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Introduction

In this document, we desribe the design of SecSPeer, a secureand scalable, un-
structured, peer-to-peer system. The document organization is as follows:

Chapter 1 provides an overview of this document.
Chapter 2 provides a brief description of the main architectures used today in

unstructured P2P systems.
Chapters 3 and 4 describes the proposals tthat make SecSPeerscalable.
Chapter 5 describes the mechanisms designed to make SecSPeer secure.
Chapter 6 correlates this document with SecSPeer Deliverable 1.1: Systems

Requirements document.
The document ends with the Bibliography.
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Chapter 1

Overview of the architecture

In this chapter, we describe the overall architecture of thesystem. At the same
time, we present, in brief, the structure of this document.

1.1 System Objectives

In more traditional distributed, content delivery systems, like the World Wide Web,
each participant in the system plays a distinct role. Web servers play the role of the
content providers, while clients (web browsers) request content from the servers.
In a peer-to-peer (P2P) system, each participant offers content to the rest of the
participants and at the same time can also request content from them. As a con-
tent delivery system, one of the most important functions ofany P2P system is the
search for a piece of data offered by anyone of the participants. Since, each partic-
ipant offers any and whatever content he/she likes, that piece of data can be on any
participant of the network. For that reason, the prevailingmethod used is broad-
casting (i.e.: trying to ask everyone in the system). Since each participant is aware
of only a few other participants, this broadcast is implemented by having each par-
ticipant that receives the message forward it to all of its neighbors (participants
of the network it is aware of and connected to) and so forth. The main Achilles’
heel in peer-to-peer system scalability is the number of messages required for these
broadcasts. The objectives of SecSPeer is to improve peer-to-peer scalability and
also tackle peer-to-peer security issues, such as DDoS attacks.

1.2 System Architecture

The SecSPeer architecture is comprised of several improvements on today’s pre-
vailing, peer-to-peer architectures, with the purpose of improving their scalabil-
ity and security. For this reason, in Chapter 2, we provide a brief description of
the main architectures used today in unstructured P2P systems. In the following
chapters (3-4-5), we describe the design of SecSPeer, whichbuilds on today’s un-
structured P2P architectures. Chapters 3 and 4 try to improve the scalability of the
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system by reducing the number of ”worthless” messages sent during a broadcast.
”Worthless” messages are messages that do not increase our chance of locating the
required piece of data.

In Chapter 3, we describe the first architectural change proposed by SecSPeer,
to improve P2P system scalability. As is explained in that chapter, the broadcast-
ing mechanism results in the transmission of redundant messages (i.e.: sending the
same message to the same participant more than once). The purpose of the pro-
posed algorithm is the elimination of those redundant messages, in order to reduce
the number of worthless messages during a broadcast. The system tries to avoid
forwarding a message to a participant that may have already received it by learn-
ing from traffic history, through the use of explicit duplicate notification from the
receiving participant.

In Chapter 4, we describe another scalability improvement algorithm, which
tackles the issue of blind broadcast, by adding semantic information to the net-
work, so as to be able to broadcast to only a subset of participants of the network.
This way we try to avoid generating another type of worthlessmessages, namely
messages sent to participants that do not have the data beinglooked up.

Chapter 5 describes SecSPeer’s proposals of dealing with security issues, such
as spam generation and DDoS attacks. Broadcasting creates significant amount of
traffic which is shared by all the nodes of the system, on behalf of the broadcasting
node. To avoid exploitation, it is essential that amount of traffic load a node injects
in the system be relative to other nodes’ amount of traffic load it serves. Spam
generation is created from malicious nodes that reply to queries for content they
do not have. Since the amount of results they send is arbitrary, this reduces the
amount of ”good” results the requesting node receives. Thisdocument concludes
with some analysis of possible, future directions and a correlation of the design
with Deliverable 1.1: System Requirements Document[6].
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Chapter 2

Brief Description and Analysis of
today’s Peer-to-Peer architectures

In this chapter, we provide some background knowledge of existing P2P systems,
required for the understanding of the SecSPeer design.

2.1 Introduction

P2P networking has generated tremendous interest worldwide among Internet users
as well as computer networking professionals and researchers. P2P software sys-
tems like Kazaa and Gnutella clients rank amongst the most popular software appli-
cations ever. Numerous businesses and Web sites have promoted ”P2P” technology
as the future of Internet networking.

The basic notion behind peer-to-peer systems and the one that distinguishes
them from more traditional client/server architectures isthat those two roles are
not cleanly separated. Each user that participates in the network, offers its own
pieces of data to the rest of the network, and thus acts as a server, but is also at the
same time, able to request data from rest of the users in the network, and thus, acts
as a client. This was the idea behind the adoption of the term servent (SERVer-
cliENT), to characterize each participant in the network.

2.2 Unstructured systems

2.2.1 Centralized

The first P2P system, to make an impact in the world, was Napster [4]. Napster
was not completely decentralized, since the knowledge of the location of every
piece of data (which user possesses which data) resided on a single, well-known
server (and not servent). Each participant notified the central server for the data it
serves, during its bootstrapping process. For that reason,there was no need for a
broadcasting technique, since every search for some piece of data was directed to

8



Figure 2.1: Unstructured, decentralized P2P network topology without Ultrapeers.
(i). A is connected to and aware of only B and C.
(ii). A initiates the flooding process, At the first phase of the flooding, A will
send its request to B and C. At the second phase, B and C will send it to all of
their neighbours, except the one they got it from (A). Since Dis both B and C’s
neighbour, it will receive the message twice (the second message being redundant).
(iii). Assuming that servent E contains the piece of data A islooking for, it will
send the reply to D (assuming the message from D arrived before the message from
F in (ii) ). D will forward it to B (again, assuming that B’s message to D in (ii)
arrived before C’s message to D) and B finally to A.

that server. We use the past tense in describing Napster, since we refer to the ”old”
Napster, instead of its reincarnation as a subsriber service.

2.2.2 Decentralized

The next generation of unstructured P2P systems includes Gnutella and KaZaA
[11] [5]. Both these systems are completely decentralized in the sense that there
is no central server like the one in Napster, to facilitate the lookup of data. This
made those systems more robust, but also made looking up datamore difficult,
since each participant in the network was aware only of its own data. In these
systems, each servent knows of and is connected to a small subset of other servents
in the network. In turn, each servent in that subset is connected to another subset of
servent (which includes the first one, since the connectionsare bidirectional), and
so on.

9



Lookup in decentralized systems - Flooding

Since there is no centralized server to know the location of all data, a servent look-
ing for a piece of data needs to ideally ask every other servent in the network for
it. Since each servent is aware of only a few other servents, the broadcast is carried
out by all the servents in the network, each sending each request it receives to all of
its neighbours (except the one it received it from) and so on.This leads to the phi-
losophy of ”all for one and one for all”, since all the servents cooperate to forward
the broadcast of a single servent and every servent forwardsevery broadcast it re-
ceives, from the rest of the network. This results in a flood ofmessages spreading
through the network. Each servent, that contains the piece of data being requested,
sends a message back to the requesting servent. Since the query message does not
contain the identity of the servent that initiated the flooding, the answering servent
sends the reply to the neighbor it received the request from,which in turn forwards
it to the servent it received the request from and so forth Figure 2.1.

In the same way, each servent is able to learn of the existanceof other servents.
Each servent that wishes to connect to the network need only know the existance
of one other servent. This it learns from well-known servers, called web-caches.
When the address of one servent in the network is known, a broadcast can be
initiated, requesting each servent that receives it, to contact the first servent and
notify it of their existence.

This broadcast technique used in these systems, called flooding, has two obvi-
ous drawbacks. The number of messages during the progress ofa single flooding
increases exponentially and since two different servents may be connected to the
same third servent, that servent will receive the broadcasted message twice. The
number of messaged created is bounded by adding to each message a TTL (Time
To Live) field. This field is similar to the TTL field of IP packets and contains the
number of times the message can be forwarded before it is discarded. This method
does reduce the number of messages generated, but also reduces the number of
servents that can be contacted.

As explained in Figure 1, a servent may receive a message belonging to the
same flood, more that once. A servent that receives the same broadcasted message
more than once simply ignores the copies other than the first.Messages belonging
to different floodings are distinguished from a global ID. Messages belonging to
the same flooding have the same ID.

To improve the scalability of this algorithm, both systems introduced the no-
tion of UltraPeers [1](SuperNodes in KaZaA), which we describe later on in this
document. In short, since servents with low bandwidth reduce the speed at which
flooding progresses and thus, the scalability of the system,these servents were re-
moved from the network as such, and instead, were connected to it through another
servent with better network capabilities. Since these ”leaf” servents are connected
to their parent servent only and not to each other, there is noneed to forward any
message they receive from the parent servent. What is more, at the time they con-
nect to a parent servent, they send it a hashed index of their contents, so that the
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parent servent will only forward searches to them if they mayhave the piece of
data being looked for. Thus, flooding is only used at the parent servents’ level. If
the UltraPeer/SuperNode of a leaf fails, the leaf reconnects to another one. The
leaf receives a list of UltraPeers/SuperNodes from each parent it connects to as
alternatives. If this list is empty, Webcaches are consulted.

2.3 Structured systems

Finally, it must be noted that there is a family of decentralized P2P systems that
do not require broadcasting a message in every direction, inorder to find some
piece of information, even though there is no centralized server. This is possible
by imposing some order among the stored information. In these, structured P2P
systems, even though a requesting servent may not be aware ofthe exact location
of the data it is looking for, it knows in which ”direction” itcan be found. This
way, lookup is performed by propagating a single message in the right direction,
instead of flooding. However, the increased state information required by those
systems make them much more vulnerable to failures. SecSPeer aims at making
unstructured P2P systems as scalable as structured, in terms of network load, while
maintaining unstructured systems’ scalability, in terms of robustness. Examples of
structured systems are [7], [10] and [9].
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Chapter 3

A feedback-based approach to
reduce duplicate messages

In this chapter, we present SecSPeer’s approach to eliminating redundant traffic
during the flooding process. Throughout the rest of this document, we model the
topology of an unstructured P2P network as a graph, where each servent is a node
of the graph and there is an edge between any node/servent andits neighbours.
Since communication is bidirectional on those connections, so are the edges in the
graph.

3.1 Problem Description

As mentioned before, one drawback of the flooding mechanism,which is blatant,
is the generation of duplicate messages. In Figure 2.1(ii),we gave simple demon-
stration of how duplicate messages are generated, since B and C nodes both sent
the same message to D. What is more, and not readily obvious from the figure,
is the fact that D will forward the first message it receives, as soon as it receives
it. Assuming that B’s message reached D before C’s message, this will mean that
D will forward the message to all of its neighbours, except the one it received it
from (that is B), which includes C. This results in the generation of two duplicates,
one from C to D and one from D to C (Figure 3.1). In general, in a network of
N servents with d connections per servent, on average, the cost, in messages, of a
flood intending to reach every node in the network (boundlessTTL) will be d + (N-
1)(d-1). This is because every servent will receive the message at least once, and
will forward it to every neighbour except one. Only the servent initiating the flood
will send it to all of its neighbours. The minimum number of messages required to
flood the network is N-1 (the number of servents in the network, minus the servent
initiating the flood). Thus, the number of (redundant) duplicate messages is d +
(N-1)(d-2). The ratio of duplicate messages versus total messages is (d-2)N + 2 /
(d-1)N + 1. For large N, this roughly equals (d-2)/(d-1). Thehigher the degree, the
more the duplicates. This is a problem, because unstructured P2P networks have

12



Figure 3.1: Example of duplicates’ generation. Duplicateshave been generated on
whichever node lies at the end-point of more than one arrow.

much to gain from having high degree nodes, with the most important benefit being
robustness.

3.2 Problem characteristics/attributes

3.2.1 Introduction to clustering

In a random graph, each node has the same probability of beingconnected to any
of the rest of the nodes. In contrast, in small-world graphs [12], each node is more
likely to connect to nodes close to him, as defined by some closeness criterion,
than nodes that are far away from him. Notice that this kind ofcloseness is de-
fined by some other criterion than hops distance. Since, any node is close to most
of his neighbors (with high probability) and they are close to their neighbors, it
follows that the first node is also close to his neighbors’ neighbors, and thus they
may also be his neighbors with high probability. The above lead to two interest-
ing conclusions. One is that since in random graphs we have links to any node
with the same probability, random graphs have the smallest diameter1. In a small
-world graph with the same average degree, most of the edges around a node lead
to nodes inside the ”neighborhood” and so we have very few edges to lead us to the
other ”neighborhoods”, which leads to longer diameter. Theextent of clustering
inside a graph is measured by a metric called ”clustering coefficient”. The cluster-
ing coefficient of a graph is defined as the average of every node’s local clustering

1The longest of all the shortest paths between any two nodes inthe graph
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Figure 3.2: p is the probability of rewiring an edge to a random node in the graph.
In random graphs, all edges connect random nodes.

coefficient. A single node’s local clustering coefficient isthe ratio of the number of
existent edges among that node’s neighbors only, to the maximum number of possi-
ble edges, which can exist, between the neighbors. Thus, theclustering coefficient
of a node with degree k is:

Number of edges between the k neighbors

k ∗ (k − 1)
(3.1)

A sparse random graph has very small clustering coefficient.A clustered,
where all edges lead to closeby nodes, has very high coefficient and extremely high
diameter. A small-world graph is defined as a graph with high clustering coeffi-
cient and yet a diameter comparable to random’s. A small world graph is generated
by using a regular graph and rewiring a small fraction of its edges to random nodes
inside the graph, as in random graphs. This is illustrated inFigure 3.2. Since most
of the edges still point to closeby nodes, clustering coefficient remains high. How-
ever the rewiring of a few edges is enough to greatly reduce the diameter and bring
it close to the diameter of a random graph. This is shown in Figure 3.3. Notice
that a dense random graph will have a high clustering coefficient, since there are
edges among the majority of all the possible node-pairs.

The important thing to note here is that, in small-world graphs, as noted before,
there are not many edges to connect any two ”neighborhoods”.This means that
most shortest paths between nodes of different ”neighborhoods” will use the same
edge to travel from one ”neighborhood” to the other. This is the fact that the horizon
criterion that we mention below tries to exploit.

The small-world graphs we used, were generated according tothe Strogatz-
Watts model. Each node is assigned a number. Two nodes are defined to be close to
each other is the difference of their numbers is small. First, each node is connected

14



Figure 3.3: The x axis is the rewiring probability. We see that rewiring a few edges
to random nodes is enough to greatly reduce the diameter of the graph, without
greatly affecting the clustering coefficient.

to the k closest nodes. For any node i, these are all nodes withnumber i± j, where
j = 1 to k/2. Then, for each node, we consider only the edges that lead to nodes
with higher number, i.e. edges to nodes i + j. For each of theseedges, we rewire
them to some random node in the graph, with probability p. Setting p equal to 0
generates a completely clustered graph, whereas setting p equal to 1 generates a
random graph.

3.3 Related Work

We have yet to find some other work whose main goal is to reduce the duplicates
generated during the process of flooding. Today, duplicatesare only reduced by
the fact that flooding is bounded by the TTL field, which means it covers a small
part of the network. Since the paths traveled by the flood messages are short, there
is small probability that those paths will form circles and thus generate duplicates.
However even this does not hold for small-world graphs as discussed below.
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Figure 3.4: Node A’s shortest path tree. The red, thick edgesform A’s shortest path
tree.

3.4 Algorithm description and preliminary results

3.4.1 Introduction

During a single flooding process (originating from any node X), if a message trav-
eling over and edge, reaches a node Y, which has yet to receivea message of this
flood, this edge is part of X’s shortest path tree in that graphof the network. The
reason for this is that if there was some other shorter path from X to Y, not includ-
ing the aforementioned edge, some other message would have traveled that path
and reached the node first. On the other hand, if the node that receives the message
has already received another message of the same flood, it means that the edge
traveled by the duplicate message to reach the node is not part of X’s shortest path
tree. (See Figure 3.4 for a simple example of a shortest path tree). Even if there
are two shortest paths from a node X to a node Y, Y will process the messages that
arrive at the same time, sequentially, which means that the path used by the first
message to be processed, will be deemed shortest. Any message sent over an edge
which is not part of the shortest path tree of the node that initiated the query, will
be a duplicate. Each node has a different shortest path tree and this spanning tree
does not change, if the network structure does not change.

Since each node has a different shortest path tree, any node that receives a
message, must be aware of the identity of the originator node, to route it correctly.

In order to eliminate the duplicate messages during a flooding, each node need
not be aware of the shortest path tree of each distinct node X it may receive a
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Figure 3.5: Example of Horizon’s criterion.
Messages from B to A will be assigned to category B.
Messages from C to A will be assigned to category C.
Messages from D, E, F, G, H, I, J will all be assigned to category D.
Messages from J, K will both be assigned to J.

message from, but rather, which of its edges are part of the shortest path tree of X.
However, this design is also not very scalable in the sense that in requires that

each node I hold information equal to the size of the P2P network multiplied by
the degree of the node, in the worst case2. In the following pages, we describe a
scalable version of the above algorithm, with the assumption, for the time being,
that the network structure never changes. We present and analyze/explain the effi-
ciency of the algorithm for a wide range of parameters and graphs. The reason for
this separation is that we wanted to analyze the efficiency ofthe algorithm in its
ability to correctly construct the spanning trees information, unaffected by changes
in the structure since we believe this factor to be orthogonal. Since servents are
elected as Ultrapeers/Supernodes only if they usually havea large uptime, each
node can benefit, from the information it collects for the topology of the network ,
for a long time before it becomes stale.

3.4.2 Categories

As mentioned before, in order to construct the local information of every spanning
tree in the network, each node I needs to keep a state of size equal to O(N*n), where
N is the number of nodes and n the degree of the node. This is because, for each
one X of the N different shortest path trees and for each one Y of its n neighbors,
I maintains a duplet〈X,Y 〉 with value either 0 or 1, showing whether edge (I, Y)
is part of X’s shortest path tree. If I has this information, then when it receives a
message originating from node X, it sends the message to neighbor Y only if the
value of the duplet〈 X, Y 〉 in I equals 1. X can have N distinct values, whereas
Y can have n. This leads to N*n duplets. Since n does not change(each client in

2Notice however, that techniques can be used to make the information size in order of the size of
the network (N) and not equal to N*n. Still, this informationis quite large too
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Gnutella and other P2P systems tries to maintain, on average, a constant number
of neighbors), it is storing the identity of those N nodes that limits the scalability
of the algorithm.

In this algorithm, each message was distinguished based on the originating
node, thus leading to N ”categories”, one for each node in thenetwork. To make
the algorithm scalable, we would like to find some other criterion which defines
a constant number of categories, regardless of the network size, to distinguish be-
tween messages, rather than the node that initiated the flood. Since the number of
the nodes may grow arbitrarily while the number of those categories should remain
constant or at least grow very slowly with N, this will mean that more than one
node will belong to the same category. In the previous algorithm, since there was
only one shortest path per category, a distinct value of X represented one shortest
path tree. Any one neighbor edge (I, Y) either did belong or did not belong to that
tree, and so the duplet〈 X, Y 〉 had value either 0 or 1. However, now that more
than one different shortest trees belong to the same category, the value of the duplet
is the percentage of the shortest path trees that fall under Xcategory, that edge (I,
Y) is part of.

In order for this scheme to work correctly, the criterion should assign in the
same category those nodes, all of whose shortest path trees either contain or do
not contain the edge from I to Y. This means that more than one category may
contain nodes whose shortest path trees, for instance, do contain the edge from
I to Y3, but we wouldn’t want to have categories which contain nodes, some of
whose shortest path trees contain the edge and some of whose do not4. In the
case of such mixed categories, since now we distinguish the incoming messages
based on the category they belong to and not the node that initiated the flood, we
would not know if forwarding the message to node j will cause aduplicate or not.
However, even if we do have mixed categories, the categorization will work if most
of the traffic (messages) we receive is not assigned (categorized) to those mixed
categories, either because not every category is assigned the same number of nodes
(”good” categories contain most of the nodes) or some nodes,which belong to
”good” categories, generate most of the traffic. There are two ways to distinguish
traffic, other than the node it originated from (i.e.: the node that initiated the flood).

3.4.3 Horizon

One of those ways to distinguish messages arriving at node I,is based on the node
from which they come from, up to some maximum distance away from I, measured
in hops. We call this distance, horizon. If the shortest pathfrom the node that initi-
ated the flood to I is longer than the horizon, we categorize the message as coming

3This would mean that we have two categories where we could have just one instead. However,
the scalability of the algorithm stems from the fact that thenumber of categories is constant and not
from the number of the categories itself.

4I.e.: Some messages coming from those nodes will produce duplicates of sent to j and some will
not.
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from the furthest node from I, in the shortest path, which is also inside I’s horizon.
It follows that the distance in hops from us to that node is equal to the horizon.
If the shortest path is smaller than the horizon, the node that initiated the flood is
within I’s horizon and so we categorize the message as comingfrom that node. It
follows that only messages from this node will fall into the category for this node,
whereas in the category defined by a node i, which is on the horizon (as opposed to
within the horizon) will fall all messages coming from nodeswhose shortest paths
to us, enter our horizon through node I (Figure 3.5). It also follows that if we use
the diameter of the network as horizon, then every node is within the horizon. The
number of categories for each edge will be equal to the numberof nodes in the net-
work, with one category per node, leading us to the aforementioned, non-scalable
algorithm. In all cases, the number of categories created bythis criterion is equal
to the number of nodes inside (and on) our horizon. In total, the per node state is
O(n* number of nodes in horizon).

This algorithm tries to take advantage the degree of clustering in the graph,
since, with high clustering, nodes whose shortest paths enter our horizon from the
same node, will have the same behavior (i.e.: common shortest paths after the node
on our horizon. The paths will differ on the first hops of the flood).

3.4.4 Hops

Another way to categorize the traffic is the distance betweenI and the node that
originated the flood, that is, the number of hops already traveled to reach us. When
a message comes from a node X further away, it is more likely that there is another
path from X to I’s neighbor Y, which is shorter than the path from X to I and on to
Y. Using this criterion, we avoid putting in the same category messages that come
from further away with messages that come from close by, which will create a
mixed category, as described before (2.2). The number of categories created by this
criterion is O(radius of the graph). For a random graphs, this is log(N)/(2*log(d))
where N is the size of the graph and d its average degree. Thus,as before, the per
node state is O(n*radius of the graph).

This criterion works better in random graphs, where messages on the first few
hops almost never produce duplicates. In contrast, almost all of the messages gen-
erated during the last hops of the flood, are duplicates. (Figure 3.6). This means
that in the experiment shown in the figure, categories for hops 1 to 4 and 6 to 7
will not be mixed categories. Notice that even if we bound a flood with some small
TTL, in small-world graphs, most of the messages will be duplicates. On the other
hand, in random graphs we won’t have many duplicates. More in-depth analysis of
this, is provided in the evaluation part, later on.

3.4.5 Horizon + Hops

Since the horizon criterion works well for clustered graphsand the hops criterion
works well for random graphs, using those two criterions together should reduce
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Figure 3.6: Percentage of messages generated at each hop, that were duplicates.
Hops 2 to 11 in the small-world graph have an almost constant percentage of du-
plicates. In contrast, in random graphs, small hops have no duplicates and large
hops almost only produce duplicates.

the number of duplicates produced in both types of graphs (Figure 3.7). When
using horizon with hops, every category created by the horizon criterion will be di-
vided into more categories, based on the hops criterion. Formessages coming from
a node inside the horizon (and excluding the nodes on the horizon), the number of
hops is always the same and so those categories do not get divided. For instance, in
Figure 3.5, messages belonging to category C can only come from node C and so
always arrive with hops equal to 2. Categories of nodes on thehorizon will be di-
vided into so many categories, as the number of possible hopsoutside the horizon,
that is, at most, the diameter of the graph, minus the length of the horizon. Table
1 shows the categories of node A, based on Figure 3.5. In this simplified example,
since we only have one node on the horizon. In general, the number of categories
will be at most: (number of node inside the horizon) + (numberof nodes on the
horizon)*(diameter of the graph - horizon + 1).
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Table 3.1: A’s categories.
Horizon Criterion
Categories

Hops Criterion Categories Nodes whose mes-
sages will fall into
each category

B 1 B
C 2 C
D 3 D

4 E
5 F
6 G, H
7 I

J 3 J
4 K

3.4.6 Implementation

In order to be able to categorize an incoming message according to the horizon
criterion, we need to know the identities of a number of the last nodes visited
by that message, equal to the horizon value. This means that each message must
contain information of the last hops of its route so far. Gnutella messages already
contain information about the number of hops traveled so far. For each category
and each neighbor, each node stores two numbers. The first number is the number
of messages of that category that were forwarded to that node. The second number
is the number of messages of that category that were forwarded to that node and
turned out to be duplicates. In order to know which of the messages sent to each
node were duplicates, we need to have each of our neighbors explicitly inform
us, when it receives a duplicate from us. The ratio of the second number versus
the first is the percentage of messages of that category, sentto that neighbor, that
were duplicates. If the criterions work well, most of those percentages will be
either close to 100 or 0 (i.e.: no mixed categories). Based onsome threshold, we
can decide to stop sending a certain category of messages, toa certain neighbor,
if its percentage exceeds the threshold. To illustrate, letus assume that node I is
connected to nodes A, B, C and D. Suppose that the first messageI receives, is a
message sent by a node well outside our horizon. Let us assumethat the message
entered I’s horizon from node X, and has traveled y hops so far(y 〉 horizon). From
node X, the message was forwarded until it reached A and then I. Thus I needs to
forward the message to neighbors B, C and D. Suppose we formatthe categories
as such:〈 Horizon node, hops, neighbor, messages sent to that neighbor, duplicate
sent to that neighbor〉 . This means that categories〈 X, y, B, 0, 0〉 , 〈 X, y, C, 0,
0 〉 and〈 X, y, D, 0, 0〉 will become〈 X, y, B, 1, 0〉 , 〈 X, y, C, 1, 0〉 and〈 X, y,
D, 1, 0〉 . If the message I forwarded was a duplicate for neighbors B and D, after
they notify I, it will update the three categories as such:〈 X, y, B, 1, 1〉 , 〈 X, y, C,
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Figure 3.7: Efficiency of each criterion for different Clustering Coefficients. The
X axis is the percentage of the maximum clustering coefficient (clustered graph).
When the Horizon criterion is used, the horizon distance used is 1.

Table 3.2: Simulation parameters. One experiment per each combination of values
of the four parameters.

Horizon Not used 1, 2, ..., diameter
Hops Not used, used

Cut-off threshold 75, 100
Clustering Coefficient 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.55

1, 0〉 and〈 X, y, D, 1, 1〉 .

3.4.7 Evaluation of categories

Simulations were conducted using a sP2Ps (simple P2P simulator), developed by
us. The parameters of the graphs used were 2000 nodes and 6 degree per node,
on average. We conducted experiments for several clustering coefficient values,
ranging from 0.001 to 0.6 (the maximum clustering coefficient value for graphs
with 2000 nodes and 6 average degree).

For each graph, we run experiments for several parameters ofthe algorithm.
Horizon values ranged from 0 (not using the horizon criterion) to the diameter
of the graph, using the hops criterion or not and two threshold values. All the
experiments conducted are summarized in table 2.
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Figure 3.8: Evaluation of horizon. Y axis: % of duplicates not eliminated. X axis:
percentage of graph in horizon. One line per clustering coefficient percentage (of
max cl.coef.). Threshold is 100.

TTL is always set to infinity, so a normal flooding (without using the algo-
rithm) will reach every node in the graph and generate the maximum number of
duplicates. Two metrics are used to rate the efficiency of thealgorithm in each
experiment. The number of duplicates sent and the coverage of the floods (i.e.: the
percentage of the graph covered). Notice that in experiments that use a threshold
of 100, the algorithm will eliminate those categories that contain ONLY duplicate
messages. Thus, is that case, we have no loss of coverage. However, we do not
eliminate that many duplicates either.

For each experiment, we run one flood from each node in the network and
collected the average results (coverage, messages sent andduplicates sent) over
all floods. Each experiment is named after its parameters. Thus, the name format
will be [horizon distance]-[HOPS — NOHOPS]-[threshold value]. For instance,
experiment 2-HOPS-75 means that the algorithm used a horizon distance of 2 hops
away, used the hops criterion and eliminated all categorieswith duplicates greater
than 75.

Evaluation of Horizon Criterion

Figure 3.8 shows that in random graphs, benefit is closer to the linear curve than in
more clustered graphs. In clustered graphs, we have a benefitrelative to the extent
of clustering, just by using the minimum possible horizon distance value (=1)(See
Figure 3.12). What is more, even though the percentage of thegraph in the horizon
lowers if the size of the graph increases, the extent of the benefit will remain the
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Figure 3.9: Same figure with Figure 3.8 but with cutoff threshold 75%. Y axis: %
of duplicates not eliminated. X axis: percentage of graph inhorizon. One line per
clustering coefficient percentage (of max cl.coef.).

same, since in sparse graphs, the clustering coefficient does not change with size.
In contrast, in random graphs, if the size of the graph increases, one would need
to increase the number of nodes in the horizon to maintain thesame percentage of
nodes in the horizon, and thus the same efficiency. Notice that, in these figures, we
have used a threshold of 100 and thus have no coverage losses.

Figures 3.9, 3.10 and 3.11 show the algorithms efficiency, when it uses a thresh-
old of 75. Notice that in with a threshold of 100%, in random graphs, the algorithm
eliminated almost no duplicates, when the horizon was small. In this case, almost
all the duplicates are eliminated, along with all the coverage of the algorithm. This
means that the horizon criterion still does not work well forrandom graphs. This
is shown in Figure 3.11, where we combine both metrics (coverage and duplicates
eliminated) in a single, simple metric. If C is the coverage percentage and D is the
percentage of the duplicated that were eliminated, this metric (rating) is defined as
C2*D. Notice how this is similar with the inverse of Figure 3.8.

Figure 3.13 shows again the efficiency of horizon = 1, like Figure 3.12, but
again this time with a threshold of 75%. Notice that the efficiency rating is not
linear this time with the extent of the clustering. This is because the 75% threshold
is not the optimal for every clustering coefficient. We have developed a modifica-
tion of the algorithm to allow for the optimal threshold to becomputed at run time,
instead of being an algorithm parameter and will update the above results as soon
as possible. Then we believe we will again have a efficiency curve relative to the
extent of the clustering.
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Figure 3.10: Coverage of the algorithm with cutoff threshold of 75%.

Evaluation of Hops Criterion

Figure 3.14 shows results of experiments using the hops criterion but not using the
horizon criterion (horizon = 0), with different graphs. As mentioned before, the
horizon criterion works better for random graphs. This efficiency is the same for
any graph size. The number of possible hops do increase, if the size of the graph
increases, albeit much more slowly (Recall that the diameter of a random graph
is log(N)/(2*log(d)) where N is the size and d the average degree). In contrast, if
N increases in random graphs, for the horizon criterion to maintain its efficiency,
in needs to maintain the percentage of graph in the horizon. Thus if N doubles,
so must the number of nodes in the horizon. This is not so however in the case
of small-world graphs, as we have seen above. The horizon criterion takes full
advantage of the clustering of the graph by using a horizon distance of 1 hop,
regardless of the percentage of the nodes of the graph in thathorizon. Thus we can
see that both criterions are scalable.

Efficiency of both criterions.

In Figure 3.15, we see the efficiency of the algorithm that uses both criterions. As
mentioned before, the algorithm that uses both criterions works well in any type of
graph. We believe that by using a way of calculating the optimal threshold at run-
time, as mentioned before, would lead to even better resultsin the case of random
graphs, thus making the above lines more flat.
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Figure 3.11: This figure cobines results of Figures 3.9 and 3.10.
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Figure 3.12: Graph of benefit of horizon =1 from clustering extent. Hops was not
used and threshold was 100, so there is no coverage loss.
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Figure 3.13: Same with Figure 3.12. However, in this case while we still do not use
Hops, we use a threshold of 75% instead of 100%, which leads tocoverage losses
too.

Figure 3.14: Evaluation of hops. Y axis: percentage of duplicates not eliminated.
X axis: clustering coefficient percentage.
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Figure 3.15: Efficiency of 1-HOPS-75.
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Chapter 4

Flood Driving algorithms - Divide
and Conquer

In this chapter, we describe the proposals for adding such semantic information to
the network, as to enable us not to avoid sending duplicate messages, but to avoid
sending messages altogether, to nodes which most surely will not contain the piece
of data we are looking for.

4.1 Problem description

As mentioned before, the flooding mechanism becomes scalable by using the TTL
field, at the expense of greatly reducing coverage and thus making locating less
popular items (items that are stored on very few number of nodes in the network)
very difficult. The only way to increase coverage by using thesame amount of
messages, is to ensure that every message reaches a new servent (i.e.:no duplicates)
and thus, that we do not waste messages. However, the goal of reaching as many
nodes as possible is a consequence of the fact that every nodehas the same chance
of containing the piece of data we are looking for. If the information we are looking
for is popular, (i.e. is replicated to many nodes in the network), flooding will locate
it quickly (i.e. even with a small TTL). If however, the information resides at just
one node, for instance, flooding would have to reach almost every node in the
network to locate it. This means that in unpopular searches,a lot of bandwidth is
wasted contacting nodes that do not have the information we need. If there was
some way of knowing which servents are less likely to containthe information, we
could use some way to avoid wasting messages by sending them to those servents.
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Figure 4.1: Ultrapeers/Supernodes architecture. Black lines correspond to connec-
tions between Ultrapeers. Blue lines correspond to connections between Leaves
and Ultrapeers. Flooding is performed only at the Ultrapeerlevel.

4.2 Existing approaches

4.2.1 Directed Breadth First Search

The first approach to make blind flooding more efficient, was Directed Breadth
First Search (DBFS). The flooding mechanism is often referred to as BFS, because
it traverses the graph in a BFS manner. DBFS avoids propagating each message to
all the neighbours. Instead, each node rates its neighboursaccording to some met-
ric. The metric mostly used is the ratio of the results received from that neighbour,
versus the number of searches propagated to that neighbour (recall that results are
propagated to the node that initiated the search in the reverse path travelled by the
search). Each node propagates each message (flood) it receives to the top-K neigh-
bours, so that k/degree equals some percentage. This approach enables a node to
have the same number of results by using an even smaller TTL, which reduces
the number of messages for popular searches even more. However, this approach
makes finding unpopular data even more difficult, since it mayreduce the coverage
of a search.

4.2.2 Ultrapeers/Supernodes

The most important approach, so far, in addressing the problem, is the introduc-
tion of Ultrapeers in the Gnutella 2 network [Ultrapeers] and Supernodes in the
FastTrack network. Ultrapeers’ purpose is two-fold. First, it removes all nodes
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with low bandwidth from the network on which flooding is performed. Flooding
generates a lot of messages and was slowed down by nodes with low bandwidth,
which comprise the majority of the users and were not able to route the increased
traffic. Nodes with high bandwidth are elected Ultrapeers. The rest of the nodes
are called Leaves, and connect to one to three of the Ultrapeers. There are no con-
nections between leaves (Figure 4.1). Every Ultrapeer contains a hashed index of
the files residing on each of the leaves connected to it. A leafcan initiate a search
by forwarding it to its Ultrapeer. The Ultrapeer floods the search to the rest of the
Ultrapeers. Any Ultrapeer forwards a query to one of its leaves only if the index
of its leaf shows that it may contain some file(s) that satisfythe query. This means
that i)leaves do not propagate messages (they are only the end points of a flood)
and ii) leaves will only receive those queries that there is ahigh probability that
they can satisfy. The hash index an Ultrapeer receives from each one of its leaves,
allows it to know if the leaf cannot satisfy the query, most ofthe time. This index
uses Bloom filters, thus false positives are possible, but not false negatives.

4.2.3 Semantic Overlay Networks

Crespo and Garcia-Molina propose a thematic partitioning of the network [2]. They
propose some mechanism to automatically thematically, classify music files, based
on their filenames (which must contain information about theartist and the title)
and by using an existent online, categorized, index of songs. They manipulate the
extent of granularity in the classification, in order to balance the population of each
category in the classification. Then, they propose the partitioning of the network
into subnetworks, according to the categorization. When searching for a file, one
needs to classify it and issue a query in the appropriate subnetwork. However, they
do not define how one can contact the appropriate subnetwork or whether everyone
is aware of every subnetwork.

4.3 Algorithm Description

SecSPeer adopts the basic idea of the SON proposal and definesi) how the se-
mantic overlay networks are formed and ii) how search is performed through those
networks.

The idea in the core of our design is the partitioning of the Gnutella network
in semantically independent subnetworks. This partitioning will be based on some
categorization of the files in the network. Each subnetwork shall be comprised only
of servents that contain a certain number of a certain category of files. For instance,
one subnetwork can be comprised of nodes that contain at least one rock song, or
perhaps at least five rock songs. The networks are semantically independent in
the sense that two servents in the same network are only connected to one another
through a number of servents in the same network. However, itfollows from the
above descriptions that a single servent can participate inmore that one subnet-
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works. When this is the case, that servent maintains a different set of connections
for every subnetwork it is a part of.

The categories mentioned above, each of which will be the basis for a distinct
subnetwork, must be defined so that each category must not contain a large portion
of the total number of servents. If some category is large, itcan divided it into
subcategories. On the other hand, each category’s population must not be smaller
in size than a certain percentage of the total number of servents. The reason for
this is explained below.

Since Ultrapeers/Supernodes are considered to contain notonly their own items
but also those of their leaves, their files would belong to many different, categories.
In the extreme case, every Ultrapeer would belong to every subnetwork, thus either
ruining every benefit of the scheme or requiring of us to have very fine-grained cat-
egories, in order to exclude some Ultrapeers from some subnetworks. Instead, for
the time being, we assume that there are no Ultrapeers/Supernodes. We shall add
those later on in the design since they are a very important factor in the scalability
of unstructured P2P systems.

4.3.1 Formation of the subnetworks

Each servent can obtain the categories definitions from a well-known source. Since
those categories will change very slowly (perhaps once a year?) this does not limit
the scalability of the system. Even now, most of the unstructured P2P systems
use web-caches to learn the location of at least one peer to connect to. Using the
categories definitions, each servent decides which subnetworks to connect to, based
on the items it contains. This of course requires some way of knowing for each data
item, the category it belongs to. This, for the time being, can be done manually.
The client might present the user with a list of all the categories and ask to pick
one for each item. This information will be stored by the client and be provided to
every other client, which downloads that item, so that its user need not categorize it
again. This way, only items injected in the system through external sources (CDs,
downloading through other applications, etc) will requirecategorization.

Connecting to a subnetwork can be done the same way servents connect to the
p2p networks today. A webcache can be maintained for each of the subnetworks
defined by the categories.

4.3.2 Searching the subnetworks

The reason of the creation of those subnetworks was to be ableto initiate a search
via flooding inside the right subnetwork and thus avoid sending the message to
servents of other subnetworks. However, since having each servent be part of every
subnetwork beats the reason for having subnetworks, it follows that if a servent
wants to initiate a query in a subnetwork it is not a part of, itneeds to locate at
least one servent participating in that subnetwork. This isthe reason we require all
sub-networks be small (so that rare items can be locatable),but not TOO small (so
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that sub-networks can be locatable). Each servent initiated a flood query in each
of the subnetworks it is a part of, sequentially, looking notfor the required item,
but for a node belonging to a particular subnetwork. When it locates one, it sends
a query to that servent, requesting the particular item it islooking for.

4.3.3 Subnetwork size

We said before that subnetworks must be both small but not quite small. The ques-
tion is if there is a size that will be small enough to enable usto locate rare items,
but large enough to enable us to locate at least one servent ina subnetwork. Since
locating just one servent of a certain subnetwork is enough,it can easily be shown
that we can have as small subnetworks as to enable us to exclude the vast majority
of the total servents and still be very easy to locate them. However, the fact is that
some peers contain lots of items. Thus, subdividing a category a lot of times gives
diminishing returns in turns of subnetwork size reduction and also would require
several servents to maintain a very large number of open connections. Here, im-
plementations need to find a trade-off between categories granularity and number
of connections. Notice that servents that have lots of itemsgenerally sport much
higher bandwidth than the average servent.

What is more, when a servent, during a search, locates a servent of the subnet-
work it wants to search, it can store its IP address and port ina cache, for future use,
thus eliminating the need to lookup that subnetwork in future, searches. It is obvi-
ous that this can be extended to store more than one servents for each subnetwork
it has contacted (or only each subnetwork it contacts frequently, to reduce required
space). This way, it can periodically contact one of them to learn of new servents in
the network and update the cache entry. By using this scheme,subnetwork lookups
can be all but eliminated, since when a servent performs a subnetwork lookup, it
can be satisfied by its neighbors, without the flooding even reaching a single ser-
vent of that subnetwork.

4.3.4 Re-introducing Ultrapeers/Supernodes

Ultrapeers can be added on a per subnetwork basis using the same mechanism used
today to elect Ultrapeers in P2P networks. The difference isthat each Ultrapeer’s
leaves will be nodes from the same subnetwork. What is more, leaves which belong
to more than one subnetworks will connect to as many Ultrapeers as the number of
subnetworks they belong to. This is not a problem since leaves may then have more
connections (than today) and yet receive the same number or even less queries.
Each leaf will send a subset of its index to each Ultrapeer, containing only the items
that belong to the category the Ultrapeer belongs to. A single servent belonging to
more than one subnetworks may be elected as Ultrapeer in morethan one of them.
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Chapter 5

System Security

5.1 Known threats in unstructured P2P systems

Unstructured peer-to-peer systems have no central authority to maintain the over-
all system’s behavior. Thus, each participating peer has the freedom to send or
route messages in its own will, abusing the system’s rules. That is, each peer can
construct messages with fake TTL and HOPS fields pretending that it routes actual
traffic. There is no limit for the traffic each peer generates.The faster and well
connected peer wins. Whenever a peer responds with a messagethere is no easy
way to judge if the response is valid; that is if the response contains valid payload.
For example, consider an unstructured P2P system for exchanging Stock Market’s
related information. Each peer is assigned with a share. When a peer asks for the
current price of a share it generates a Query message, which propagates in the sys-
tem. In normal circumstances, the peer responsible for the share in question should
reply with the true share’s price. However, since there is nocentral authority to co-
ordinate the system a number of different things can happen.A peer may respond
in favor of another, a peer may respond with a fake price, a peer may respond with
the price of another share, etc.

All the above, can lead to a number of different attacks from malicious peers
that target the system or even computers outside the system.

5.2 Related work

Daswani end Garcia-Molina[3] propose a number of strategies for Query traffic
balancing in the Ultrapeer level, so as to limit Query flooding attacks from mali-
cious peers. The results have been exported after modellingthe Gnutella traffic.

Mayank Mishra[8] describes extensively a number of existenattacks in peer-
to-peer systems and he proposes a new protocol, Cascade. Oneof the main features
of Cascade is iterative search. In iterative search, a peer controls the Query flow. In
contrast with pure flooding, iterative search forwards the Query to a peer’s neigh-
bors and requests the neighbors of each neighbor. Then, it procceeds on connecting
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to them and perform recursively the Query.
Demetrios Zeinalipour-Yazti[13] describes in detail the Spam generation in

Gnutella and proposes each peer to perform a direct connect to the peer it wants
to download from, via the system protocol and not the download protocol, requery
the peer and then perform the download.

5.3 Spam generation

A known malicious behavior, observed in the Gnutella system, is the generation
of Query Replies for each Query received by the malicious peer. That is, a mali-
cious peer can monitor every Query packet which is routed to it, parse its Search
Criteria and produce a Query Reply packet with imaginary embedded responses.
The responses are created by adding a known file extension to the original Search
Criteria and by performing a type of frequently used capitalization. For exam-
ple, if someone searches for ’foo’, the malicious peer can respond with imaginary
filenames such as ’foo.mpg’, ’F O O.mp3’ and so on. Although, the responses
have imaginary filenames, the files have a valid content, which is an advertisement
message1.

The most vital side effect of the spam generation is the limitation of valid re-
sponses. The life time of a typical Query in the Gnutella system does not depend
only in its TTL field, but also in the generated Query Responses. That is, an Ul-
trapeer, which has generated the Query (either by explicitly asking the system for
itself, or implicitly asking the system on behalf of one of its Leaves), will likely
terminate the querying process, upon it receives a certain amount of results. Now
days, in the Gnutella system, the amount of responses per query is upper bounded
by a limit of 150-200. Thus, the spam generation can terminate implicitly the
querying process, since spam responses are counted as validresponses. This phe-
nomenon can be exaggerated when the Query targets rare content in the system.
That is, the Ultrapeer which controls the querying process will likely need to search
in a larger horizon with larger possibility to forward the query to a malicious peer.
Recall, that one malicious peer is enough to produce hundreds of spam responses,
since it can spoof the HOPS field and pretend that the producedresponses are gen-
erated by another Ultrapeer or by one of its Leaves.

5.4 DoS and DDOS attacks

Another potential security threat in unstructured peer-to-peer systems is Denial of
Service (DoS) attacks. A malicious peer can generate randomQuery traffic; that

1A similar malicious behavior, which can be observed rarely in the Gnutella system, is the pro-
duction of replies with filenames that are constructed with aspam message. For example a Query
for ’foo’ can issue a Query Hit which embeds a filename ’Free-Movies-AT-www.xxxxxx.org.mpg’.
However, this approach is easily captured by the end user, since the spam message is shown in the
filename.
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is Queries with random Search Criteria, HOPS and TTL fields. Since, each query
floods the system via the traditional flooding mechanism, or portions of the system
via dynamic querying, a peer can emit to the system unnecessary message traffic,
which will eventually grow following exponential rates.

A second type of DoS attack, which nature is completely distributed, can be
achieved by emitting Query Responses instead of Queries. This method may target
any machine, which listens to a known port and it is connectedto the Internet.
There is no need for the target machine to be a Gnutella participant. A malicious
peer can monitor the Queries it receives and generate responses for every Query
message. Each Query Reply packet will carry the IP address and the Port of the
target machine. Since, there is no mechanism to indicate if the IP address in the
Query Reply message matches the IP address of the machine, which generates
the Query Reply message, all generated responses will be routed to the original
queriers. Thus, there is a chance that a vast amount of download attempts to a
single computer may be performed in a short time of period.

5.5 Existing approaches

In practice, empirical solutions are used in the modern Gnutella system, in order
to reduce the impact of the attacks explained above. However, there is no global
mechanism to completely solve all the Gnutella security issues.

5.5.1 Spam Generation solution

End users may ban a specific peer, usually via an option in the user interface of
the software they use to participate in the Gnutella system,if its responses seem
to be spam messages. However, not all spam messages can be easily identified
by the end user. Another approach, which is performed mainlyby developers of
Gnutella servents, is to occasionally scan the network for malicious peers and store
them to a public database (hostiles.txt). Each software vendor updates its local
database and thus minimizing the chance of contacting malicious peers. However,
malicious peers can change their identity quite often and re-enter to the system. On
the other hand, scanning the whole network for malicious peers is a slow process
and the database updates must be distributed in some way to the participants, which
is an even slower process. Updates are published to well known Web sites, or get
included to newer software releases.

5.5.2 DoS and DDoS attacks solution

As far as the DoS and DDoS attacks in Natal are concerned, the only way to limit
the chance of the attack is via bandwidth limits. Each peer maintains a packet
queue adjusted to it incoming bandwidth and eventually drops messages that ex-
ceed its queue length in a short time of period. That is, a peerthat tries to emit
a vast amount of traffic in the system, it will likely get muzzled by its neighbors.
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However, this technique can only reduce the traffic emitted by a peer. It can not
judge if the peer is malicious or just a fast connected peer with a high degree, nor
it can prevent unnecessary message broadcasts in the system. In addition, there
is no fair criterion to decide of what Query to drop. That is, Queries generated
by malicious peers may dominate in a peer’s queue forcing thepeer to drop legal
Queries.

5.6 Algorithms description

5.6.1 Detecting and preventing spam

As described above a malicious peer that generates spam messages will eventually
reply to every Query it receives. That is, the malicious peerwill reply to ran-
dom Queries with a payload consisted of a random combinationof search criteria
(strings that are not likely to express something meaningful). We propose a strat-
egy in which a legal peer queries with a random Query of TTL=1,at a random time
period upon handshaking with a new node, the new node it handshaked with. If
it receives a reply for the random Query then it should drop the connection. This
strategy has local effect since the decision is taken by one peer and the action re-
gards to the termination of a single connection. We believe that it can have a global
effect if the strategy is followed cooperatively by all legal peers of the system. On
the other hand, if a legal peer misjudge another legal peer and treats it as a ma-
licious (in the extreme case, where a random string is meaningful) the misjudged
peer will loose only a connection. It is rather unlikely thatall other peers will treat
it also as a malicious one. Further more, the strategy costs only a Query message,
which will not be propagated in the system since it has TTL=1.

On the other hand, malicious peers may try to detect the strategy by (a) not
responding to Queries with TTL=1 and HOPS=1; that is Queriesoriginated by one
of their neighbors (b) not responding to Queries for the firstfew minutes (c) hide
over a legal peer, part of the malicious infrastructure (that is, the legal peer does
not follows our strategy), which serves as a gateway to the Gnutella system. Our
strategy can be enhanced in order to overcome (a) and (b) by making the HOPS
field of the random Query message also random and by requerying peers in random
time intervals, respectively. As far as (c) is concerned, wemay issue also Queries
with TTL=2. If a response of a random Query with TTL=2 is received, then we
can safely judge the neighbor as a legal client that hides a malicious one and the
connection should be dropped. Someone may argue that dropping the connection
in this case leads to a misjudge, since the originator of the response is not known
in advance. We can further argue that there is no misjudgment, because if the
legal peer was not part of the malicious infrastructure there will not be responses
in random Queries with TTL=2. That is, we assume that the legal peer will have
been following the original strategy and drop the connections with malicious peers
in his first level neighbors.
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Peers that have been judged as malicious enough times2 should be classified
as malicious. That is, their IP address should be added to theblack list database.
Furthermore, legal peers, which route Query Hits should parse the packets and
check if a black listed IP is contained. If the check is true the packet should be
dropped.

5.6.2 Detecting and preventing DoS attacks

Our spam preventing strategy with random querying could be also used to prevent
DoS attacks of the second type, where peers respond to every Query with results
that contain the IP address of the target machine. The peer that originates the attack
will also answer the random Query and hence will be judged as malicious.

Furthermore, we introduce a complete load-balancing solution based on ’coupon
exchanging’ between peers, which attempts to prevent Queryflooding based at-
tacks3. Our load-balancing algorithm prevents peers from generating enormous
Query traffic and thus DoS attacks.

Assume two peers, A and B. B establishes a connection with A. Upon hand-
shaking A assigns N coupons to B. Whenever a new Query is sent from B to A, B
looses a coupon. Whenever a new Query is sent from A to B, B earns a coupon.
That is, if B tries to flood the system via A with a massive amount of Queries,
eventually B will exhaust all of its coupons and it must wait to receive new Queries
from A, in order to start sending again. Notice, that couponsare exchanged only
when Queries are exchanged. This is because a malicious client could issue popu-
lar Queries, which generate a vast amount of results and earna lot of coupons by
loosing a single coupon; that is by issuing a single Query.

This load-balancing scheme has also local effect. Coupons are exchanged via
direct connections and do not propagate to the system. However, we believe that
if the majority of the system follows our algorithm, DoS attacks based on Query
flooding will eventually stopped by peers which will get out of coupons.

2In the present phase ’enough times’ is a number in the order of10.
3Notice also that our duplicate elimination algorithm limits Query traffic and thus has as a side

effect the reduction of the scale of a DoS attack based on Query flooding.
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Chapter 6

Conformance of Requirements

6.1 Scalability

Unstructured systems are already scalable in terms of maintanance costs, at the cost
of the scalability of the searching mechanism. The reason that hinders unstructured
P2P systems’ scalability is the cost of flooding in messages.Both the proposals of
Chapters 3 and 4 address this issue.

6.2 Quality of Service

Up to now, unstructured P2P systems could be alternativly defined as: ”Scalability
and Quality of Service. Pick one”. The reason is that scalability was achieved with
the TTL limit in the expense of the ability of the system to locate items. Chapter 4
addresses this issue. It enables

6.3 Expressiveness

Today’s substring match based search may lead to presentingas results items of
data which are semantically irrelevant to the query. This was somehow rectified by
allowing the user to specify the type of data required, as defined by the extension
of the filename. The semantic categorization of the data described in Chapter 4
allows the user to be much more specific about the data being looked for.

6.4 Availability

Availability is related to the degree of tolerance of a peer-to-peer system against
faulty or unreachable nodes. A peer-to-peer system must be resilient to clients that
do not respond to requests or misbehave.

We have described in detail, in the Security Chapter, algorithms, policies and
techniques in order to isolate malicious nodes. That is, ourproposed system can
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remove by itself nodes that may produce internal damage to itand thus gurantee its
long time availability.

6.5 Shielding the peer-to-peer infrastructure

We have described in detail, in the Security Chapter, the waya peer-to-peer system
can be used to launch DDoS attacks over the Internet. Using the ”random query-
ing” mechanism, healthy nodes of the system can identify themalicious ones and
remove them from the system.
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