathricethess spanning tree
does not change, if the network structure does not change.

Since each node has a different shortest path tree, any hatleeceives a
message, must be aware of the identity of the originator jftodeute it correctly.

In order to eliminate the duplicate messages during a flgpdiach node need
not be aware of the shortest path tree of each distinct nodenmxay receive a

16
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Figure 3.5: Example of Horizon’s criterion.

Messages from B to A will be assigned to category B.
Messages from C to A will be assigned to category C.
Messages from D, E, F, G, H, I, J will all be assigned to catefor
Messages from J, K will both be assigned to J.

message from, but rather, which of its edges are part of theesdt path tree of X.

However, this design is also not very scalable in the sersgdartrequires that
each node | hold information equal to the size of the P2P mitwultiplied by
the degree of the node, in the worst caskn the following pages, we describe a
scalable version of the above algorithm, with the assumpfior the time being,
that the network structure never changes. We present amyrafexplain the effi-
ciency of the algorithm for a wide range of parameters anglggaThe reason for
this separation is that we wanted to analyze the efficiendh@falgorithm in its
ability to correctly construct the spanning trees inforioratunaffected by changes
in the structure since we believe this factor to be orthofjoBince servents are
elected as Ultrapeers/Supernodes only if they usually bhaleege uptime, each
node can benefit, from the information it collects for thediogy of the network ,
for a long time before it becomes stale.

3.4.2 Categories

As mentioned before, in order to construct the local infdramaof every spanning
tree in the network, each node | needs to keep a state of sizéteO(N*n), where

N is the number of nodes and n the degree of the node. This &ibecfor each
one X of the N different shortest path trees and for each onéié o neighbors,

| maintains a dupletX, Y') with value either O or 1, showing whether edge (I, Y)
is part of X's shortest path tree. If | has this informationert when it receives a
message originating from node X, it sends the message talmmigy only if the
value of the duplet X, Y ) in | equals 1. X can have N distinct values, whereas
Y can have n. This leads to N*n duplets. Since n does not chgeagsh client in

2Notice however, that techniques can be used to make themat@n size in order of the size of
the network (N) and not equal to N*n. Still, this informatienquite large too
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Gnutella and other P2P systems tries to maintain, on avesagenstant number
of neighbors), it is storing the identity of those N noded timaits the scalability
of the algorithm.

In this algorithm, each message was distinguished baseteonriginating
node, thus leading to N "categories”, one for each node im#tavork. To make
the algorithm scalable, we would like to find some other dote which defines
a constant number of categories, regardless of the netiakte distinguish be-
tween messages, rather than the node that initiated the fRinde the number of
the nodes may grow arbitrarily while the number of thoseg@tes should remain
constant or at least grow very slowly with N, this will meamattmore than one
node will belong to the same category. In the previous algar; since there was
only one shortest path per category, a distinct value of Xesgnted one shortest
path tree. Any one neighbor edge (I, Y) either did belong dmdit belong to that
tree, and so the duplétX, Y ) had value either 0 or 1. However, now that more
than one different shortest trees belong to the same cgtebevalue of the duplet
is the percentage of the shortest path trees that fall und=tegory, that edge (I,
Y) is part of.

In order for this scheme to work correctly, the criterion wldoassign in the
same category those nodes, all of whose shortest path ithes eontain or do
not contain the edge from | to Y. This means that more than @begory may
contain nodes whose shortest path trees, for instance, taicadhe edge from
| to Y3, but we wouldn’t want to have categories which contain npdesne of
whose shortest path trees contain the edge and some of whaset'd In the
case of such mixed categories, since now we distinguishnite@ming messages
based on the category they belong to and not the node thateaitthe flood, we
would not know if forwarding the message to node j will causkiplicate or not.
However, even if we do have mixed categories, the catedaizavill work if most
of the traffic (messages) we receive is not assigned (caregdrto those mixed
categories, either because not every category is assigaedine number of nodes
("good” categories contain most of the nodes) or some nodgeg;h belong to
"good” categories, generate most of the traffic. There ateways to distinguish
traffic, other than the node it originated from (i.e.: the etitht initiated the flood).

3.4.3 Horizon

One of those ways to distinguish messages arriving at nadd#sed on the node
from which they come from, up to some maximum distance away iy measured
in hops. We call this distance, horizon. If the shortest firatim the node that initi-
ated the flood to | is longer than the horizon, we categorigaribssage as coming

3This would mean that we have two categories where we coule just one instead. However,
the scalability of the algorithm stems from the fact thatiienber of categories is constant and not
from the number of the categories itself.

“.e.: Some messages coming from those nodes will produdecdtgs of sent to j and some will
not.
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from the furthest node from I, in the shortest path, whichse &nside I's horizon.
It follows that the distance in hops from us to that node isa¢do the horizon.
If the shortest path is smaller than the horizon, the nodeititéated the flood is
within I's horizon and so we categorize the message as cofrongthat node. It
follows that only messages from this node will fall into tregegory for this node,
whereas in the category defined by a node i, which is on thedw(ias opposed to
within the horizon) will fall all messages coming from nodeisose shortest paths
to us, enter our horizon through node | (Figure 3.5). It atdlwivs that if we use
the diameter of the network as horizon, then every node tsinvihe horizon. The
number of categories for each edge will be equal to the numfherdes in the net-
work, with one category per node, leading us to the aforeimead, non-scalable
algorithm. In all cases, the number of categories createthibycriterion is equal
to the number of nodes inside (and on) our horizon. In toke,der node state is
O(n* number of nodes in horizon).

This algorithm tries to take advantage the degree of clagten the graph,
since, with high clustering, nodes whose shortest pathes ent horizon from the
same node, will have the same behavior (i.e.: common shpdéss after the node
on our horizon. The paths will differ on the first hops of theotip.

3.4.4 Hops

Another way to categorize the traffic is the distance betwemmd the node that
originated the flood, that is, the number of hops alreadyeteal/to reach us. When
a message comes from a node X further away, it is more likalythiere is another
path from X to I's neighbor Y, which is shorter than the paibnirX to | and on to
Y. Using this criterion, we avoid putting in the same catggoessages that come
from further away with messages that come from close by, kvinigl create a
mixed category, as described before (2.2). The number efodks created by this
criterion is O(radius of the graph). For a random graphs, ithlog(N)/(2*log(d))
where N is the size of the graph and d its average degree. @abuefore, the per
node state is O(n*radius of the graph).

This criterion works better in random graphs, where messagehe first few
hops almost never produce duplicates. In contrast, alniastthe messages gen-
erated during the last hops of the flood, are duplicates.u(gig§.6). This means
that in the experiment shown in the figure, categories forshbpo 4 and 6 to 7
will not be mixed categories. Notice that even if we bound adlwith some small
TTL, in small-world graphs, most of the messages will be aapeés. On the other
hand, in random graphs we won'’t have many duplicates. Medeth analysis of
this, is provided in the evaluation part, later on.

3.4.5 Horizon + Hops

Since the haorizon criterion works well for clustered graphs the hops criterion
works well for random graphs, using those two criterionsetbgr should reduce
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Percentage of duplicates in a hop
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Figure 3.6: Percentage of messages generated at each abpiette duplicates.
Hops 2 to 11 in the small-world graph have an almost constartemtage of du-
plicates. In contrast, in random graphs, small hops haveupticdtes and large
hops almost only produce duplicates.

the number of duplicates produced in both types of graphgu(Ei3.7). When
using horizon with hops, every category created by the boraziterion will be di-
vided into more categories, based on the hops criterionmiéssages coming from
a node inside the horizon (and excluding the nodes on thedmjtithe number of
hops is always the same and so those categories do not gigdliwor instance, in
Figure 3.5, messages belonging to category C can only camerode C and so
always arrive with hops equal to 2. Categories of nodes ohadhnizon will be di-
vided into so many categories, as the number of possible dug&le the horizon,
that is, at most, the diameter of the graph, minus the lengitheohorizon. Table
1 shows the categories of node A, based on Figure 3.5. Inithjdifed example,
since we only have one node on the horizon. In general, thdauof categories
will be at most: (number of node inside the horizon) + (numifenodes on the
horizon)*(diameter of the graph - horizon + 1).
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Table 3.1: As categories.

Horizon Ciriterion| Hops Criterion Categories Nodes whose mes-
Categories sages will fall into
each category
B 1 B
C 2 C
D 3 D
4 E
5 F
6 G,H
7 I
J 3 J
4 K

3.4.6 Implementation

In order to be able to categorize an incoming message aocptdithe horizon
criterion, we need to know the identities of a number of the l@odes visited
by that message, equal to the horizon value. This meansdbhtraessage must
contain information of the last hops of its route so far. @Hatmessages already
contain information about the number of hops traveled soFar each category
and each neighbor, each node stores two numbers. The firstanusnthe number
of messages of that category that were forwarded to that Aidtesecond number
is the number of messages of that category that were fordamdéhat node and
turned out to be duplicates. In order to know which of the ragss sent to each
node were duplicates, we need to have each of our neighbefiity inform
us, when it receives a duplicate from us. The ratio of the mgcwmber versus
the first is the percentage of messages of that categoryicémt neighbor, that
were duplicates. If the criterions work well, most of thossrgentages will be
either close to 100 or O (i.e.: no mixed categories). Basesoome threshold, we
can decide to stop sending a certain category of messagas;eidain neighbor,
if its percentage exceeds the threshold. To illustrateydeissume that node | is
connected to nodes A, B, C and D. Suppose that the first messageives, is a
message sent by a node well outside our horizon. Let us ashantne message
entered I's horizon from node X, and has traveled y hops syfahorizon). From
node X, the message was forwarded until it reached A and thEmuls | needs to
forward the message to neighbors B, C and D. Suppose we foheaiategories
as suchy Horizon node, hops, neighbor, messages sent to that nejghiicate
sent to that neighbor. This means that categories(, y, B, 0, 0) , ( X, y, C, O,
0)and(X,y, D, 0, 0) will become( X,y,B,1,0), (X,y, C,1,0)and( X, Yy,
D, 1, 0) . If the message | forwarded was a duplicate for neighborsdBlarafter
they notify I, it will update the three categories as sucK,y, B, 1, 1), ( X,y, C,
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Criterions’ efficiencies per graph type
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Figure 3.7: Efficiency of each criterion for different Cleshg Coefficients. The
X axis is the percentage of the maximum clustering coeffidielustered graph).
When the Horizon criterion is used, the horizon distancel isé.

Table 3.2: Simulation parameters. One experiment per ezobioation of values
of the four parameters.
Horizon Not used 1, 2, ..., diameter
Hops Not used, used
Cut-off threshold 75, 100
Clustering Coefficient 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35,0.4,0.45, 0.5, 0.55

1,0)and(X,y,D, 1,1).

3.4.7 Evaluation of categories

Simulations were conducted using a sP2Ps (simple P2P doryldeveloped by
us. The parameters of the graphs used were 2000 nodes ande@ ¢geg node,
on average. We conducted experiments for several clugtedefficient values,
ranging from 0.001 to 0.6 (the maximum clustering coeffitiealue for graphs
with 2000 nodes and 6 average degree).

For each graph, we run experiments for several parameteteealgorithm.
Horizon values ranged from O (not using the horizon crit@rito the diameter
of the graph, using the hops criterion or not and two threswalues. All the
experiments conducted are summarized in table 2.
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Evaluation of Horizon criterion
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Figure 3.8: Evaluation of horizon. Y axis: % of duplicates aliminated. X axis:
percentage of graph in horizon. One line per clusteringfimeft percentage (of
max cl.coef.). Threshold is 100.

TTL is always set to infinity, so a normal flooding (without ngithe algo-
rithm) will reach every node in the graph and generate theirmax number of
duplicates. Two metrics are used to rate the efficiency ofatgerithm in each
experiment. The number of duplicates sent and the coveffape @oods (i.e.: the
percentage of the graph covered). Notice that in experisniatt use a threshold
of 100, the algorithm will eliminate those categories thattain ONLY duplicate
messages. Thus, is that case, we have no loss of coveragesvetpwe do not
eliminate that many duplicates either.

For each experiment, we run one flood from each node in theanktand
collected the average results (coverage, messages seduplichtes sent) over
all floods. Each experiment is named after its parameteras,Tthe name format
will be [horizon distance]-[HOPS — NOHOPS]-[threshold wa). For instance,
experiment 2-HOPS-75 means that the algorithm used a modistance of 2 hops
away, used the hops criterion and eliminated all categavitsduplicates greater
than 75.

Evaluation of Horizon Criterion

Figure 3.8 shows that in random graphs, benefit is closeetbrtbar curve than in
more clustered graphs. In clustered graphs, we have a besiafive to the extent
of clustering, just by using the minimum possible horizostaice value (=1)(See
Figure 3.12). What is more, even though the percentage gfrtigh in the horizon
lowers if the size of the graph increases, the extent of timefitewill remain the
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Evaluation of Horizon criterion
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Figure 3.9: Same figure with Figure 3.8 but with cutoff thi@eh75%. Y axis: %
of duplicates not eliminated. X axis: percentage of grapharzon. One line per
clustering coefficient percentage (of max cl.coef.).

same, since in sparse graphs, the clustering coefficiemst miotechange with size.
In contrast, in random graphs, if the size of the graph irs@eaone would need
to increase the number of nodes in the horizon to maintaisdhge percentage of
nodes in the horizon, and thus the same efficiency. Notideiththese figures, we
have used a threshold of 100 and thus have no coverage losses.

Figures 3.9, 3.10 and 3.11 show the algorithms efficiencgntuses a thresh-
old of 75. Notice that in with a threshold of 100%, in randoragts, the algorithm
eliminated almost no duplicates, when the horizon was srrathis case, almost
all the duplicates are eliminated, along with all the cogeraf the algorithm. This
means that the horizon criterion still does not work well fmndom graphs. This
is shown in Figure 3.11, where we combine both metrics (@meand duplicates
eliminated) in a single, simple metric. If C is the coveragecgntage and D is the
percentage of the duplicated that were eliminated, thisiongating) is defined as
C?*D. Notice how this is similar with the inverse of Figure 3.8.

Figure 3.13 shows again the efficiency of horizon = 1, likeuFég3.12, but
again this time with a threshold of 75%. Notice that the edficly rating is not
linear this time with the extent of the clustering. This is&ese the 75% threshold
is not the optimal for every clustering coefficient. We haeseloped a modifica-
tion of the algorithm to allow for the optimal threshold todmmputed at run time,
instead of being an algorithm parameter and will update bove results as soon
as possible. Then we believe we will again have a efficiencyectelative to the
extent of the clustering.
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Figure 3.10: Coverage of the algorithm with cutoff threshof 75%.

Evaluation of Hops Criterion

Figure 3.14 shows results of experiments using the hoperionit but not using the
horizon criterion (horizon = 0), with different graphs. Asntioned before, the
horizon criterion works better for random graphs. This éficy is the same for
any graph size. The number of possible hops do increases Hitle of the graph
increases, albeit much more slowly (Recall that the diamate random graph
is log(N)/(2*log(d)) where N is the size and d the averagereley In contrast, if
N increases in random graphs, for the horizon criterion tintam its efficiency,

in needs to maintain the percentage of graph in the horizdwusT N doubles,

so must the number of nodes in the horizon. This is not so hemievthe case
of small-world graphs, as we have seen above. The horizéerion takes full

advantage of the clustering of the graph by using a horizetadce of 1 hop,
regardless of the percentage of the nodes of the graph ihdhiabn. Thus we can
see that both criterions are scalable.

Efficiency of both criterions.

In Figure 3.15, we see the efficiency of the algorithm thasus#h criterions. As
mentioned before, the algorithm that uses both criteriookswell in any type of
graph. We believe that by using a way of calculating the ogiitinreshold at run-
time, as mentioned before, would lead to even better regsuttee case of random
graphs, thus making the above lines more flat.
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Evaluation of Horizen criterion
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Figure 3.11: This figure cobines results of Figures 3.9 arid.3.
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Benefit of horizon = 1 (threshold = 100%)
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Figure 3.12: Graph of benefit of horizon =1 from clusteringeex Hops was not
used and threshold was 100, so there is no coverage loss.
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Benefit of horizon =1 (threshold = 75%)
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Figure 3.13: Same with Figure 3.12. However, in this casdenté still do not use
Hops, we use a threshold of 75% instead of 100%, which leadsverage losses
too.

Hops criterion evaluation
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Figure 3.14: Evaluation of hops. Y axis: percentage of dapdis not eliminated.
X axis: clustering coefficient percentage.
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Figure 3.15: Efficiency of 1-HOPS-75.
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Chapter 4

Flood Driving algorithms - Divide
and Conquer

In this chapter, we describe the proposals for adding sutlastc information to

the network, as to enable us not to avoid sending duplicassages, but to avoid
sending messages altogether, to nodes which most surélyotvidontain the piece
of data we are looking for.

4.1 Problem description

As mentioned before, the flooding mechanism becomes sedighising the TTL
field, at the expense of greatly reducing coverage and thlkénméocating less
popular items (items that are stored on very few number oéaaa the network)
very difficult. The only way to increase coverage by using $hene amount of
messages, is to ensure that every message reaches a naw @&rveo duplicates)
and thus, that we do not waste messages. However, the gasddaifing as many
nodes as possible is a consequence of the fact that evenjhasdike same chance
of containing the piece of data we are looking for. If the mfiation we are looking
for is popular, (i.e. is replicated to many nodes in the nekyvdlooding will locate
it quickly (i.e. even with a small TTL). If however, the infoiation resides at just
one node, for instance, flooding would have to reach almostyemode in the
network to locate it. This means that in unpopular searchést, of bandwidth is
wasted contacting nodes that do not have the information eeel.nIf there was
some way of knowing which servents are less likely to conttaéninformation, we
could use some way to avoid wasting messages by sending thitiose servents.
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Ultrapeers level

Leaves level

HEE EY &

Figure 4.1: Ultrapeers/Supernodes architecture. Blagslcorrespond to connec-
tions between Ultrapeers. Blue lines correspond to coiorecbetween Leaves
and Ultrapeers. Flooding is performed only at the Ultrapeszl.

4.2 Existing approaches

4.2.1 Directed Breadth First Search

The first approach to make blind flooding more efficient, wase&@ed Breadth
First Search (DBFS). The flooding mechanism is often refetweas BFS, because
it traverses the graph in a BFS manner. DBFS avoids propagatich message to
all the neighbours. Instead, each node rates its neighl@aesding to some met-
ric. The metric mostly used is the ratio of the results resgifrom that neighbour,
versus the number of searches propagated to that neightecatl that results are
propagated to the node that initiated the search in theseymth travelled by the
search). Each node propagates each message (flood) ieeteihe top-K neigh-
bours, so that k/degree equals some percentage. This appeoables a node to
have the same number of results by using an even smaller Thichweduces
the number of messages for popular searches even more. Eiowes approach
makes finding unpopular data even more difficult, since it neglyice the coverage
of a search.

4.2.2 Ultrapeers/Supernodes

The most important approach, so far, in addressing the @mabis the introduc-
tion of Ultrapeers in the Gnutella 2 network [Ultrapeersfléupernodes in the
FastTrack network. Ultrapeers’ purpose is two-fold. Fiistemoves all nodes
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with low bandwidth from the network on which flooding is parfeed. Flooding
generates a lot of messages and was slowed down by nodesowithahdwidth,
which comprise the majority of the users and were not ableuterthe increased
traffic. Nodes with high bandwidth are elected Ultrapeerke Test of the nodes
are called Leaves, and connect to one to three of the Ultrap&bere are no con-
nections between leaves (Figure 4.1). Every Ultrapeeratamia hashed index of
the files residing on each of the leaves connected to it. Adaafinitiate a search
by forwarding it to its Ultrapeer. The Ultrapeer floods tharsh to the rest of the
Ultrapeers. Any Ultrapeer forwards a query to one of its ésagnly if the index
of its leaf shows that it may contain some file(s) that satisé/query. This means
that i)leaves do not propagate messages (they are only thpaints of a flood)
and ii) leaves will only receive those queries that there Iégh probability that
they can satisfy. The hash index an Ultrapeer receives famh ene of its leaves,
allows it to know if the leaf cannot satisfy the query, mostha time. This index
uses Bloom filters, thus false positives are possible, butatee negatives.

4.2.3 Semantic Overlay Networks

Crespo and Garcia-Molina propose a thematic partitionfrigeonetwork [2]. They
propose some mechanism to automatically thematicallgsilamusic files, based
on their filenames (which must contain information aboutdhést and the title)
and by using an existent online, categorized, index of somgey manipulate the
extent of granularity in the classification, in order to lpala the population of each
category in the classification. Then, they propose thetjmnitng of the network
into subnetworks, according to the categorization. Whemckeng for a file, one
needs to classify it and issue a query in the appropriatestwionk. However, they
do not define how one can contact the appropriate subnetwevkether everyone
is aware of every subnetwork.

4.3 Algorithm Description

SecSPeer adopts the basic idea of the SON proposal and dé¢fhmms the se-
mantic overlay networks are formed and ii) how search isqueréd through those
networks.

The idea in the core of our design is the partitioning of thei@la network
in semantically independent subnetworks. This partitigrwill be based on some
categorization of the files in the network. Each subnetwbetl e comprised only
of servents that contain a certain number of a certain catagjdiles. For instance,
one subnetwork can be comprised of nodes that contain dtdeagock song, or
perhaps at least five rock songs. The networks are seménticdependent in
the sense that two servents in the same network are only cath® one another
through a number of servents in the same network. Howeviilaivs from the
above descriptions that a single servent can participatedre that one subnet-
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works. When this is the case, that servent maintains a diffeset of connections
for every subnetwork it is a part of.

The categories mentioned above, each of which will be this hasa distinct
subnetwork, must be defined so that each category must nigtic@ilarge portion
of the total number of servents. If some category is largeait divided it into
subcategories. On the other hand, each category’s papulatiist not be smaller
in size than a certain percentage of the total number of sevélhe reason for
this is explained below.

Since Ultrapeers/Supernodes are considered to contagmbyaheir own items
but also those of their leaves, their files would belong toyrdifferent, categories.
In the extreme case, every Ultrapeer would belong to evdrgeswork, thus either
ruining every benefit of the scheme or requiring of us to harg fine-grained cat-
egories, in order to exclude some Ultrapeers from some s$wbris. Instead, for
the time being, we assume that there are no Ultrapeers/iSuges. We shall add
those later on in the design since they are a very importatrfin the scalability
of unstructured P2P systems.

4.3.1 Formation of the subnetworks

Each servent can obtain the categories definitions from lakmelvn source. Since
those categories will change very slowly (perhaps once e&?ydhis does not limit
the scalability of the system. Even now, most of the unstimect P2P systems
use web-caches to learn the location of at least one peentwecbto. Using the
categories definitions, each servent decides which sulbnetwo connect to, based
on the items it contains. This of course requires some wapofing for each data
item, the category it belongs to. This, for the time being) ba done manually.
The client might present the user with a list of all the categgoand ask to pick
one for each item. This information will be stored by the mliend be provided to
every other client, which downloads that item, so that iex ueed not categorize it
again. This way, only items injected in the system througiereal sources (CDs,
downloading through other applications, etc) will requiegegorization.

Connecting to a subnetwork can be done the same way serwemtsat to the
p2p networks today. A webcache can be maintained for eadmea$ubnetworks
defined by the categories.

4.3.2 Searching the subnetworks

The reason of the creation of those subnetworks was to ba@bigiate a search
via flooding inside the right subnetwork and thus avoid segpdhe message to
servents of other subnetworks. However, since having eaiwlist be part of every
subnetwork beats the reason for having subnetworks, vallthat if a servent
wants to initiate a query in a subnetwork it is not a part ofdeds to locate at
least one servent participating in that subnetwork. Thikeseason we require all
sub-networks be small (so that rare items can be locatdhlejot TOO small (so
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that sub-networks can be locatable). Each servent irdtiatBood query in each
of the subnetworks it is a part of, sequentially, looking fastthe required item,

but for a node belonging to a particular subnetwork. Wheadates one, it sends
a query to that servent, requesting the particular itemlitdking for.

4.3.3 Subnetwork size

We said before that subnetworks must be both small but nt# gmall. The ques-
tion is if there is a size that will be small enough to enabléouscate rare items,
but large enough to enable us to locate at least one servardubnetwork. Since
locating just one servent of a certain subnetwork is enotiglan easily be shown
that we can have as small subnetworks as to enable us to extiedast majority
of the total servents and still be very easy to locate themwé¥er, the fact is that
some peers contain lots of items. Thus, subdividing a cayemytot of times gives
diminishing returns in turns of subnetwork size reductiod also would require
several servents to maintain a very large number of openemions. Here, im-
plementations need to find a trade-off between categorasutarity and number
of connections. Notice that servents that have lots of itgereerally sport much
higher bandwidth than the average servent.

What is more, when a servent, during a search, locates ansefvihe subnet-
work it wants to search, it can store its IP address and partache, for future use,
thus eliminating the need to lookup that subnetwork in feitsearches. It is obvi-
ous that this can be extended to store more than one sereemadh subnetwork
it has contacted (or only each subnetwork it contacts fretlyeo reduce required
space). This way, it can periodically contact one of theneon of new servents in
the network and update the cache entry. By using this scheuwbagtwork lookups
can be all but eliminated, since when a servent performs aetwiork lookup, it
can be satisfied by its neighbors, without the flooding evachigg a single ser-
vent of that subnetwork.

4.3.4 Re-introducing Ultrapeers/Supernodes

Ultrapeers can be added on a per subnetwork basis usingtieesachanism used
today to elect Ultrapeers in P2P networks. The differendbaseach Ultrapeer’s
leaves will be nodes from the same subnetwork. What is meagek which belong
to more than one subnetworks will connect to as many Ultngpeethe number of
subnetworks they belong to. This is not a problem since kEmagy then have more
connections (than today) and yet receive the same numbereorless queries.
Each leaf will send a subset of its index to each Ultrape@taining only the items

that belong to the category the Ultrapeer belongs to. A siegtvent belonging to
more than one subnetworks may be elected as Ultrapeer inthor@ne of them.
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Chapter 5

System Security

5.1 Known threats in unstructured P2P systems

Unstructured peer-to-peer systems have no central atythonmaintain the over-
all system’s behavior. Thus, each participating peer hadrdedom to send or
route messages in its own will, abusing the system’s rulést 18, each peer can
construct messages with fake TTL and HOPS fields pretentmigttroutes actual
traffic. There is no limit for the traffic each peer generatéhe faster and well
connected peer wins. Whenever a peer responds with a mebssgds no easy
way to judge if the response is valid; that is if the resporsgains valid payload.
For example, consider an unstructured P2P system for egiftgaBtock Market’s
related information. Each peer is assigned with a share.nvdheeer asks for the
current price of a share it generates a Query message, wiaphgates in the sys-
tem. In normal circumstances, the peer responsible fortthresn question should
reply with the true share’s price. However, since there iserdral authority to co-
ordinate the system a number of different things can happgreer may respond
in favor of another, a peer may respond with a fake price, ampeg respond with
the price of another share, etc.

All the above, can lead to a number of different attacks froalicious peers
that target the system or even computers outside the system.

5.2 Related work

Daswani end Garcia-Molina[3] propose a number of strasefpe Query traffic
balancing in the Ultrapeer level, so as to limit Query flogdattacks from mali-
cious peers. The results have been exported after mod#tinGnutella traffic.
Mayank Mishra[8] describes extensively a number of exigtigacks in peer-
to-peer systems and he proposes a new protocol, Cascadef thaenain features
of Cascade is iterative search. In iterative search, a pegrais the Query flow. In
contrast with pure flooding, iterative search forwards thei® to a peer’s neigh-
bors and requests the neighbors of each neighbor. Theogit@eds on connecting
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to them and perform recursively the Query.

Demetrios Zeinalipour-Yazti[13] describes in detail theaB generation in
Gnutella and proposes each peer to perform a direct conméle tpeer it wants
to download from, via the system protocol and not the dowshjm@tocol, requery
the peer and then perform the download.

5.3 Spam generation

A known malicious behavior, observed in the Gnutella systisnthe generation
of Query Replies for each Query received by the malicious. pEleat is, a mali-
cious peer can monitor every Query packet which is routed fmarse its Search
Criteria and produce a Query Reply packet with imaginary esdled responses.
The responses are created by adding a known file extensibe tariginal Search
Criteria and by performing a type of frequently used capi#ion. For exam-
ple, if someone searches for 'foo’, the malicious peer capord with imaginary
filenames such as 'foo.mpg’, 'F O O.mp3’ and so on. Althoudi® tesponses
have imaginary filenames, the files have a valid content, misian advertisement
message

The most vital side effect of the spam generation is the $tidh of valid re-
sponses. The life time of a typical Query in the Gnutellaeystioes not depend
only in its TTL field, but also in the generated Query Respsndéat is, an Ul-
trapeer, which has generated the Query (either by expliagking the system for
itself, or implicitly asking the system on behalf of one of iteaves), will likely
terminate the querying process, upon it receives a certaguat of results. Now
days, in the Gnutella system, the amount of responses pey iuepper bounded
by a limit of 150-200. Thus, the spam generation can terraimaplicitly the
guerying process, since spam responses are counted asegglahses. This phe-
nomenon can be exaggerated when the Query targets rarencontbe system.
That is, the Ultrapeer which controls the querying procefidikely need to search
in a larger horizon with larger possibility to forward theequ to a malicious peer.
Recall, that one malicious peer is enough to produce husdresglpam responses,
since it can spoof the HOPS field and pretend that the prodesgpednses are gen-
erated by another Ultrapeer or by one of its Leaves.

5.4 DoS and DDOS attacks

Another potential security threat in unstructured pegpder systems is Denial of
Service (DoS) attacks. A malicious peer can generate rar@oeny traffic; that

1A similar malicious behavior, which can be observed rarelthe Gnutella system, is the pro-
duction of replies with filenames that are constructed wipam message. For example a Query
for ’foo’ can issue a Query Hit which embeds a filename ’'FreavMs-AT-www.XXXXXX.0rg.mpg’.
However, this approach is easily captured by the end user she spam message is shown in the
filename.
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is Queries with random Search Criteria, HOPS and TTL fieldisces each query
floods the system via the traditional flooding mechanism potigns of the system
via dynamic querying, a peer can emit to the system unnegesssssage traffic,
which will eventually grow following exponential rates.

A second type of DoS attack, which nature is completely ithsted, can be
achieved by emitting Query Responses instead of Querigs.nidéthod may target
any machine, which listens to a known port and it is connettethe Internet.
There is no need for the target machine to be a Gnutella getic A malicious
peer can monitor the Queries it receives and generate respdar every Query
message. Each Query Reply packet will carry the IP addregshenPort of the
target machine. Since, there is no mechanism to indicateeitR address in the
Query Reply message matches the IP address of the machiieh) gdnerates
the Query Reply message, all generated responses will bedréo the original
queriers. Thus, there is a chance that a vast amount of dadrdtiempts to a
single computer may be performed in a short time of period.

5.5 Existing approaches

In practice, empirical solutions are used in the modern &lausystem, in order
to reduce the impact of the attacks explained above. Howéwere is no global
mechanism to completely solve all the Gnutella securitygss

5.5.1 Spam Generation solution

End users may ban a specific peer, usually via an option ingbe interface of
the software they use to participate in the Gnutella systkits responses seem
to be spam messages. However, not all spam messages carilpédeatified
by the end user. Another approach, which is performed méinlgdevelopers of
Gnutella servents, is to occasionally scan the network faiaious peers and store
them to a public database (hostiles.txt). Each softwarelaenpdates its local
database and thus minimizing the chance of contacting imasiqpeers. However,
malicious peers can change their identity quite often areghter to the system. On
the other hand, scanning the whole network for maliciousgiea slow process
and the database updates must be distributed in some waypaitticipants, which
is an even slower process. Updates are published to well kkivgeb sites, or get
included to newer software releases.

5.5.2 DoS and DDoS attacks solution

As far as the DoS and DDoS attacks in Natal are concerned ntgenay to limit
the chance of the attack is via bandwidth limits. Each peentaias a packet
queue adjusted to it incoming bandwidth and eventually siropssages that ex-
ceed its queue length in a short time of period. That is, a tiesrtries to emit
a vast amount of traffic in the system, it will likely get muealby its neighbors.
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However, this technique can only reduce the traffic emittea Ipeer. It can not
judge if the peer is malicious or just a fast connected petir avhigh degree, nor
it can prevent unnecessary message broadcasts in the syistaddition, there
is no fair criterion to decide of what Query to drop. That isjefies generated
by malicious peers may dominate in a peer’s queue forcingpdee to drop legal
Queries.

5.6 Algorithms description

5.6.1 Detecting and preventing spam

As described above a malicious peer that generates spamgesssill eventually
reply to every Query it receives. That is, the malicious pe#r reply to ran-
dom Queries with a payload consisted of a random combinatieearch criteria
(strings that are not likely to express something meanihgie propose a strat-
egy in which a legal peer queries with a random Query of TTlath random time
period upon handshaking with a new node, the new node it hakdd with. If
it receives a reply for the random Query then it should dr@pdbnnection. This
strategy has local effect since the decision is taken by eee and the action re-
gards to the termination of a single connection. We belibaéit can have a global
effect if the strategy is followed cooperatively by all Iégaers of the system. On
the other hand, if a legal peer misjudge another legal pegtraats it as a ma-
licious (in the extreme case, where a random string is mgémjnthe misjudged
peer will loose only a connection. It is rather unlikely tladtother peers will treat
it also as a malicious one. Further more, the strategy codysaoQuery message,
which will not be propagated in the system since it has TTL=1.

On the other hand, malicious peers may try to detect theegiyaby (a) not
responding to Queries with TTL=1 and HOPS=1, that is Queniggnated by one
of their neighbors (b) not responding to Queries for the fest minutes (c) hide
over a legal peer, part of the malicious infrastructuret(tbathe legal peer does
not follows our strategy), which serves as a gateway to that€la system. Our
strategy can be enhanced in order to overcome (a) and (b) kinghthe HOPS
field of the random Query message also random and by reqagrgirs in random
time intervals, respectively. As far as (c) is concernedway issue also Queries
with TTL=2. If a response of a random Query with TTL=2 is reesi, then we
can safely judge the neighbor as a legal client that hidesl@ioe one and the
connection should be dropped. Someone may argue that dgog connection
in this case leads to a misjudge, since the originator oféspanse is not known
in advance. We can further argue that there is no misjudgnimtause if the
legal peer was not part of the malicious infrastructureehwitl not be responses
in random Queries with TTL=2. That is, we assume that thel legar will have
been following the original strategy and drop the connestiwith malicious peers
in his first level neighbors.
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Peers that have been judged as malicious enoughistesild be classified
as malicious. That is, their IP address should be added tbl#iok list database.
Furthermore, legal peers, which route Query Hits shouldedine packets and
check if a black listed IP is contained. If the check is true flacket should be
dropped.

5.6.2 Detecting and preventing DoS attacks

Our spam preventing strategy with random querying couldi$® @sed to prevent
DoS attacks of the second type, where peers respond to ewvemy @ith results
that contain the IP address of the target machine. The paeotiginates the attack
will also answer the random Query and hence will be judgeda&ious.

Furthermore, we introduce a complete load-balancing isolitased on 'coupon
exchanging’ between peers, which attempts to prevent Qilmogding based at-
tacks. Our load-balancing algorithm prevents peers from geimgranormous
Query traffic and thus DoS attacks.

Assume two peers, A and B. B establishes a connection withpdnlhand-
shaking A assigns N coupons to B. Whenever a new Query is santB to A, B
looses a coupon. Whenever a new Query is sent from A to B, Bseagoupon.
That is, if B tries to flood the system via A with a massive antaainQueries,
eventually B will exhaust all of its coupons and it must waitéceive new Queries
from A, in order to start sending again. Notice, that couparessexchanged only
when Queries are exchanged. This is because a malicious ctield issue popu-
lar Queries, which generate a vast amount of results andeelatnof coupons by
loosing a single coupon; that is by issuing a single Query.

This load-balancing scheme has also local effect. Coupanexahanged via
direct connections and do not propagate to the system. Howere believe that
if the majority of the system follows our algorithm, DoS at#ta based on Query
flooding will eventually stopped by peers which will get oitoupons.

2In the present phase "enough times’ is a number in the ord&®.of
3Notice also that our duplicate elimination algorithm limuery traffic and thus has as a side
effect the reduction of the scale of a DoS attack based onyJloerding.
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Chapter 6

Conformance of Requirements

6.1 Scalability

Unstructured systems are already scalable in terms of ar&nte costs, at the cost
of the scalability of the searching mechanism. The reasatrhinders unstructured
P2P systems’ scalability is the cost of flooding in messaBeth the proposals of
Chapters 3 and 4 address this issue.

6.2 Quality of Service

Up to now, unstructured P2P systems could be alternativiipels as: "Scalability
and Quality of Service. Pick one”. The reason is that schtialvas achieved with
the TTL limit in the expense of the ability of the system todteitems. Chapter 4
addresses this issue. It enables

6.3 Expressiveness

Today’s substring match based search may lead to presemimgsults items of
data which are semantically irrelevant to the query. This s@mehow rectified by
allowing the user to specify the type of data required, asddfby the extension
of the filename. The semantic categorization of the dataritbescin Chapter 4
allows the user to be much more specific about the data beikgdofor.

6.4 Availability

Availability is related to the degree of tolerance of a piepeer system against
faulty or unreachable nodes. A peer-to-peer system mustdileent to clients that
do not respond to requests or misbehave.

We have described in detail, in the Security Chapter, algms, policies and
techniques in order to isolate malicious nodes. That is,pooposed system can

40



remove by itself nodes that may produce internal damageatwithus gurantee its
long time availability.

6.5 Shielding the peer-to-peer infrastructure

We have described in detalil, in the Security Chapter, theayaser-to-peer system
can be used to launch DDoS attacks over the Internet. Usegydimdom query-
ing” mechanism, healthy nodes of the system can identifyrtakcious ones and
remove them from the system.
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