
A THEORY OF CONTEXTS IN INFORMATION BASES

Manos Theodorakis���� Anastasia Analyti�� Panos Constantopoulos��� and Nicolas
Spyratos�

�Institute of Computer Science� FORTH� P�O�Box ����� GR ��� �� Heraklion� Crete� Greece
�Department of Computer Science� University of Crete� Heraklion� Greece

�Universite de Paris	Sud� LRI	Bat
��� ��
�� Orsay Cedex� France

Abstract � Although semantic data models provide expressive conceptual modeling mechanisms�
they do not support context� i�e� providing controlled partial information on conceptual entities by
viewing them from di�erent viewpoints or in di�erent situations� In this paper� we present a model for
representing contexts in information bases along with a set of operations for manipulating contexts�
These operations support context creation� update� copy� union� intersection� and di�erence� In partic	
ular� our operations of context union� intersection� and di�erence are di�erent from these of set theory
as they take into account the notion of context� However� they also satisfy the important properties
of commutativity� associativity� and distributivity� Our model contributes to the e
cient handling of
information� especially in distributed� cooperative environments� as it enables �i� representing �possi	
bly overlapping� partitions of an information base� �ii� partial representations of objects� �iii� �exible
naming �e�g� relative names� synonyms and homonyms�� �iv� focusing attention� and �v� combining
and comparing di�erent partial representations� This work advances towards the development of a
formal framework intended to clarify several theoretical and practical issues related to the notion of
context� The use of context in a cooperative environment is illustrated through a detailed example�

Key words� Information Modeling� Contexts� Abstractions� Cooperative Environments� Views� Ver	
sions� Workspaces� Viewpoints

�� INTRODUCTION

The notion of context is a fundamental concern in cognitive psychology� linguistics� and com�
puter science� Quite a number of formal or unformal expressions of a notion of context have
appeared in several areas of computer science� such as arti�cial intelligence ���� ��� ��	� soft�
ware development �
�� ��

�
��
�� ��� ��	� �multiple� databases ��� �� �
�

	� machine learn�
ing ���� ��� �
	� and knowledge representation ����
�� ��� �
� ��� �	� However� these are very
diverse and serve di�erent purposes� In arti�cial intelligence� the notion of context appears as
means of partitioning knowledge into manageable sets ���	� and as logical constructs that facilitate
reasoning activities ���� ��	� In software development� views �
�� �	� aspects �
�	� and roles ���

	
appear for viewing data from di�erent viewpoints� and workspaces are used for supporting cooper�
ative work ���	� In machine learning� context is treated as environmental information for concept
classi�cation ���� ��� �
	� and in multiple databases� as a collection of meta�attributes for capturing
class semantics ��
	� Finally� in knowledge representation� the notion of context has appeared as
a viewpoint abstraction mechanism for partitioning an information base into possibly overlaping
parts ����
�� ��� �
� ��� �	� Our objective is to establish a formal notion of context to support the
development and e�ective use of large information bases in various application areas� especially in
distributed� cooperative environments�

Our model has been mainly inspired by the work of Mylopoulos and Motschnig�Pitrik �
��
�	�
and incorporates previous work by Theodorakis and Constantopoulos ���	�

In �
�	� Mylopoulos and Motschnig�Pitrik proposed a general mechanism for partitioning infor�
mation bases using the concept of context� They introduced a generic framework for contexts and
discussed naming conventions� operations on contexts� authorization� and transaction execution�
However� they impose a strict constraint on naming� whereby objects �called information units�
are assigned unique names w�r�t� a context� Because of this constraint� several naming con�icts
appear in operations among contexts� which the authors resolve in rather arbitrary ways� In addi�
tion� operations among contexts� such as union �called addition� and intersection �called product��

�

� Manos Theodorakis et al�

are deprived of such useful properties as commutativity� associativity� and distributivity� and thus
also can yield unexpected results�

In ���	� Theodorakis and Constantopoulos proposed a naming mechanism based on the concept
of context� in order to resolve several naming problems that arise in information bases� such as
object names being ambiguous� excessively long� or unable to follow the changes of the environment
of the object� However� that approach imposes a hierarchical structure on contexts� i�e� a context
may be contained in only one other context� which is rather restrictive�

In this paper� we try to combine the advantages of these previous two approaches and alleviate
their shortcomings by introducing a more general and more complete framework for context�

A context is treated as a pair �cid� l� where cid is the context identi�er and l is a lexicon i�e� a
binding of names to objects� We note that an object is allowed to have more than one name� even
in the same context� This o�ers more �exibility and expressiveness and can handle the naming
of real world entities in a more �natural� way� as it is possible for two objects to have the same
name� even in the same frame of reference� This common name assignment may occur either
accidentally� or by virtue of a common characteristic of the two objects �expressed through the
common name�� In our model� naming con�icts that may appear during operations on contexts
are resolved through a sophisticated� yet intuitive naming mechanism� Speci�cally� the following
situations can be handled� synonyms �di�erent names that have been assigned to the same object
w�r�t� the same or di�erent contexts�� homonyms �di�erent objects that have the same name w�r�t�
the same or di�erent contexts�� and anonyms �objects with no name w�r�t� a context�� We also
note that a context can belong to the objects of the lexicon of one or more other contexts� This
allows for the nesting of contexts� An object is externally identi�ed using references w�r�t� a
context� These references are either the object names w�r�t� that context� or composite names that
are formed by taking into account the nesting of contexts� We distinguish an important class of
contexts� called well�de�ned� Every object contained in a well�de�ned context possesses a unique
reference w�r�t� that context�

The present model o�ers a set of operations for manipulating contexts� These operations
provide support for creating� updating� combining� and comparing contexts� The most involved
of the operations are those for combining and comparing contexts� namely context union� context
intersection� and context di�erence� We prove that the class of well�de�ned contexts enjoys a closure
property� the union� intersection� or di�erence of two well�de�ned contexts yields a well�de�ned
context� Name ambiguities are resolved by adding to the resulting context views of the objects
as seen from the input contexts� Besides being used for name disambiguation� these views carry
useful information� as we demonstrate in the example of Section
� Finally� it should be mentioned
that our context union and context intersection operations are commutative� associative� and
distributive� with all the bene�ts that these properties usually carry�

The paper is organized as follows� In section
� the context construct for information bases
is introduced� Sections � and � present the basic operations of our model and their properties�
respectively� Section
 discusses in detail an example of using context in a cooperative environment�
In section �� related work is reviewed and compared to ours� while section � concludes the paper�

� THE NOTION OF CONTEXT

In information modeling� a context is a higher�level conceptual entity that describes a group
of conceptual entities from a particular standpoint ���	� The conceptual entities described can be
contexts themselves� thus allowing for nesting of contexts� Conceptual entities are named with
respect to a context as part of their description�

Examples of contexts are�
� Information bases� An information base describes a set of conceptual entities from the point
of view of its designer� Certainly� the designer�s viewpoint is in�uenced by the particular
needs of the targeted users�

� View schemas� A view schema in an object�oriented database �
�� �� ��	� or in a relational
database ���
	 describes the conceptual entities in the view according to the person that
de�ned that view�

A Theory of Contexts in Information Bases �

� Multiversion objects� A multiversion object refers to a set of versions of a generic object ��� ��	�
Therefore� a multiversion object can be seen as a context in which the particular versions are
contained�

� Con�gurations� A con�guration is the binding between a version of a composite object and
the particular versions of its components ���	� Therefore� a con�guration of a composite
object can be seen as a context containing a particular set of versions of its components�

� Workspaces� A workspace refers to a virtual space in which objects are created and manipu�
lated under the responsibility of an individual person� or a group of persons ���	� Therefore�
a workspace can be seen as a context in which the objects are viewed according to the
responsibilities of the persons involved�

An information base can be considered as a repository of objects� Objects represent atomic or
collective real world entities� attributes� �binary� relationships� or primitive values� We denote by
Obj the set of all objects�

Contexts are taken as a special kind of objects that represent real world reference environments
such as partitions� viewpoints� situations� or workspaces� We shall call all objects which are not
contexts� simple objects� Contexts allow us to focus on a set of objects of interest� as well as to
name each of these objects using one or more convenient names� Informally� we think of a context
as containing objects� each object being associated with a set of names�

De�nition � �Context� Contexts are a special kind of objects which can be thought of as
containing objects� each object being associated with a set of names� Let Cxt be the set of all
contexts� Then� Cxt � Obj� �

Nicolas, Nick

Nicolas

Context 1

Context 2
Yannis

George

John

O

O4

1

2O

O3

Fig� �� The notion of context�

For example� Figure � illustrates two contexts� Context � and Context �� which represent the
environment of two companies� The employees of those companies are represented by objects o�
to o�� Context � contains the objects o�� o�� and o�� and associates them with names Nicolas�
George� and John� respectively� Context � contains the objects o� and o�� and associates them
with names Yannis� and Nicolas or Nick� respectively� The employee represented by object o�
works for both companies and is called John in the �rst company� whereas Yannis in the second�

In order to treat contexts more formally we need the concept of lexicon� i�e� a binding of names
to objects in which an object may have zero� one or more names�

De�nition � �Lexicon� Let N be the set of all atomic names and P�N � the power set of N �
A lexicon is a mapping l of the form�

l � O �� P�N �

where O is a set of objects� A lexicon associates each object in O with a set of names� The objects
in O are called objects of the lexicon l and denoted by objs�l�� We denote by LEX the set of all
lexicons� �

Note that an object of a lexicon may be associated with an empty set of names�
We shall often think of a lexicon l as a set of pairs of the form o � l�o�� In other words� if

objs�l� � fo�� � � � � okg then we shall write l � fo� � l�o��� � � � � ok � l�ok�g� The following is an
example of a lexicon� l� � fo� � fPanosg� o� � fheadg� o� � fManosg� o� � fNicolas� Nickgg� where
objs�l�� � fo�� o�� o�� o�g� We depict this lexicon as follows�

 Manos Theodorakis et al�

l �

��
�
o� � Panos
o� � head
o� � Manos
o� � Nicolas�Nick

As already mentioned� we think of a context as containing objects� each object being associated
with a set of names� Formally� this is expressed by associating each context c with a lexicon The
context c can be used to focus on the objects of the lexicon� as well as to assign relative names to
these objects�

De�nition � �Context lexicon� A context lexicon is a total function of the form�

lex � Cxt �� LEX

which associates a context with a lexicon� which we shall call the lexicon of c� For each context
c� objects of lex�c� are also called objects of c� and denoted by objs�c�� That is� objs�c� �
objs�lex�c��� �

Let c be a context with lexicon fo� �N�� � � � � ok �Nkg� We shall use the following notation and
terminology�

� The objects o�� � � � � ok are called the objects of c and their set is denoted by objs�c��
� We shall say that c contains o�� � � � � ok�
� The names in Ni are called the names of oi in c� or the c�names of oi� The set Ni will also
be denoted by names�oi� c��

A similar notation and terminology is used for a lexicon as well�

c�

o� � Dr Constantopoulos

o� �
o� � professor
c� � InfSys
c� � DSS

c�

o� � Panos
o� � head
o� � Manos
o� � Nicolas�Nick

c�

o� � Panos
o� � head
o� � Constantopoulos

Fig� �� Example of contexts�

As an example� consider a context c� which represents an institute �see Figure
�� Context
c� contains �ve objects in its lexicon� o�� o�� o�� c�� and c�� Object o� is a simple object whose
c��name is Dr Constantopoulos� and represents a speci�c person� Object o� is a simple object as
well which represents an entity that is known to exist within the context c� but we do not know its
name yet� Object o� represents the notion of professor �and not a particular person who happens
to be a professor�� Objects c� and c� are themselves contexts whose c��names are InfSys and DSS�
respectively� Context c� represents the environment of the Information Systems Lab and describes
the objects of that lab� Context c� represents the environment of the Decision Support Systems
Lab and describes the objects of that lab� The objects contained in contexts c� and c� are as
shown in Figure
� Note that object o� has only one c��name �Panos�� whereas object o� has two
c��names �Nicolas and Nick�� Also note that the same object can be contained in more than one
context under the same or di�erent names� For instance� object o� is contained in three contexts
c�� c�� and c�� The c��name of object o� is Dr Constantopoulos� its c��name is Panos� whereas
its c��name is Constantopoulos� Note also that two di�erent objects� o� and o�� have the same
name in two di�erent contexts �c� and c���

Recall that an object may represent real world attributes or binary relationships� We call these
objects link objects� Link objects have a source and a destination object� This information is
represented in our model by a triplet � ol� os� od �� where ol is a link object� and os and od are its
source and destination� respectively� As any object� link objects are also de�ned w�r�t� a context�
The link objects of a context c are determined by the function links�c�� which is de�ned as follows�

links�c� � f� ol� os� od � jol� os� od � objs�c�g�

De�nition � �Recursive containment� We say that a context c recursively contains object
o if either c contains o� or there is a context contained in c that recursively contains o� This is
denoted by o �� c� �

A Theory of Contexts in Information Bases �

For instance� in Figure
� context c� recursively contains object o�� as c� contains c� and c�
contains o�� i�e� o� �� c�� We shall call nested subcontext of a context c� any context that is
recursively contained in c�

We can refer to every object of a context c either by using one of its c�names� or by using a
composite name� in case the object is contained in a nested subcontext of c� A composite name
is a sequence of dot�separated names which are composed by taking into account the nesting of
contexts� as shown in the following de�nition�

De�nition � �Name paths of an object in a context� Let c be a context and let o be an
object recursively contained in c� The set of all name paths of o in c� denoted by npaths�o� c�� is
de�ned as follows�

npaths�o� c� � names�o� c� � compositeNames�o� c�
compositeNames�o� c� � fr�n j �c� �� c 	 n � names�o� c�� 	 r � npaths�c�� c�g

The set of all name paths of all objects in all contexts is denoted by NP � �

For example �see Figure
�� we can refer to object o� of context c� either by using the name
Dr Constantopoulos� or by using the composite names InfSys�Panos� or DSS�Constantopoulos�

Note that a name path r in a context c may be ambiguous� in the sense that it may refer to
more than one objects� That is� a name path r is ambiguous if there are two objects o� o� such
that r � npaths�o� c�
 npaths�o�� c�� It is possible for all name paths of an object o recursively
contained in a context c to be ambiguous� i�e��

npaths�o� c� �
�

o���c � o� ��o

npaths�o�� c��

For example� in Figure �� within context c�� the name paths of object o�� i�e� A� C� and D�F� are all
ambiguous� as A � names�o�� c��� C � names�o�� c��� and D�F � npaths�o�� c���

c�

o� � A�B
o� � A�C
o� � C
c� � D

c�

o� � B�F
o� � F
o� � F

Fig� �� Example of ambiguous name paths�

However� in practice� at least one unique name path of an object is required to be used for
external identi�cation� Thus� we distinguish an important class of contexts that possess at least one
unique name path for every object and we call these contexts well�de�ned� An acyclicity contraint
is also imposed�

De�nition 	 �Well
de�ned context� A lexicon l is called well�de�ned i� it satis�es the
following conditions�

�� Unique name path� For every object recursively contained in l� there is a unique name
path in l� i�e� for all objects o� o� of l�
o �� o� � �r � npaths�o� l� �
r� � npaths�o�� l�� r �� r��

� Acyclicity� For every nested subcontext c� of l� it holds� c� ��� c��
A context c is called well�de�ned i� its lexicon is well�de�ned and c ��� c� �

In the example of Figure
� contexts c�� c�� and c� are well�de�ned� Another example is shown
in Figure �� where context c� is not well�de�ned as there is at least an object recursively contained
in c� with non unique name paths in c�� �e�g� the object o� or the object o� or the object o���
Context c� is not well�de�ned as well� On the other hand� if we add the context c� in the contents
of c� �see Figure �� then c� becomes well�de�ned� Note that� in Figure �� c� is a well�de�ned
context although its subcontexts c� and c� are not�

Acyclicity is an important property of a context c� as it ensures that the set of name paths
npaths�o� c� of any object o recursively contained in c can be computed in �nite time�

� Manos Theodorakis et al�

c�

o� � A� B
o� � A� C
o� � C
c� � D
c� � E

c�

o� � B�F
o� � F
o� � F

c�

o� � C
o� � K
o� � G
o� � C�J

Context c� is well�de�ned whereas contexts c� and c� are not�

Fig�
� Example of well	de�ned and non well	de�ned contexts�

Proposition � �Finite length and set of name paths� Let c be a well�de�ned context� and
let o be an object recursively contained in c� Then� the following hold�

�� Every name path of o in c has �nite length� and
�� The set npaths�o� c� is �nite�

Proof� It follows easily from De�nition
 and the fact that all contexts contained in c satisfy the
acyclicity property� �

We can assume a special context that recursively contains all objects of interest in a given
application� We refer to this context as the Information Base �IB�� As mentioned� a user can
refer to an object using name paths� A name path to an object can be either absolute� i�e� in
context IB� or relative� As a convention� if the name path is pre�xed by � then it is an absolute
name path� otherwise it is a relative name path� Relative name paths are resolved with respect
to a context speci�ed by the user� which we call the Current Context �CC�� The user sets the CC

through the Set Current Context operation� introduced in the following section�
In order to guarantee that every object has a unique absolute name path� we require that the

IB is a well�de�ned context� Therefore� we introduce the following axiom�

Axiom ��� �Well
de�ned Information Base� The context IB is a well�de�ned context�

Support for relative naming of objects is an important feature of our model� The following
situations can be handled�

� Synonyms� Two di�erent name paths w�r�t a context are called synonymous� if they refer to
the same object� We view synonyms as alternative ways for externally identifying the same
object� This is an important feature of our model because people often refer to the same
concept using di�erent names� For example� in Figure
� the name paths Nick and Nicolas

�which are the english and the french name of a person� in context c� are synonyms� as they
refer to the same object o�� Similarly� the name paths Dr Constantopoulos� InfSys�Panos�
and DSS�Constantopoulos in context c� are synonyms� as they refer to the same object o��

� Homonyms� Two di�erent objects are called homonymous in a given context if they have
a common name path in that context� If these two objects are recursively contained in a
well�de�ned context c� then there exists a unique name path to each of these objects in c�
Note that there always exists such a context� because IB recursively contains every object
and it is a well�de�ned context� by assumption�

� Anonyms� An object o is called anonymous in a context c� if o is associated with no name in
c� i�e� names�o� c� � �� Intuitively� this is possible when an object is contained in a context
but we are not interested in naming it in that context� or we do not know its name yet�
However� there is no problem with the external identi�cation of o� if there is a well�de�ned
context c� such that npaths�o� c�� �� �� and IB is such a context� For example� in Figure
�
the object o� in context c� is anonymous�

�� OPERATIONS ON CONTEXTS

In this section we present six operations on contexts� lookup� browsing� update� copy� union�
intersection and di�erence� The presentation is informal� and uses illustrative examples� Formal

A Theory of Contexts in Information Bases �

de�nitions and computational algorithms are given in Appendix A�

Our de�nitions �both formal and informal� make use of two auxiliary concepts� namely� source
context and derived context� Every context created by a single� explicit call of the operation
createCxt is called a source context� otherwise it is called a derived context� Typically� a derived
context is created from a single source context and possibly other derived contexts� using the
operations that we de�ne in this section�

In order to simplify the presentation� we introduce an auxiliary function src�c� that returns the
source of context c� if src�c� � c� then c is a derived context and c� is its source� and if src�c� � c

then c is a source context�

With the above conventions in mind we now turn to the presentation of the operations�

IB
c� � ManosView
c� � AnastasiaView

c�

o� � Dr Constantopoulos

o� �
o� � professor
c� � InfSys
c� � DSS

c�

o� � Constantopoulos
o� � professor
c� � ISgroup
c� � DSS

c�

o� � Panos
o� � head
o� � Manos
o� � Nicolas� Nick

c�

o� � Panos
o� � head
o� � Constantopoulos

c�

o� � Panos�
Constantopoulos

o� � Anastasia

Fig� �� An Information Base context�

Consider the Information Base illustrated in Figure
� Context IB contains two contexts c�
and c�� namely ManosView and AnastasiaView� respectively� These contexts represent the views
of Manos and Anastasia regarding the Institute� Context c� contains the already seen objects o��
o� and c�� as well as a new context c� that represents the view of Anastasia regarding the Decision
Support Systems lab� The fact that both contexts c� and c� share context c� indicates that both
Manos and Anastasia have the same view for the Information Systems lab�

���� Lookup operations

� lookup�r�

This operation takes as input a name path r and returns the set of objects o such that
r � npaths�o� c�� where� c � IB if r is absolute� or c �CC� otherwise� �

� lookupOne�r�

This operation takes as input a name path r and returns an object o such that� r �
npaths�o� c� and jnpaths�o� c� j� �� where� c � IB� if r is absolute� or c �CC� otherwise� �

���� Browsing operations

� Set current context� SCC�r�

This operation takes as input a name path ry to a context �call it c�� and sets the current
context to be the context c� �

Example� The operation SCC���ManosView�InfSys� sets the CC to c�� and the operation
SCC��� sets the CC to IB�

y In all operations� if a name path is ambiguous� an error message is returned�

� Manos Theodorakis et al�

���� Update operations

� Create context� createCxt�l�

This operation takes a lexicon l as input� and returns a context �call it c� such that lex�c� � l�
Additionally� it sets src�c� � c� �

Example� The operation createCxt�fo� � Panos� c� � instituteg� results in the creation of a
new context �call it c��� with lexicon�

lex�c��� �

n
o� � Panos
c� � institute�

� Insert an object into a context� insert�o�N� r�

This operation takes as input an object o� a set of names N and a name path r to a context
�call this context c�� and either inserts �o �N � into the lexicon of c if object o is not contained
in c or adds the names in N to the c�names of o� Additionally� it sets src�c� � c� This is
because� as a new object has been inserted into c� c is thought as a derivation of the original
source of c� �

Example� The operation insert�o��� fNicolas� Nickg���ManosView�DSS� results in the inser�
tion of o�� �Nicolas� Nick into the context c��

c�

o� � Panos
o� � head
o� � Constantopoulos
o�� � Nicolas�Nick

Note that synonyms or homonyms may occur as a result of an insert operation�

� Delete an object from a context� deleteObj�o�r�

This operation takes as input an object o and a name path r to a context� and deletes the
pair �o �N � from the lexicon of that context� �

� Delete an object name from a context� deleteName�o� n�r�

This operation takes as input an object o� a name n� and a name path r to a context �call
this context c�� and deletes the name n from the c�names of o� �

Note that a deleteName operation may produce an anonym�

��	� Copy operations

� Copy context� copyCxt�r�

This operation takes as input a name path r to a context �call this context c� and returns a
new context �call it c�� such that lex�c�� � lex�c�� In other words�
copyCxt�r� � createCxt�lex�c��� �

Example � The operation copyCxt���ManosView� returns a new context �call it c��� shown
as follows�

c��

o� � Dr Constantopoulos

o� �
o� � professor
c� � InfSys
c� � DSS

� Deep copy context� deepCopyCxt�r�

This operation takes as input a name path r to a context �call this context c�� and returns a
new context �call it c�� that contains the simple objects of c and deep copies of the contexts
contained in c� �i�e� copies of those contexts together with their recursive expansions�� In
case a context c�� is contained in two or more contexts that are recursively contained in c�

A Theory of Contexts in Information Bases �

then c�� is copied only once �i�e� c� does not recursively contain multiple copies of the same
context�� �

Example �� The operation deepCopyCxt���ManosView� returns a new context �call it c���
which contains copies of contexts c� and c� �call them c�� and c��� as shown in the following
picture�

c�
�

o� � Dr Constantopoulos

o� �
o� � professor
c�
�
� InfSys

c�
�
� DSS

c�
�

o� � Panos
o� � head
o� � Manos
o� � Nicolas�Nick

c�
�

o� � Panos
o� � head
o� � Constantopoulos

Example �� The operation deepCopyCxt��� returns a new context �call it c��� which contains
deep copies of contexts c� and c� �call them c�� and c

�
��� Context c

�
� contains copies of contexts

c� and c� �call them c�� and � c��� whereas context c
�
� contains copies of contexts c� and c�

�these are context c�� and c���� Note that although context c� is contained in both contexts
c� and c� it is copied only once �context c����

c��
c�
�
� ManosView

c�
�
� AnastasiaView

c�
�

o� � Dr Constantopoulos

o� �
o� � professor
c�
�
� InfSys

c�
�
� DSS

c�
�

o� � Constantopoulos
o� � professor
c�
�
� ISgroup

c�
�
� DSS

c�
�

o� � Panos
o� � head
o� � Manos
o� � Nicolas� Nick

c�
�

o� � Panos
o� � head
o� � Constantopoulos

c�
�

o� � Panos�
Constantopoulos

o� � Anastasia

� Deep copy context up to depth d� deepCopyCxt�r� d�

This operation takes as input a name path r to a context �call this context c� and an integer
d� and returns a new context �call it c�� such that� if d � � then c� � copyCxt�r� otherwise
if d � � then c� contains the simple objects of c and deep copies up to depth d � � of the
contexts contained in c� In case a context c�� is contained in two or more contexts that are
recursively contained in c� then c�� is copied only once at the shallowest level �i�e� c� does not
recursively contain multiple copies of the same context�� �

Example� The operation deepCopyCxt���
� returns a new context �call it c��� which contains
copies of contexts c� and c� �call them c�� and c����

c��
c�
�
� ManosView

c�
�
� AnastasiaView

c�
�

o� � Dr Constantopoulos

o� �
o� � professor
c� � InfSys
c� � DSS

c�
�

o� � Constantopoulos
o� � professor
c� � ISgroup
c� � DSS

��
� Union Operation

� Union� r� � r�

This operation takes as input two parameters r� and r� and returns a lexicon as a result� We
distinguish three cases�

�� Manos Theodorakis et al�

�� If r� and r� are both lexicons� then the operation returns a lexicon l such that �let
O� � objs�r�� and O� � objs�r����

�� objs�l� � O� �O��

� For each object o � objs�l� � l�o� �

��
�
r��o� � r��o�� if o � O�
O�

r��o�� if o � O� and o �� O�

r��o�� if o � O� and o �� O�

�� Find all contexts of l with the same source �call this source c� and merge them into
a new context with source c�

� If r� is a lexicon and r� is a name path to a context �call this context c��� then the
operation returns a lexicon l such that�

l � r� � �lex�c�� � fc� �fstr�r��gg��
In other words� we add the context c� to the lexicon of c�� and use the name str�r��
as one of its names �where the function str�r� converts a name path r to a name by
replacing dots by underscores��

�� If r� and r� are both name paths to contexts �call these contexts c� and c��� then the
operation returns a lexicon l such that�

l � �lex�c�� � fc� �fstr�r��gg� � �lex�c�� � fc� �fstr�r��gg�� �

Note that� in Case �� if an object belongs to both lexicons then we can refer to it in the
output lexicon� using any of its names in the two input lexicons� In Case
 �where the
second parameter is a context�� context c� is added to the output lexicon under the name
r�� Intuitively� this adds a view over the objects of the combined lexicons as seen from c��
We name this view r� to record the fact that this view has been referred to by the user as
r�

y� Similarly� in Case � �where both inputs are contexts�� contexts c� and c� are added to
the output lexicon under the names r� and r�� respectively�

It is important to note that of context union operation keeps track of the contexts the results
come from� since the original contexts involved the operation are contained in the results as
well �e�g�� context c� in Case
��

Example �� Assume that CC has been set to c�� Then� the operations lex�InfSys� � lex�DSS�

and InfSys � DSS return the lexicons l� and l�� respectively� such that�

l� �

�����
����

o� � Panos�
Constantopoulos

o� � head
o� � Manos
o� � Nicolas� Nick
o� � Panos

l� �

��������
�������

o� � Panos�
Constantopoulos

o� � head
o� � Manos
o� � Nicolas� Nick
o� � Panos
c� � InfSys
c� � DSS

Note that object o� has two names� one originating from c� and the other from c�� Note
also that InfSys and DSS are name paths �w�r�t� the CC� of contexts c� and c�� respectively�
Intuitively� the union of InfSys and DSS contains the objects of l�� as well as two views
�contexts c� and c�� over these objects� as seen from the Information Systems and DSS lab�
respectively�

Example �� Assume that the current context is the context IB� i�e� CC � IB� The operation
ManosView � AnastasiaView combines the views of Manos and Anastasia to get a wider
view of the Institute� and returns the following lexicon�

l� �

��������
�������

o� � Dr Constantopoulos� Constantopoulos

o� �
o� � professor
c� � InfSys� ISgroup
c� � DSS
c� � DSS
c� � ManosView
c� � AnastasiaView

yObviously� the user can change this name using the operations� deleteName and insert�

A Theory of Contexts in Information Bases ��

Note that there are two di�erent contexts c� and c� with the same name� However� no ambi�
guity is caused� as these contexts also belong to contexts c� and c�� respectively� Therefore� we
can refer to c� and c� uniquely through the name paths ManosView�DSSand AnastasiaView�DSS�
respectively�

���� Intersection Operation

� Intersection plus� r�
�
d r�

To de�ne the intersection operation we need �rst to introduce the function ComO� Let l�� l�
be lexicons� We de�ne ComO�l�� l�� � objs�l��
 objs�l��� This operation takes as input two
parameters r� and r�� and returns a lexicon as a result� It also takes as input an integer d
which is the depth of cleaning nested subcontexts from non�common objects� We distinguish
three cases�

�� If r� and r� are both lexicons� then the operation returns a lexicon l de�ned as follows
�let I � ComO�r�� r����

�� If o�I then o�objs�l� and l�o� � r��o� � r��o��

� If d � � then
If o �� I and o is a context recursively containing up to depth d an object of I then�

�a� Make a deepcopy of o up to depth d �call it c�� and set the source of its copy
context to be equal to the source of the original context�

�b� Remove from c and from every context recursively contained in c �i� any simple
object that is not in I� and �ii� any context that is not in I and does not
recursively contain objects in I�

�c� Add c to objs�l� and de�ne� l�c� �

�
r��o�� if o � objs�r��
r��o�� if o � objs�r��

�� Find all contexts of l with the same source �call this source c� and merge them into
a new context with source c�

� If r� is a lexicon and r� is a name path to a context �call this context c��� then the
operation returns a lexicon l such that�

l � r�
�
d �lex�c�� � fc�� �fstr�r��gg�

where c�� is a new context such that lex�c��� � lex�c���
�� If r� and r� are both name paths to contexts �call these contexts c� and c��� then the

operation returns a lexicon l such that�
l � �lex�c�� � fc�� �fstr�r��gg�

�
d �lex�c�� � fc�� �fstr�r��gg�

where c�� and c�� are new contexts such that lex�c��� � lex�c�� and lex�c��� � lex�c��� �

Note that� if an object belongs to both lexicons� then we can refer to it in the output lexicon
using any of its names in the two input lexicons� In Case
 �where the second parameter is a
context�� we add to the output lexicon a new context c�� with name r�� Intuitively� this adds
a view over the objects of the output lexicon as seen from c�� Context c�� results from c�
after removing from it and its nested subcontexts all simple objects that are not contained
in ComO�r�� lex�c���� The same holds in Case ��

Parameter d determines how deep the nested subcontexts of the result will be cleaned from
non common objects �i�e� objects not contained in ComO�l�� l���� In fact� parameter d is
used in practice to face up with the complexity of recursion �cleaning of nested subcontexts
from non�common objects��

Parameter d increases the expressiveness of intersection in the following way� if d is equal
to � the result contains all common objects� This is the most common type of intersection�
However� if d is greater than �� the result contains not only the common objects but also
the subcontexts that contain these common objects in any depth less than or equal to d�
For example� imagine two contexts� one containing the terminology used in Chemistry and
the other the terminology used in Biology� Both contexts contain subcontexts representing
departments of Chemistry and Biology� respectively� that contain the terminology used in

�� Manos Theodorakis et al�

these departments� The intersection of these two contexts for d � � will result in the common
terminology of Chemistry and Biology� as well as in their common departments� However�
the same intersection for d � �� say d �
� will result not only in their common terminology
and departments� but also in a mass of departments and subdepartments in depth
 that
use this common terminology� Note that departments and subdepartments contain only the
common terminology� while the rest of the information has been removed from them�

In the rest of the thesis� whenever parameter d is not used it is assumed to be in�nite�

Example �� The operation lex�InfSys�
�
lex�DSS�� returns the lexicon�

l� �

�
o� � Panos�

Constantopoulos

o� � head�

Note that I � fo�� o�g� Therefore� objects o� and o� are added to the output lexicon in Step
��a�� Note that like in the Union operation� object o� has two names�

Example �� The operation InfSys
�
DSS� returns the following lexicon�

l� �

��
�
o� � Panos� Constantopoulos
o� � head
c��
�
� InfSys

c��
�
� DSS

c��
�

o� � Panos
o� � head

c��
�

o� � head
o� � Constantopoulos

Note that I � fo�� o�g� Contexts c��� and c
��
� are derived from contexts c� and c� after removing

all simple objects not in I and thus� src�c���� � src�c�� � c� and src�c���� � src�c�� � c�
�Step
b�� Contexts c��� and c��� are added to the output lexicon in Step ��

Example �� The operation ManosView
�
AnastasiaView computes the commonalities of

the views of Manos and Anastasia� and returns the following lexicon�

l� �

��������
�������

o� � Dr Constantopoulos�

Constantopoulos

o� � professor
c� � InfSys�ISgroup
c�
�
� DSS

c�
�
� DSS

c�
�
� ManosView

c�
�
� AnastasiaView

c�
�

o� � Constantopoulos

c�
�

o� � Panos�Constantopoulos

c�
�

o� � Dr Constantopoulos

o� � professor
c� � InfSys
c�
�
� DSS

c�
�

o� � Constantopoulos
o� � professor
c� � ISgroup
c�
�
� DSS

Note that the set I of the Intersection algorithm is fo�� o�� c�g� That is� objects o�� o��
and c� are the common objects of c� and c�� These objects are added to the lexicon of
the intersection in Step ��a� of the Intersection algorithm� Contexts c�� and c�� are copies of
contexts c� and c� after removing all simple objects not in I� Contexts c�� and c�� are added
to the lexicon of the intersection in Step ��b� of the Intersection algorithm� These contexts
represent views over the objects in I as seen from c� and c�� respectively� Contexts c

�
� and c��

are copies of contexts c� and c� after removing all simple objects not in I� and all contexts
not in I which do not recursively contain objects in I� Contexts c�� and c�� are added to
the lexicon of the intersection in Step � of the Intersection algorithm� Contexts c�� and c��
represent views over the objects in I as seen from c� and c�� respectively�

Example 	� The operation lex�ManosView�
�
� lex�AnastasiaView� computes the com�

monalities of the the contents of views of Manos and Anastasia in depth �� and returns the
following lexicon�

l� �

��
�
o� � Dr Constantopoulos�

Constantopoulos

o� � professor
c� � InfSys� ISgroup

A Theory of Contexts in Information Bases ��

Example
� The operation ManosView
�
� AnastasiaView computes the commonalities of

the views of Manos and Anastasia in depth �� and returns the following lexicon�

l	 �

�����
����

o� � Dr Constantopoulos�

Constantopoulos

o� � professor
c� � InfSys�ISgroup
c�
�
� ManosView

c�
�
� AnastasiaView

c�
�

o� � Dr Constantopoulos

o� � professor
c� � InfSys

c�
�

o� � Constantopoulos
o� � professor
c� � ISgroup

� Intersection times� r�
�
d
r�

It is de�ned as Intersection Plus except for the following Steps�

��a�� If o�I then o�objs�l� and l�o� � r��o�
 r��o��

� l � r�
�

d
�lex�c�� � fc�� �fstr�r��gg�

�� l � �lex�c�� � fc�� �fstr�r��gg�
�d
�lex�c�� � fc�� �fstr�r��gg� �

Motivation and use of parameter d are similar to these in the Intersection Plus operation�

Example �� The operation lex�InfSys�
� lex�DSS�� returns the lexicon�

l�
�
�

n
o� �
o� � head�

Example �� The operation InfSys
� DSS� returns the following lexicon�

l�
�
�

��
�
o� �
o� � head
c��
�
� InfSys

c��
�
� DSS

c��
�

o� � Panos
o� � head

c��
�

o� � head
o� � Constantopoulos

Example �� The operation ManosView
� AnastasiaView computes the commonalities of

the views of Manos and Anastasia� and returns the following lexicon�

l�
�
�

�������
������

o� �
o� � professor
c� �
c�
�
� DSS

c�
�
� DSS

c�
�
� ManosView

c�
�
� AnastasiaView

c�
�

o� � Constantopoulos

c�
�

o� � Panos�Constantopoulos

c�
�

o� � Dr Constantopoulos

o� � professor
c� � InfSys
c�
�
� DSS

c�
�

o� � Constantopoulos
o� � professor
c� � ISgroup
c�
�
� DSS

Note that the common objects o� and o� of lexicon l�� are without any name� This means
that although these two objects are known to both Manos and Anastasia� they use di�erent
set of names to describe them�

���� Di
erence Operation

� Di
erence� r� �d r�

This operation takes as input two parameters r� and r�� and returns a lexicon as a result�
We distinguish four cases�

�� If r� and r� are both lexicons� then the operation returns a lexicon l such that �let
D � objs�r�� � objs�r�� and I � objs�r��
 objs�r����

�
 Manos Theodorakis et al�

�� If o � D then o � objs�l� and l�o� � r��o��

� If d � � then
If o � I and o is a context recursively containing up to depth d an object of D then�

�a� Make a deepcopy of o up to depth d �call it c�� and set the source of its newly
derived context �copy� to be equal to the source of the original context�

�b� Remove from c and from every context recursively contained in c� any simple
object that is not in D�

�c� Add c to objs�l� and de�ne� l�c� � r��o��

�� No other object is in objs�l��

� If r� is a lexicon and r� is a name path to a context �call this context c��� then the
operation returns a lexicon l such that�

l � r� �d lex�c���
�� If r� is a name path to a context �call this context c�� and r� is a lexicon� then the

operation returns a lexicon l such that�
l � �lex�c�� � fc�� �fstr�r��gg� �d r�

where lex�c��� � lex�c���
�� If r� and r� are both name paths to contexts �call these contexts c� and c��� then the

operation returns a lexicon l such that�
l � �lex�c�� � fc�� �fstr�r��gg� �d �lex�c�� � fc� �fstr�r��gg�

where lex�c��� � lex�c��� �

Note that� in cases � and �� if the operands are name paths to contexts then the Di�erence
operation operates on their respective lexicons�

Motivation and use of parameter d in the Di�erence operation are similar to these in the
intersection operation�

Example �� The operation lex�InfSys� � lex�DSS�� returns the lexicon�

l
 �

n
o� � Manos
o� � Nicolas� Nick�

Note that objects o� and o� are objects contained in c� but not in c�� That is� D � fo�� o�g�
These objects are added to the output lexicon in Step ��a�� Also� note that I � fo�� o�g� As
I does not contain any context� Step ��b� is not executed�

Example �� The operation ManosView � AnastasiaView computes the di�erences between
the views of Manos and Anastasia� and returns the lexicon�

l�� �

��
�

o� �
c���
�
� InfSys

c� � DSS
c���
�
� ManosView

c���
�

o� � Nicolas�Nick

c���
�

o� �
c���
�

� InfSys
c� � DSS

Note that o� and c� are objects contained in c� but not in c�� Note also that the Dif�
ference operation is not recursively applied to the nested subcontexts of ManosView and
AnastasiaView� Therefore� if the user wants to go into more depth� he has to call explicitly
the operation ManosView�InfSys � AnastasiaView�InfSys�

�� PROPERTIES OF THE OPERATIONS

In the course of execution of the Union� Intersection� and Di�erence operations� nested sub�
contexts are copied and merged into new contexts� This implies that even the same operation� if
executed twice� will result into two di�erent lexicons� However� these two lexicons will bear the
equivalence relation de�ned below�

De�nition � �Relation �� We de�ne the relation � between contexts or lexicons� as follows�
�� Let c and c� be contexts� Then

c � c� � �c � c�� � �lex�c� � lex�c�� 	 src�c� � src�c���

A Theory of Contexts in Information Bases ��

� Let l and l� be lexicons� Then
l � l� � �
o � S � o �N � l � o �N � l�� 	

�
c � Cxt �
�c �N � l � �c� � c� �N � l� 	 c � c�� 	
�c �N � l� � �c� � c� �N � l 	 c � c���

where S denotes the set of simple objects� �

It can be easily seen that the relation � is re�exive� symmetric� and transitive� i�e� an equiva�
lence relation�

It turns out that the operations of Union and Intersection have the properties of commuta�
tivity� associativity� and distributivity over lexicons and contexts� just like ordinary set union and
intersection� These properties are important as they o�er �exibility in the execution of operations�
Speci�cally� commutativity allows one to ignore the order between two operands� Associativity
allows one to omit an indication of precedence� in expressions with more than one instance of the
operator� Finally� distributivity allows to factor out or to distribute an operand� so as to optimize
further processing�

Proposition � Let A� B� and C be references to contexts or lexicons� The following properties
hold�

�� Commutativity�
��� A � B � B � A

��� A
� B � B
� A

��� A
�
B � B

�
A

�� Associativity�
�	� �A � B� � C � A � �B � C�
�
� �A
� B�
� C � A
� �B
� C�

��� �A
�
B�

�
C � A

�
�B

�
C�

�� Distributivity�
��� �A
� B� � C � �A � C�
� �B � C�

��� �A � B�
� C � �A
� C� � �B
� C�

Proof� See Appendix B� �

For example �see Figure
�� assume the current context to be the context IB� The operation

�ManosView�InfSys
� AnastasiaView�DSS� � ManosView ���

computes the commonalities between the Information Systems lab as seen from Manos and the
DSS lab as seen from Anastasia and then combines these commonalities with the view of Manos for
the Institute to get a wider view of it� Let l� be the intermediate lexicon returned by the operation
ManosView�InfSys
� AnastasiaView�DSS and let l� be the lexicon returned by the Operation ��

Then we have�

l� �

�
o� � Panos
c�
�
� ManosView InfSys

c�
�
� AnastasiaView DSS

c�
�

o� � Panos

c�
�

o� � Panos� Constantopoulos

l� �

�������
������

o� � Panos�Dr Constantopoulos

o� �
o� � professor
c� � ManosView InfSys� InfSys
c� � DSS
c�
�
� AnastasiaView DSS

c� � ManosView

Note that during the computation of the operation l� � ManosView context c� is merged with
context c�� into context c� as src�c��� � src�c�� � c� �see Step ��c� of the Union algorithm in
subsection ��
 and the detailed algorithms of the Operations A��� and A��� in Appendix A��

On the other hand� the operation

�ManosView�InfSys � ManosView�
� �AnastasiaView�DSS � ManosView� �
�

yields two wider views of the Institute as seen from Manos by �i� combining ManosView� context
c�� with the Information Systems lab as seen from Manos� context c�� �call the returned lexicon

�� Manos Theodorakis et al�

l�� and �ii� combining ManosView with the DSS lab as seen from Anastasia� context c�� �call the
returned lexicon l��� and then computes the commonalities of these two wider views� Let l� be the
lexicon returned by the Operation
� Then we have�

l� �

�����������
����������

o� � Panos�
Dr Constantopoulos

o� � head
o� � Manos
o� � Nikos� Nick
o� � professor
c� � ManosView InfSys�

InfSys

c� � DSS
c� � ManosView

l� �

�����������
����������

o� � Panos�
Constantopoulos�

Dr Constantopoulos

o� �
o� � professor
o� � Anastasia
c� � InfSys
c� � DSS
c� � AnastasiaView DSS

c� � ManosView

l� �

����������
���������

o� � Panos�
Dr Constantopoulos

o� �
o� � professor
c� � ManosView InfSys�

InfSys

c� � DSS
c��
�
� AnastasiaView DSS

c� � ManosView

c��
�

o� � Panos�
Constantopoulos

According to property ���� lexicons l� and l� are equivalent�
We now de�ne an important class of lexicons� called operational lexicons� which is closed over

the operations Union� Intersection� and Di�erence� This closure property is expressed in Lemma �
and Theorem �� In the following� we shall call root context any context contained in a lexicon l

�resp� context c� which is not recursively contained in any other context contained in l �resp� c��

De�nition � �Operational lexicon� A lexicon l is called operational i�
�� it is a well�de�ned lexicon�

� if c is a root context of l then src�c� is well�de�ned� and
�� any object of l which is not a root context is recursively contained in a root context of l� �

Lemma � �Closure of the operationality property� two lexicons� Let l�� l� be two opera�
tional lexicons� Assume that every root context c of l� �resp� l�� has a name n in l� �resp� l��
such that there is no name n in l� �resp� l��� Then the operation l� � l�� where � � f � �
� ��g�

results in an operational lexicon�

Proof� See Appendix B� �

Theorem � �Closure of the operationality property� arbitrary number of lexicons� Let
l�� � � � lk be operational lexicons� If every root context c of li has a name n in li such that there is no
name n in any of l�� � � � � li��� li	�� � � � � lk� then the sequence of operations l� �� � � ��k�� lk� where
the operations �i � f � �
� �

�
��g are executed in any order� results in an operational lexicon�

Proof� From Lemma �� the operation li �i li	� results in an operational context� Therefore� we
can compute the sequence of operations l� �� � � ��k�� lk through a sequence of computations of
the form l� l�� where l and l� are operational lexicons and satisfy the condition of Lemma �� Thus�
the sequence of operations l� �� � � ��k�� lk will result in an operational lexicon� �

The following theorem expresses that the Union� Intersection� and Di�erence operations pre�
serve the well�de�nedness property of contexts�

Theorem � �Closure of the well
de�nedness of contexts�� Let r�� � � � � rk be name paths of
the well�de�ned contexts c�� � � � � ck� If str�ri� is not a name of an object in any of c�� � � � � ck�
then the sequence of operations r� �� � � ��k�� rk� where the operations �i � f � �
� �

�
��g are

executed in any order� results in a well�de�ned lexicon�

Proof� Note that for any i � k� ci �i ci	� � �lex�ci� � fc�i � str�ri�g� �i �lex�ci	�� � fc�i	� �
str�ri	��g�� where c�i and c�i	� are determined according to the particular operation �i �see the
de�nitions of the Union� Intersection� and Di�erence operations�� Note also that as ci is a well�
de�ned lexicon� li � lex�ci� � fc�i �str�ri�g results in an operational lexicon with root context c�i�
As str�ri� is not a name of an object w�r�t� each lexicon l�� � � � � li��� li	�� � � � � lk� all conditions of
Theorem � are met and hence r� �� � � ��k�� rk results in a well�de�ned lexicon� �

The closure of well�de�nedness of context under the operations of context union� intersection�
and di�erence ensures that unique external identi�cation of objects and acyclicity are preserved�

A Theory of Contexts in Information Bases ��

after applying the above operation on contexts� Thus� no naming con�cts and no cycles will
appear in the resulting contexts� Operations on contexts de�ned in other works �
��
�	 lack this
ability� Thus� in these works� information from the original contexts may get lost in the result of
an operation� since con�icts appear and their con�ict resolution strategy may cause units to be
inaccessible in the resulting context� Operations in these works do not satisfy the properties of
commutativity� associativity� and distributivity�

� APPLYING CONTEXT IN A COOPERATION ENVIRONMENT

As pointed out in �
�	� contexts can serve as the basis for supporting certain constructs arising
in cooperative work environments such as workspaces� versions� and con�gurations� In this section�
we present a comprehensive example that illustrates the use of contexts in a simple cooperation
environment� A cooperation environment is usually organized into named repositories� called
workspaces� to allow workers to share information concerning the work done on an object� in
a secure and orderly manner ����
	� In a cooperation environment� there are three kinds of
workspaces� public� group� and private�

The public workspace contains fully veri�ed �i�e� released� and �nished object versions� which
have reached absolute stability and cannot be updated or deleted� However� any worker can read
this workspace� and can add new object versions to it�

The group workspace contains object versions that have reached reasonable stability� and there�
fore can be shared by two or more workers� Thus� the combination of work�in progress between
di�erent workers is achieved� This process is necessary before a version is �nalized and migrates
to the public workspace� Object versions of the group workspace cannot be updated but they can
be deleted�

The private workspace consists of a number of user workspaces� Each user workspace is owned
and can be accessed only by a speci�c user� User workspaces contain temporary object versions
which are expected to undergo a signi�cant amount of update before reaching a reasonably stable
state �and moved to the group or to the public workspace�� Therefore� object versions of a user
workspace can be updated or deleted by its user�

Object versions can be moved into and out of the public workspace through the check�in
and check�out operations� and into and out of the group workspace through the import and
export operations� A user checks a version out of the public workspace into his private workspace�
where he can make changes� The new version is possibly exported to the group workspace for
integration testing with other objects� To correct errors� the version has to be imported to the
private workspace� Finally� a new veri�ed version is checked in the public workspace and is linked
�through a version history link� to the original public version from which it was derived� At this
point� the version history of the object has been updated�

An object is� in general� composed of other objects that are either atomic or composite� In our
model� a version of an atomic object can be thought of as a simple object� Recall that a simple
object is an object of the Information Base that is not a context� A con�guration is a version of
a composite object� composed of particular versions of its components� Therefore� a con�guration
can be thought of as a context that contains versions of its components� We refer to contexts that
represent con�gurations as con�guration contexts�

A version history of an object can be thought of as a context that contains �a� versions of
the object� and �b� links from one version to another that indicate version derivation� We call
such contexts� history contexts� The context types described above� are ISA�related as shown in
Figure �� thus forming a hierarchy of contexts�

A cooperation environment can be thought of as an Information Base �IB�� containing six
contexts� ATOMIC� CONFIG� HISTORY� PUBLIC� PRIVATE� and GROUP �see Figure ��� The
context ATOMIC contains all versions of atomic objects� The context CONFIG contains all
con�guration contexts� and the context HISTORY contains all history contexts� The context
PUBLIC contains all objects in the public workspace� which we assume to be history contexts� and
the context PRIVATE contains all the user contexts� A user context may contain history contexts�

�� Manos Theodorakis et al�

Context

Configuration HistoryAtomic Workspace

Private Group Public User

Fig� �� Context types of the cooperation environment�

con�guration contexts� and atomic objects� A user context may also contain results of operations
on contexts� The context GROUP essentially contains results of operations on contexts�

IB

PUBLIC � Public
PRIV ATE � Private

GROUP � Group
HISTORY � History
CONFIG � Config
ATOMIC � Atomic

PRIV ATE

� � Manos
� � Anastasia
� � Nicolas

PUBLIC

��� � A
��� � I
��� � M

HISTORY

��� � A
��� � I
��� � M

GROUP

CONFIG
�� � A�
�� � A�

ATOMIC

�� � I�
�� � I�
�� � M�

Fig� �� Initial lexicons of IB and the six contexts of the cooperation scenario�

��� Cooperation Scenario

We consider a cooperation scenario in which three authors cooperate on the revision of an
article� composed of an introduction and a main section� The initial state of our cooperation
scenario is shown in Figures � and �� In Figure �� we use the following conventions� A symbol
of the form o � n�� n�� � � � denotes object o with names n�� n�� � � �� e�g� ��� � A denotes object ���
with a single name A� Solid line rectangles represent workspaces� dashed line rectangles represent
history contexts� rounded solid line boxes represent con�guration contexts� and thick dots represent
atomic objects�

1: Manos 2: Anastasia

30: M1����

300: M

20: I1���
���
���
���

21: I2��
��
��
��

200: I
20: I1������
30: M1��

��
��
��

10: A1 11: A2
21: I2������

������

100: A

30: M1

PRIVATE: Private

GROUP: Group

3: Nicolas

PUBLIC: Public

Fig� �� Initial state of the cooperation scenario�

Speci�cally� the initial state of the Information Base is as follows �see Figures � and ���

� The context PUBLIC contains a history context for the article� and a history context for each
component of the article� The history context for the article is context ��� with name A� the
history context for the introduction is context
�� with name I� and the history context for
the main section is the context ��� with name M� as shown in Figures � and �� The names A�
I and M stand for �Article�� �Introduction� and �Main section�� respectivelyy� Here� versions
of the introduction and the main section are simple objects� as any piece of �unstructured�
text is considered to be an atomic object� Context ��� contains two contexts �these are ��
and ��� representing two di�erent versions of the article� as well as a link object from context

y In practice one would use meaningful names instead of A� I and M� e�g� Article on Contexts instead of A�

A Theory of Contexts in Information Bases ��

�� to context ��� Similarly� contexts
�� and ��� contain versions of the introduction and
the main section� respectively� as well as link objects�

� The context PRIVATE contains three user contexts� one for each author� The �rst author is
assigned the user context � with name Manos� the second author is assigned the user context

 with name Anastasia� and the third author is assigned the user context � with name
Nicolas�

� The context GROUP is initially empty�

We refer to a user workspace as the home workspace of the corresponding user� We assume
that each user has his own variable current context �CC� whose initial value is his home workspace�
For each user� the value of the variable Username is his login name� Also� the name of his home
workspace in the context PRIVATE� is his login name� Finally� the value of the variable Home is
the global name path of the home workspace of the user� For example� for user Manos� CC � ��
Username � Manos� and Home � ��Private�Manos� In the following� whenever we refer to the
variables CC� Home� and Username we use their values� Variables are written in a special character
font to be distinguished from strings�

��� Cooperation commands

For the revision of the article� each author has four commands at his disposal� as described
below� These commands are high level operations� implemented using the context operations of
the model� The full code of the operations is given in Appendix C� An example of their use is
given in the following subsection�

� check
out�r� n�� This operation takes as input a name path r in the public workspace and
a name n� and does the following�
�� Copies the history context of the version referred to by r� from the public workspace

into the home workspace of the user� under the same name�

� Copies the version referred to by r �call this version v�� from the public workspace into

the CC �call this copy v���
�� Adds v� into the copy of the history context� under the name n�
�� Updates the copy of the history context by adding a link from v to v�� �

� check
in�r� h� n�� This operation takes as input a name path r w�r�t� CC� a name path h

w�r�t� the public workspace� and a name n� Then� it copies the version referred to by r from
the CC into the history context of the public workspace referred to by h� under the name n� �

� export�exportedListOfContexts� exportedCxtName�� This operation takes as input a set
of name paths exportedListOfContexts w�r�t� the CC� and a name exportedCxtName�
Then� it does the following�
�� Creates a context �call it c�� which contains a copy of the context referenced by each

name path contained in the input set�

� Inserts the context c into the group workspace� under the name exportedCxtName� �

� import�r� n�
This operation takes as input a name path r w�r�t� the group workspace� and a name n�
Then� it copies the context referenced by r from the group workspace into the CC� under the
name n� �

��� A cooperation session

In this subsection� we present and discuss the commands issued by each author during a coop�
eration session� These commands are shown in Figure ��

Commands by Manos
User Manos checks�out version A� of the article� and copies it as version A� to his home

workspace �see Figure ����a��� This is done through the command check�out�A�A�� A��� As the
user wants to revise version A�� he focuses on context A�� This is done through the command
SCC�A��� As he wants to revise the main section� he checks�out object M� to his home workspace

�� Manos Theodorakis et al�

��Commands by user Manos�
�� CC� �� Home� 	�Private�Manos� Username� Manos ��

�a� check	out�A�A��A��

�b� SCC�A��

�c� check	out�M�M��M��

�d� � � �

�e� SCC�Home�

�f� export�fA�Mg�Manos changes�

��Commands by user Anastasia�
�� CC �
� Home � 	�Private�Anastasia� Username� Anastasia� ��

�a� check	out�A�A��A��

�b� SCC�A��

�c� check	out�I�I��I��

�d� check	out�M�M��M��
� � �

�e� SCC�Home�

�f� export�fA�I�Mg�Anastasia changes�

��Commands by user Nicolas�
�� CC� ��Home� 	�Private�Nicolas� Username� Nicolas ��

�a� import�Manos changes�Manos�

�b� import�Anastasia changes� Anastasia�

�c� history A � createCxt�Manos�A� Anastasia�A��

�d� history I � createCxt�f g � Anastasia�I��

�e� history M � createCxt�Manos�M� Anastasia�M��

�f� histCxt� createCxt�fg�

�g� insert�history A� fAg�histCxt�

�h� insert�history M� fMg�histCxt�

�i� insert�histCxt�fHistoriesg�Home�

�j� changesLex� lex�Manos�A� � lex�Anastasia�A� �

lex�Manos�M� � lex�Anastasia�M� � lex�Anastasia�I� �

flookupOne�Manos� �Manos� lookupOne�Anastasia� �Anastasiag �

lex���Public�A� � lex���Public�I� � lex���Public�M�

�k� insert�createCxt�changesLex��Changes�Home�

�l� final A � createCxt�flookupOne�Changes�I�� �I��

lookupOne�Changes�Manos�M�M�� �M�g�

�m� insert�final A�A�� Home�

�n� check	in�A��I��I� I��

�o� check	in�A��M��M� M��

�p� check	in�A��A� A��

Fig� �� User commands during a cooperation session�

2check-out(M.M ,M)1

2: Anastasia

20: I1���� 21: I��
��
��
��

2

200: I
20: I1����

1���
���
���
���

10: A

30: M

11: A2
21: I2��

��
��
��

��
��
��
��

30: M1

3: Nikos

1

���
���
���
���

30: M1���� ������31: M2
���
���
���
���

21: I

30: M

���
���
���
���

31: M2

12: A310: A1 211: A 12: A3

101: A

1

2

2 3check-out(A.A ,A)PRIVATE: Private
1: Manos

PUBLIC: Public
100: A

301: M

300: M

�a�

2: Anastasia

��
��
��
����
��
��
��

31: M
21: I2

12: A3

2

10: A1 211: A 12: A3101: A

30: M1���
���
���
���

������31: M2301: M

10: A1 211: A 12: A3

30: M1������ ������31: M2

1: Manos
PRIVATE: Private

3: Nicolas

GROUP: Group
501: Manos_changes

export({A,M}, Manos_Changes)

102: A

302: M

�b�

Fig� ��� Manos� interaction with the public� private and group workspaces�

A Theory of Contexts in Information Bases ��

�replacing the object M� contained in context A� by a new version of the main section� named M��
as shown in Figure ����a��� This is done through the operation check�out�M�M�� M��� The local
editing of M� is indicated by three dots in Figure ��

After revision is completed� Manos needs to exchange information with the other authors for
further revision� To this end� he needs to create the necessary environment which works as a
coordinating unit for comparing the versions prepared by the di�erent authors� before the �nal
version is checked in the public workspace� This comparison requires knowledge about which
authors have edited a particular version� and what changes have been made to it� Speci�cally� he
uses the command export�fA� Mg� Manos changes� to create a context named Manos changes that
contains copies of the history contexts of the edited objects� i�e� copies of the contexts ��� and
��� that represent the history of the article and its main section� respectively �see Figure ����b���
These contexts contain the original versions of the article and its main section� as well as their new
versions created by user Manos�

1 2

1���
���
���
���

21: I2��
��
��
��

200: I
20: I1��

��
��
��

30: M����

10: A1 11: A2
21: I2������

������1 130: M 1����

PUBLIC: Public
100: A

300: M

13: A3

������
���
���
���
��� 22: I3

32: M2

1: Manos
Unchanged

3: Nicolas

30: M

2 3

20: I

check-out(I.I ,I) check-out(M.M ,M)2 3check-out(A.A ,A)

10: A1 11: A2 13: A3

����20: I1 ������21: I2

30: M1��
��
��
��

���
���
���
���

���
���
���
���

2: Anastasia
PRIVATE:Private

103: A

22: I3

32: M2

202: I

303: M

�a�

1: Manos
Unchanged

Unchanged Unchanged Unchanged
13: A3

����
����

22: I3
32: M2

10: A1 11: A2 13: A3

������20: I1 ������21: I2

30: M1����

��
��
��
��

���
���
���
���

PRIVATE:Private

301: M 201: I 102: A
2: Anastasia

3: Nicolas

export({A,I,M}, Anastasia_changes)GROUP: Group
502: Anastasia_changes

22: I3

32: M2

203: I

304: M

104: A

�b�

Fig� ��� Anastasia�s interaction with the public� private� and group workspaces�

Commands by Anastasia

Concurrently� user Anastasia also checks�out version A� of the article� and copies it as version
A� in her home workspacey �see Figure ����a��� As she wants to revise version A�� she focuses on
context A�� She then checks�out I� and M�� and copies them as I� and M� in her home workspace
�see Figure ����a��� Anastasia can now start editing I� and M�� Once editing is �nished� she
exports her modi�cations to the group workspace for further revision �see Figure ����b��� This is
done through the command export�fA� I� Mg� Anastasia changes�

Commands by Nicolas

Finally� user Nicolas imports contexts Manos changes and Anastasia changes� which contain
modi�cations made by Manos and Anastasia� to his home workspace under the names Manos

and Anastasia� respectively �commands ���a� and ���b� in Figure ��� As Nicolas wants to unify
these modi�cations� he issues the commands ���c� to ���i�� shown in Figure �� and he creates the
context ��� �assigned the variable histCxt� with name Histories in his home workspace �see
Figure �
��a��� Context ��� contains three history contexts� �i� context ��� �assigned the variable
history A� with name A� which contains the whole history of the article after the modi�cations
made on it by Manos and Anastasia� it also contains information about who made each modi�cation
�contexts ��
 and ����� �ii� context ��� �assigned the variable history I� with name I� which
contains the history of the introduction after the modi�cations made on it by Anastasia �Manos
did not modify the introduction�� and �iii� context ��
 �assigned the variable history M� with
name M� which contains the history of the main section after the modi�cations made on it by
Manos and Anastasia� it also contains information about who made each modi�cation �contexts
��
 and ����� Then� he can see that versions �
 and �� �with name A�� of the article are two

yNote that she uses the same name A� as Manos did� for naming a di�erent version of the article� However� there
is no ambiguity as the two A��s are contained in di�erent contexts�

�� Manos Theodorakis et al�

21: I2

30: M1����

10: A1 11: A 13: A3

���
���
���
���

������

2

22: I3

32: M2

203: I

304: M

104: A
502: Anastasia

10: A1

30: M1���
���
���
���

���
���
���
���

��
��
��
��

211: A

31: M

12: A3102: A

302: M

501: Manos

10: A1 11: A2
13: A3

102: Manos_A
104: Anastasia_A

30: M1��
��
��
��

��
��
��
��

32: M2

����31: M2 302: Manos_A

2

1

602: M

����20: I1 ��
��
��
��

21: I

304: Anastasia_A

������22: I3 1203: Anastasia_I601: I

14: A3

��
��
��
��

31: M2
14: A3105: A

��
��
��
��

31: M2305: M

605: Manos
315: A

����22: I3

���
���
���
���

32: M2

106: A

204: I

306: M

606: Anastasia

315: A

������
������32: M2

22: I3

����22: I3

������31: M2

����32: M2

604: Changes

��
��
��
��

231: M
������22: I3

316: Afinal_A

20: I���
���
���
���

2

3: Nicolas

603: Histories

600: A
12: A3

history_M

history_A

histCxt

history_I

�a�� The context of user Nicolas�

2

333
3

33
2

2��
��
��
��

��
��
��
�� ���

���
���
���

������

100: A
10: A1 11: A

30: M1

16: A2
22: I3
31: M2

30: M1������ 31: M2����

3
300: M

20: I1���
���
���
���

21: I2

21: I
���� 1

200: I
22: I3

1: Manos
Unchanged501: Manos

502: Anastasia
��
��
��
��

231: M
������22: I3

316: A

check-in(A , A, A)

30: M

������ ��
��
��
��

PUBLIC: Public

Unchanged

3: Nicolas

2: Anastasia

PRIVATE:Private

check-in(A .I , I, I)

������20: I

check-in(A .M , M, M)

1

603: Histories
604: Changes

�b�� Nicolas� check�in to the public workspace�

Fig� ��� Nicolas� interaction with the public and private workspaces�

parallel versions of version �� and that version �
 was created by Manos �Manos A�A�� and version
�� by Anastasia �Anastasia A�A���

Nicolas then wants to isolate the changes made by Manos and Anastasia and get rid of the
whole history of the article and its parts contained in the public workspace� Thus� he creates the
context ��� with name Changes� by issuing the commands ���j� and ���k� shown in Figure �� This
context contains the modi�cations made by Manos and Anastasia �objects ��� �
�

� �� and �
��
as well as where these modi�cations appear within the structure of imported contexts
�� and
�
�
thus two new views of the structures of contexts
�� and
�
 are created� which are contexts ��

and ���� respectively �see Figure �
��a���

Then� Nicolas studies modi�cations and creates the �nal version of article �command ���l� in
Figure �� composed by the version

 �Changes�I�� of the introduction made by Anastasia and the
version �� �Changes�Manos�M�M�� of the main section made by Manos� This �nal version is checked
in the public workspace through the commands ���n� to ���p� �see Figure �
��b���

We would like to stress that the purpose of the example presented here was to illustrate the
use of context in a simple cooperation environment� The commands check�in� check�out� import
and export� are examples of simple communication commands that can be implemented using the
context operations of our model�

In a more complex environment� however� the users will most likely need information on various
aspects of the cooperation� For example� in a software engineering project� where several groups
are developing software in parallel� a coordinating unit may need to compare modules coming
from various groups� before merging them into a single module� Such information can be obtained
through more sophisticated higher level commands that can also be implemented using the context
operations of the model�

The Information Base can be organized in a number of di�erent ways� Choosing the appropriate
organization is a design problem that depends on the application� However� this problem lies
outside the scope of this paper�

A Theory of Contexts in Information Bases ��

�� RELATED WORK

As mentioned in the introduction� the notion of context has appeared in several areas and has
been treated in various ways depending on the purposes of the particular application� However�
the semantics given to the notion of context in those areas are not always the same and the
various semantics are not always comparable� In this section� we compare our approach with other
approaches that treat the notion of context in a comparable way�

In �
�	� Mylopoulos and Motschnig�Pitrik proposed a general mechanism for partitioning infor�
mation bases using the concept of context� They introduced a generic framework for contexts and
discussed naming conventions� operations on contexts� authorization� and transaction execution�
However� they impose a strict constraint on naming� whereby objects �called information units�
are assigned unique names w�r�t� a context� Because of this constraint� several naming con�icts
appear in operations among contexts� which the authors resolve in rather arbitrary ways� In addi�
tion� operations among contexts� such as union �called addition� and intersection �called product��
are deprived of such useful properties as commutativity� associativity� and distributivity� and thus
also can yield unexpected results� In �
�	� the major problem of the context union and context
intersection operations is that it is possible for an object in the output context to have no name�
even though it originally had one or more names� This can happen if an object of one input con�
text has a name in common with an object of the other input context� For example� consider two
contexts c and c� which correspond to two companies� the contents of c and c� being the employees
of these two companies� respectively� Assume now that an employee in the �rst company has the
same name with another employee in the second company� Then� the union of the contexts c and
c� contains these two employees� but one of them will have no name� Such results might seriously
hinder the applicability of this otherwise appealing framework�

In ���	� Theodorakis and Constantopoulos proposed a naming mechanism based on the concept
of context� in order to resolve several naming problems that arise in information bases� such as
object names being ambiguous� excessively long� or unable to follow the changes of the environment
of the object� However� that approach imposes a hierarchical structure on contexts� i�e� a context
may be contained in only one other context� which is rather restrictive�

HAM ��	 is a general purpose abstract machine that supports contexts� In HAM� a graph
usually contains all the information regarding a general topic and contexts are used to partition
the data within a graph� Therefore� a context may contain nodes� links� or other contexts� Contexts
are organized hierarchically� i�e� a context is contained in only one other context� By contrast� in
our model� a context may be contained in more than one contexts� Contexts in HAM have been
used to support con�gurations� private workspaces� and version history trees ��	� HAM provides a
set of context editing� context inquiry� and context attribute operations� All the context editing
operations of HAM� namely createContext� destroyContext� compactContext� and mergeContext�
can be simulated in our model using its operations� On the other hand� HAM does not support
name relativism� Inquiries on and attributes of contexts can be supported by our model� however
they are outside of the scope of this paper�

In �
�	� the notion of context is used to support collaborative work in hypermedia design�
A context node contains links� terminal nodes� and other context nodes� Furthermore� context
nodes are specialized into annotations� public bases� hyperbases� private bases� and user contexts�
Using this notion of context� the authors de�ne operations check�in and check�out for hypermedia
objects� However� there is no support for name relativism� neither are generic operations on
contexts provided�

The notion of context has also appeared in the area of heterogeneous databases �
��

� �
	�
There� the word �context� refers to the implicit assumptions underlying the manner in which an
agent represents or interprets data� To allow exchange between heterogeneous information systems�
information speci�c to them can be captured in speci�c contexts� Therefore� contexts are used for
interpreting data� At present our model cannot be compared with these works� because it does
not address heterogeneous databases� as we assume a single Information Base �which guarantees
that real world objects are represented by unique objects in the Information Base��

�
 Manos Theodorakis et al�

�� CONCLUSIONS

In this paper� we developed a model for representing contexts in information bases along with a
set of operations for creating� updating� combining� and comparing contexts� Contexts are treated
as a special kind of objects which are associated to a set of objects and a lexicon� i�e� a binding
of names to these objects� Contexts may overlap� in the sense that an object may be contained in
more than one contexts simultaneously� Contexts may also be nested� in the sense that a context
may contain other contexts� Also� a context may be contained in more than one contexts�

The main contributions of this work are�

� It allows an object to have zero� one� or more names� not necessarily unique� w�r�t� a context�
Therefore� we can handle synonymous� homonymous� and anonymous objects� Possible name
ambiguities are resolved by assuming that objects contained in well�de�ned contexts have at
least one unique external identi�cation �i�e� reference��

� The operations context union� intersection� and di�erence preserve the well�de�nedness of
contexts� This ensures that unique external identi�cation of objects is preserved� after ap�
plying the above operations on contexts�

Currently� we investigate additional properties of context operations� Further work includes ex�
tending the set of context operations with searching operations� and developing a set of generic high
level commands based on the context operations� Another line of work addresses the incorporation
of context mechanism� as prescribed by our model� in speci�c data models�

REFERENCES

��� Serge Abiteboul and Anthony Bonner� Objects and Views� In Proceedings of ACM�SIGMOD Conference� pp�
�����
� �������

��� F� Bancilhonand N� Spyratos� Update Semantics of RelationalViews� ACM Transactions on Database Systems�
��
��������� �������

��� Brad Campbell and Joseph M� Goodman� HAM� A General Purpose Hypertext Abstruct Machine� Commu�
nications of the ACM� ������������� �������

�
� Wojciech Cellary and Genevieve Jomier� Consistency of Versions in Object	Oriented Databases� In Proceedings
of the ��th International Conference on Very Large Data Bases � VLDB���� pp�
���

�� Brisbane� Australia
�������

��� Hong	Tai Chou andWon Kim� A Uni�ed Framework for Version Control in a CAD Environment� In Proceedings
of the ��th International Conference on Very Large Data Bases � VLDB�	�� pp� �������� Kyoto �������

��� Panos Constantopoulos and Yannis Tzitzikas� Context	Driven InformationBase Update� In Proc
 of CAiSE����
Lecture Notes in CS ����� pp� �����

� Heraklion� Crete� Greece� Springer �������

��� N� Delisle and M� Schwartz� Contexts� A Partitioning Concept for Hypertext� ACM Transactions on O�ce
Information Systems� ������������ �������

��� Georg Gottlob� Paolo Paolini� and Roberto Zicari� Properties and Update Semantics of Consistent Views�
ACM Transactions on Database Systems� ���
��
�����
 �������

��� Georg Gottlob� Michael Schre�� and Brigitte R�ock� Extending Object 	 Oriented Systems with Roles� ACM
Transactions on Information Systems� ������������� �������

���� Ramanathan V� Guha� Contexts� A Formalization and Some Applications� PhD thesis� Stanford University�
Also published as Technical Report STAN	CS	��	����	Thesis� and MCC Technical Report Number ACT	CYC	

��	�� �������

���� Garry Hendrix� Encoding Knowledge in PartitionedNetworks� In Nicolas Findler� editor�Associative Networks�
New York� Academic Press �������

���� Vipul Kashyap and Amit Sheth� Semantic and Schematic Similarities between Database Objects� A Context	
Based Approach� VLDB Journal� ��
��������
 �������

���� Randy Katz� Towards a Uni�ed Framework for Version Modeling in Engineering Databases� ACM Computing
Surveys� ���
������
�� �������

��
� Gerald Kotonya and Ian Sommerville� Requirements Engineering with Viewpoints� Software Engineering
Journal� ���������� �������

���� Stan Matwin and Miroslav Kubat� The role of Context in Concept Learning� In Proceedings of the ICML����
Workshop on Learning in Context�Sensitive Domains� pp� ���� Bari� Italy �������

A Theory of Contexts in Information Bases ��

���� John McCarthy� Notes on Formalizing Context� In Proc
 IJCAI��
� pp� �������� Chambery� France �������

���� Ryszard Michalski� How to Learn Impressive Concepts� A Method Employing a Two	Tiered Knowledge
Representation for Learning� In Proceedings of the �th International Workshope in Machine Learning� pp�
������ Irvine� CA �������

���� Renate Motschnig	Pitrik� An Integrated View on the Viewing Abstraction� Contexts and Perspectives in
Software Develepment� AI� and Databases� Journal of Systems Integration� ���������� �������

���� Renate Motschnig	Pitrik� Requirements and Comparison of View Mechanisms for Object	Oriented Databases�
Information Systems� ������������� �������

���� John Mylopoulos and Renate Motschnig	Pitrik� Patritioning Information Bases with Contexts� In Proc
 of
CoopIS���� pp�

���� Vienna� Austria �������

���� John Mylopoulos and Renate Motschnig	Pitrik� Semantics� Features� and Applications of the Viewpoint Ab	
straction� In Proc
 of CAiSE���� pp� ��
����� Heraklion� Greece �������

���� Aris Ouksel and Channah Naiman� Coordinating Context Building in Heterogeneous Information Systems� J

of Intelligent Inf
 Systems� ������������ ����
��

���� Joel Richardson and Peter Schwarz� Aspects� Extending Objects to Support Multiple� Independent Roles� In
Proceedings of ACM�SIGMOD Conference� pp� �������� Denver� Colorado �������

��
� Marc H� Scholl� Cristian Laasch� and Markus Tresch� Updatable Views in Object	Oriented Databases� In Proc

of the �nd Int
 Conf
 on Deductive and Object�Oriented Database Systems� pp� �������� Munich �������

���� Edward Sciore� Object Specialization� ACM Transactions on Information Systems� ������������ �������

���� Edward Sciore� Michael Siegel� and Arnon Rosenthal� Using Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems� ACM Transactions on Database Systems� �	������
���� ����
��

���� John J� Shilling and Peter F� Sweeney� Three Steps to Views� Extending the Object	Oriented Paradigm� In
Proceedings of Object�Oriented Programming� Systems� Languages and Applications � OOPSLA� pp� �������
�������

���� Yuh	Ming Shyy and Stanley Y�W� Su� K� A High	level Knowledge Base Programming Language for Advanced
Dadabase Applications� In Proceedings of ACM�SIGMOD Conference� pp� �����
�� Denver� Colorado �������

���� Luiz Fernando G� Soares� Noemi L� R� Rodriguez� and Marco A� Casanova� Nested Composite Nodes and
Version Control in an Open Hypermedia System� Information Systems� �
����������� �������

���� Manos Theodorakis� Contextualization� An Abstraction Mechanism for Information Modeling� PhD thesis�
Department of Computer Science� University of Crete �������

���� Manos Theodorakis� Anastasia Analyti� Panos Constantopoulos� and Nicolas Spyratos� Contextualization as
an Abstraction Mechanism for Conceptual Modeling� In Proceedings of the �	th International Conference on
Conceptual Modeling �ER����� pp�
���
��� Paris� France �������

���� Manos Theodorakis� Anastasia Analyti� Panos Constantopoulos� and Nikos Spyratos� Context in Information
Bases� In Proceedings of the
rd International Conference on Cooperative Information Systems �CoopIS��	��
pp� �������� New York City� NY� USA� IEEE Computer Society �������

���� Manos Theodorakis and Panos Constantopoulos� Context	Based Naming in Information Bases� International
Journal of Cooperative Information Systems� ��� �
��������� �������

��
� Peter Turney� Robust Classi�cation with Context	Sensitive Features� In Industrial and Engineering Applica�
tions of Arti�cial Intelligence and Expert Systems� IEA�AIE��
� pp� �������� Edinburgh� Scotland� Gordon
and Breach �������

A� OPERATION ALGORITHMS

In this appendix� we give the detailed algorithms of the basic operations presented in section ��
These operation are distinguished into lookup operations� update operations� copy operations� com�
bining and comparing operations� We also give the detailed algorithms of two auxiliary operations�
which are not basic operations� but they are used in the algorithms of the basic operations�

To simplify notation� assume that for each operation p� which takes as input a reference r�
there is another one with the same name p� which takes as input an object referenced by r� In the
following� we denote by Obj the set of all objects� i�e� simple objects and contexts�

A��� Lookup operations

Operation A�� Lookup�
lookup�Input r � NP � Output O � P�Obj���

�� This operation takes as input a reference r and returns all objects with reference� ��

�� Manos Theodorakis et al�

�� If r starts with 	 then
O is the set of all objects o such that r � npaths�o� IB�

else O is the set of all objects o such that r � npaths�o� CC��

� End�

Operation A�� Lookup one�
lookupOne�Input r � NP� Output o � Obj��

�� This operation takes as input a reference r and returns the object referenced by r� if it is just one�

Otherwise� it returns ERROR� ��
�� O � lookup�r��

� If the cardinality of the set O is one then
return the element o of O

else ERROR�
�� End�

A��� Browsing operations

Operation A�� Set current context�
SCC�Input r � NP��

�� This operation takes as input a reference r to a context and sets CC to be this context� ��
�� c � lookup�r��

� CC � c� �� CC holds the current context of the user issuing the command ��

�� End�

A��� Update operations

Operation A�� Create context�
createCxt�Input l � L� Output c � Cxt��

�� This operation takes a lexicon l as input� and returns a new context c with lexicon l� ��
�� Create a new context c such that lex�c� � l�

� Set src�c� � c�

�� End�

Operation A�� Insert an object into a context�
insert�Input o � Obj�N � P�N �� r � NP��

�� This operation takes as input an object o� a set of names N � and a reference r to a context �call this

context c�� Then� it either inserts o
N into the lexicon of c if object o is not contained in c� or adds the

names contained in N to the c�names of o� ��
�� c � lookupOne�r��

� If o
N � � lex�c� then
replace o
N � by o
N � �N in lex�c�

else add o
N into lex�c��

�� Set src�c� � c�

�� End�

Operation A�	 Delete an object from a context�
deleteObj�Input o � Obj� r � NP��

�� This operation takes as input an object o and a reference r to a context� and deletes the pair o
N

from the lexicon of that context� ��
�� c � lookupOne�r��

� Delete the pair o
N from lex�c��

�� End�

Operation A�� Delete an object name from a context�
deleteName�Input o � Obj� n � N � r � NP��

�� This operation takes as input an object o� a name n� and a reference r to a context �call this context

c�� and deletes the name n from the c�names of o� ��
�� c � lookupOne�r��

� If o
N � lex�c� then
replace o
N by o
N � fng in lex�c��

�� End�

A Theory of Contexts in Information Bases ��

A�	� Copy operations

Operation A�� Copy context�
copyCxt�Input r � NP � Output c� � Cxt��

�� This operation takes as input a reference r to a context �call this context c� and returns a new context

c� such that lex�c�� � lex�c�� ��

�� c � lookupOne�r��

� c� � createCxt�lex�c���

�� End�

Operation A�� Deep copy context�
deepCopyCxt�Input r � NP � Output out c � Cxt��

�� This operation takes as input a reference r to a context �call this context c� and returns a new context

out c� Context out c contains the original simple objects of c� and deep copies of the contexts contained

in c� ��

�� c � lookupOne�r��

� Let RecCxt be the contexts recursively contained in c�

�� OrigCxt � RecCxt � fcg�

�� CopiedCxt � ��

�� While OrigCxt �� � do

�a� Find context c� � OrigCxt which is not contained in any other context in OrigCxt�

�b� c�� � copyCxt�c���

�c� If c � c� then out c � c���

�d� If c� is contained in some contexts in CopiedCxt then
replace c� with c�� in the lexicon of these contexts�

�e� OrigCxt � OrigCxt � fc�g�

�f� CopiedCxt � CopiedCxt � fc��g�

�� End�

Operation A��� Deep copy context up to depth d�
deepCopyCxt�Input r � NP � d � Integer� Output out c � Cxt��

�� This operation takes as input a reference r to a context �call this context c� and an integer d� and

returns a new context out c� Context out c contains the original simple objects of c� and deep copies of

the contexts contained in c up to depth d� ��

The same as Operation A�� except for Step
�

 Let RecCxt be the contexts recursively contained in c up to depth d�

A�
� Auxiliary operations

Operation A��� lexUnion�
lexUnion�Input O � P�Obj�� l�� l� � L� Output l � L��

�� This operation takes as input a set of object O and two lexicons l� and l�� and returns a lexicon l�

Lexicon l contains objects of O that are also contained in l� or l�� The names of each object o of l is the

union of the names of o w�r�t� l� with the names of o w�r�t� l�� ��

�� Let l � ��

� For each o � O do
If o � objs�l�� � objs�l�� then l � l � fo
names�o� l�� � names�o� l��g
else if o � objs�l�� then l � l � fo
names�o� l��g
else l � l � fo
names�o� l��g

�� End�

�� Manos Theodorakis et al�

Operation A��� lexIntersection�
lexIntersection�Input O � P�Obj�� l�� l� � L� Output l � L��

�� This operation takes as input a set of object O and two lexicons l� and l�� and returns a lexicon l�

Lexicon l contains objects of O that are also contained in l� and l�� The names of each object o of l is the

intersection the l��names of o with the l��names of o� ��

�� Let l � ��

� For each o � O do
If o � objs�l�� � objs�l�� then l � l � fo
names�o� l�� � names�o� l��g

�� End�

Operation A��� Elimination�
elimObj�Input O � P�Obj��C � P�Cxt���

�� This operation takes as input a set of objects O and set of contexts C� and works as follows
 The

objects in O are eliminated from each context in C� If a context c � C is shared by another context c� � C�

then c is not eliminated from the objects of c�� ��

�� While C �� � do

�a� Find context c � C which does not contain any other context in C�

�b� For each o � objs�c� do
If o �� O then deleteObj�o� c��

�c� If c �� � then O � O � fcg�

�d� C � C � fc�g�

� End�

Operation A��� Merge cleaned subcontexts�
merge�Input l � L� Output out l � L��

�� This operation takes as input a lexicon l and merges its subcontexts c�� � � � � ck with the same source

context� i�e� src�c�� � � � � � src�ck�� ��

�� c � createCxt�l��

� Let RecCxt be the contexts recursively contained in c�

�� OrigCxt � RecCxt � fcg�

�� While OrigCxt �� � do

�a� Find context c� � OrigCxt which is not contained in any other context in OrigCxt�

�b� Let M � fc�� � � � � ckg 	 Cxt�
where
i � f�� � � � � kg
 ci � objs�c�� � src�ci� � src�c���

�c� If M �� � then

i� Nm � names�c�� c
�� � � � � � names�ck� c

���

ii� If �ci
 ci � src�ci� then cm � ci
else cm � createCxt�lex�c�� � � � � � lex�ck��� �� Merges the lexicon of contexts
c�� � � � � ck ��

iii� Set src�cm� � src�c���

iv� For i � f�� � � � � kg do
If ci �� src�ci� then deleteObj�ci� c

���

v� insert�cm�Nm� c
���

vi� If cm �� src�cm� then
OrigCxt � OrigCxt � fcmg� �� merge will be called for cm as well ��

�d� OrigCxt � OrigCxt � fc�g�

�� out l � lex�c��

�� End�

A Theory of Contexts in Information Bases ��

Operation A��� Body of Intersection Plus�
BodyInterPlus�Input l�� l� � L� c�� c� � Cxt� d � Integer�Output out l � L��

�� This operation takes as input two lexicons and an integer d and returns their intersection up to depth

d� It also takes as input two contexts which are two views over the objects of the result �if some of these

contexts is NIL it is not taken into account�� ��
�� I � ComO�l�� l���

� out l � lexUnion�I� lex�l��� lex�l����

�� ComC � I �Cxt� �� ComC stands for Common Contexts ��

�� Let RecCxt be the contexts recursively contained in l� or l� up to depth d� i�e�� in depth di � d�
�� contexts contained in l� or l� are in depth �� ��

�� If c� �� NIL then RecCxt � RecCxt � fc�g�

�� If c� �� NIL then RecCxt � RecCxt � fc�g�
�� OrigCxt � RecCxt� ComC�

�� CopiedCxt � ��

�� While OrigCxt �� � do

�a� Find context c � OrigCxt which is not contained in any other context in OrigCxt�
�� c is contained either in l� or in l� ��

�b� c� � copyCxt�c��

�c� Set src�c�� � src�c��

�d� If c � objs�l�� then out l � out l � fc�
names�c� l��g
else If c � objs�l�� then out l � out l � fc�
names�c� l��g

�e� If c is contained in some contexts in CopiedCxt
then replace c with c� in the lexicon of these contexts�

�f� OrigCxt � OrigCxt � fcg�

�g� CopiedCxt � CopiedCxt � fc�g�

��� elimObj�I�CopiedCxt��

��� out l �merge�out l��

�
� End�

Operation A��	 Body of Intersection Times�
BodyInterTimes�Input l�� l� � L� c�� c� � Cxt� d � Integer�Output out l � L��

�� The same as Lexicon Intersection Plus except for Step

 ��

� out l � lexIntersection�I� lex�l��� lex�l����

Operation A��� Body of Di
erence�
BodyDi
�Input l�� l� � L� c� � Cxt� d � Integer�Output out l � L��

�� Let DifO � objs�c��� objs�c���

� out l � lexUnion�DifO� l�� ���

�� Let DifC � DifO �Cxt�
�� Let RecCxt be the contexts recursively contained in l� up to depth d� i�e�� in depth di � d�

�� contexts contained in l� are in depth �� ��

�� If c� �� NIL then RecCxt � RecCxt � fc�g�

�� OrigCxt � RecCxt�DifC�

�� CopiedCxt � ��

�� While OrigCxt �� � do

�a� Find context c � OrigCxt which is not contained in any other context in OrigCxt�
�� c is contained in both l� and l� ��

�b� c� � copyCxt�c��

�c� Set src�c�� � src�c��

�d� out l � out l � fc�
names�c� l��g�

�e� If c is contained in some contexts in CopiedCxt then
replace c with c� in the lexicon of these contexts�

�f� OrigCxt � OrigCxt � fcg�

�g� CopiedCxt � CopiedCxt � fc�g�

�� elimObj�DifO�CopiedCxt��

��� out l �merge�out l��

��� End�

�� Manos Theodorakis et al�

A��� Union operation

Operation A��� Union � � ��
�� Lexicon Union
� �Input l�� l� � L� Output out l � L�

�� This operation takes as input two lexicons and returns their union� ��
�� out l � lexUnion�objs�l�� � objs�l��� l�� l���

� out l �merge�out l��

�� End�

�� Context
Lexicon Union
� �Input r� � NP� l� � L� Output out l � L�

�� This operation takes as input a reference r� to a context and a lexicon and returns the union between

this context and this lexicon� ��
�� c� � lookupOne�r���

� l� � lex�c�� � f c�
fstr�r��g g�

�� out l � l� � l��

�� End�

�� Context Union
� �Input r�� r� � NP� Output out l � L�

�� This operation takes as input two references r� and r� to two contexts and returns the union of these

contexts� ��
�� c� � lookupOne�r���

� c� � lookupOne�r���

�� l� � lex�c�� � f c�
fstr�r��g g�

�� l� � lex�c�� � f c�
fstr�r��g g�

�� out l � l� � l��

�� End�

A��� Intersection operation

Operation A��� Intersection Plus�
�
��

�� Lexicon Intersection Plus
�
�Input l�� l� � L� d � Integer� Output out l � L�

�� This operation takes as input two lexicons and an integer d� and returns the intersection up to depth

d of these two lexicon� ��
�� out l � BodyInterP lus�l�� l�� NIL�NIL� d��

� End�

�� Context
Lexicon Intersection Plus
�
�Input r� � NP� l� � L� d � Integer� Output out l � L�

�� This operation takes a reference r� to a context and a lexicon� and an integer d� and returns the

intersection up to depth d between this context and this lexicon� ��
�� c� � lookupOne�r���

� c�� � copyCxt�c���

�� l� � lex�c�� � fc��
fstr�r��gg�

�� out l � BodyInterP lus�l�� l�� c
�
�� NIL�d��

�� End�

�� Context Intersection Plus
�
�Input r�� r� � NP� d � Integer� Output out l � L�

�� This operation takes as input two references r� and r� to two contexts and an integer d� and returns

the intersection up to depth d of these contexts� ��
�� c� � lookupOne�r���

A Theory of Contexts in Information Bases ��

� c� � lookupOne�r���

�� c�� � createCxt�lex�c����

�� c�� � createCxt�lex�c����

�� l� � lex�c�� � f c��
fstr�r��g g�

�� l� � lex�c�� � f c��
fstr�r��g g�

�� out l � BodyInterP lus�l�� l�� c
�
�� c

�
�� d��

�� End�

Operation A��� Intersection Times�
� ��

�� Lexicon Intersection Times

� �Input l�� l� � L� d � Integer� Output out l � L�

�� out l � BodyInterT imes�l�� l��NIL�NIL�d��

� End�

�� Context
Lexicon Intersection Times

� �Input r� � NP � l� � L� d � Integer� Output out l � L�

�� c� � lookupOne�r���

� c�� � copyCxt�c���

�� l� � lex�c�� � fc��
fstr�r��gg�

�� out l � BodyInterT imes�l�� l�� c
�
��NIL� d��

�� End�

�� Context Intersection Times

� �Input r�� r� � NP� d � Integer� Output out l � L�

�� c� � lookupOne�r���

� c� � lookupOne�r���

�� c�� � createCxt�lex�c����

�� c�� � createCxt�lex�c����

�� l� � lex�c�� � f c��
fstr�r��g g�

�� l� � lex�c�� � f c��
fstr�r��g g�

�� out l � BodyInterT imes�l�� l�� c
�
�� c

�
�� d��

�� End�

A��� Di
erence operation

Operation A��� Di
erence � � ��
�� Lexicon Di
erence
� �Input l�� l� � L� d � Integer� Output out l � L�

�� This operation takes as input two lexicons and an integer d� and returns the di�erence up to depth d

of these two lexicon� ��
�� out l � BodyDiff�l�� l��NIL� d��

� End�

�� Context
Lexicon Di
erence
� �Input r� � NP� l� � L� d � Integer� Output out l � L�

�� This operation takes a reference r� to a context and a lexicon� and an integer d� and returns the

di�erence up to depth d between this context and this lexicon� ��
�� c� � lookupOne�r���

� c�� � copyCxt�c���

�� l� � lex�c�� � fc��
fstr�r��gg�

�� out l � BodyDiff�l�� l�� c
�
�� d��

�� End�

�� Manos Theodorakis et al�

�� Context Di
erence
� �Input r�� r� � NP � d � Integer� Output outl � L�

�� This operation takes as input two references r� and r� to two contexts and an integer d� and returns

the di�erence up to depth d of these contexts� ��

�� c� � lookupOne�r���

� c� � lookupOne�r���

�� c�� � copyCxt�c���

�� c�� � copyCxt�c���

�� l� � lex�c�� � f c��
fstr�r��g g�

�� l� � lex�c�� � f c�
fstr�r��g g�

�� out l � BodyDiff�l�� l�� c��� d��

�� End�

B� PROOFS OF PROPOSITIONS� LEMMAS� AND THEOREMS

In this appendix� we give the proofs of the propositions� lemmas� and theorems given in the
paper�

We shall say that a context c is cleaned if src�c� �� c�

Proof� �of Proposition ����
���� �
�� ��� Commutativity�

The reader can easily verify this property by looking at the code of the Union and Intersection operations�

��� Union Associativity�

Let l� � �A � B� � C� and l� � A � �B � C��
We shall prove that
 l�
 l�� that is

o � Obj� N � P�N �

o
N � l� � o
N � l� � � �o�
 o�
N � l� � o
 o���

We will �rst prove the forward derivation� The backwards derivation is proved similarly�
Let A� B� C be lexicons� We distinguish the following cases

�� o is a simple object�

� o is a context�

�a� o is a context such that src�o� � o�

i� No merging takes place between o and other cleaned contexts during the computation of
l��

ii� o is produced by merging o with one or more cleaned contexts�

�b� o is a cleaned context �i�e� src�o� �� o��

i� There is only one context o� with src�o�� � src�o� contained in the lexicons A� B� or C�

ii� There exist more than one objects oi with src�oi� � src�o� in the lexicons A� B� or C�

Cases ��
�a�i

�� If o � objs�C� and o �� objs�A � B� then we have o �� objs�A� and o �� objs�B�� and N � C�o��
Hence� o
N � B � C and o
N � l��

� If o � objs�A � B� and o �� objs�C� then we have that either o � objs�A�� or o � objs�B�� or
both�

�a� If o � objs�A� and o �� objs�B� then N � A�o�� Hence� o �� objs�B � C� and because
o
N � A we have o
N � l��

�b� If o � objs�B� and o �� objs�A� then similarly to the previous case we can prove that
N � B�o� and o
N � l��

�c� If o � objs�A� and o � objs�B� then N � A�o��B�o�� On the other hand� o
B�o� � B � C
and o
A�o� �B�o� � A � �B � C�� Hence� o
N � l��

�� If o � objs�A � B� and o � objs�C� then similarly to the previous case we can prove that
N � A�o� �B�o� �C�o� and o
N � l��

A Theory of Contexts in Information Bases ��

Case
�a�ii

Without loss of generality� assume that there is context o� � objs�A� with src�o�� � src�o�� o �
objs�B�� and there is no context o� � objs�C� with src�o�� � src�o� �the rest of the cases are proved
similarly�� Then� during the computation A � B� the merge operation �called at Step
 of the
Lexicon Union algorithm given in Appendix A� merges o� with o� The result of this merging is again
the context o� but now o has names A�o�� � B�o�� Note that as there is no context o� � objs�C�
with src�o�� � src�o� no other merging will take place and thus� l� will contain o with names
N � A�o�� �B�o��

On the other hand� B � C contains o with names B�o�� Then� the merge operation �called at Step

of the Lexicon Union algorithm computing l�� merges o� with o resulting again in the context o� but
now with names A�o�� �B�o�� Hence� o
N � l��

Case
�b�i

Without loss of generality� assume that o� is contained in only one of A� B� or C �call this lexicon
D� and o � o�� Similarly to the previous cases we can prove that N � D�o� and o
N � l��

Case
�b�ii

Without loss of generality� assume that there are contexts o� � objs�A� and o� � objs�B� such that
src�o�� � src�o�� � src�o�� and there is no context o� � objs�C� with src�o�� � src�o�� Then�
o � objs�A � B� and o is produced by merging o�� o� through the merge operation �called at Step

of the Lexicon Union algorithm computing A � B�� Hence� N � A�o�� �B�o���

On the other hand� note that o�
B�o�� � B � C� Therefore� there is a context o� such that o�
N � l��
which is produced by merging o�� o� through the merge operation �called during the computation
of l��� Obviously� o
 o��

Let A� B be lexicons� and C be a reference to a context �call this context c�� Then� l� � �A � B� � C �
�A � B� � �lex�c� � fc
str�C�g�� and l� � A � �B � C� � A � �B � �lex�c� � fc
str�C�g��� As lex�c� � fc

str�C�g is a lexicon and associativity holds among lexicons� it follows that associativity holds among A�
B� C as well�
Similarly� we can prove the associativity property in the case that any of A� B� or C is a context�

�
�� ��� Intersection Associativity�

In the following� we will prove the property ���� We can prove the property ��� similarly�
Let l� � �A

�
B�

�
C� and l� � A

�
�B

�
C��

We shall prove that
 l�
 l�� that is

o � Obj� N � P�N �

o
N � l� � o
N � l� � � �o�
 o�
N � l� � o
 o���

We will �rst prove the forward derivation� The backwards derivation is proved similarly�
Let A� B� C be lexicons� We distinguish the following cases

�� o is a simple object�

� o is a context�

�a� o is a context such that src�o� � o�

i� No merging takes place between o and other cleaned contexts during the computation of
l��

�b� o is a cleaned context �i�e� src�o� �� o��

i� There is only one context c contained in A� B� or C that recursively contains objects in
ComO�A

�
B�C� and src�c� � src�o��

ii� There exist more than one contexts ci that recursively contain objects in ComO�A
�
B�C�

and src�c� � src�o��

Cases ��
�a�i

As o is not a cleaned subcontext� o � ComO�A
�
B�C� and N � �A

�
B��o� � C�o�� Therefore�

o � objs�A
�
B� and o � objs�C�� From this it follows that o � ComO�A�B� and �A

�
B��o� �

A�o��B�o�� Thus� o � objs�A� and o � objs�B�� It now easily follows that o
B�o��C�o� � B
�
C

and thus o
A�o�� �B�o�� C�o�� � l�� Hence� o
N � l��

Case
�b�i

Without loss of generality� assume that there is context c � objs�A� and c �� objs�B� � objs�C��
Then� during the operation A

�
B� a new cleaned context c� is produced in the Step �b of the

Body of Intersection Plus algorithm �Operation A���� by copying context c� Then� the objects of c�

which are not in I or which do not recursively contain objects in I are eliminated from c� through

�
 Manos Theodorakis et al�

the operation elimObj�ComO�A�B�� fc�� � � �g�� Thus� c�
 A�c� � objs�A
�
B�� Similarly� during

the operation �A
�
B�

�
C� the cleaned context o is produced by copying c�� Context o is cleaned

through the operation elimObj�ComO�A
�
B�C�� fo� � � �g�� Note also that N � A�c��

Similarly� on the other hand� during the operation A
�
�B

�
C� a new cleaned context c�� is pro�

duced by copying c such that c��
A�c� � l�� Context c
�� is cleaned through the operation

elimObj�ComO�A�B
�
C�� fo� � � �g��

It can be easily proved ComO�A
�
B�C� � ComO�A�B

�
C�� Hence� c��
N � l� and o
 c���

Case
�b�ii

Without loss of generality� assume that there exist contexts c� � objs�A� and c� � objs�B� such that
src�c�� � src�c�� � src�o�� and there is no context c� � objs�C� which recursively contain objects
in ComO�A

�
B�C� and src�c�� � src�o�� Then� during the operation A

�
B� two new cleaned

contexts� c�� and c��� are produced by copying contexts c� and c�� respectively� Then� contexts c��
and c�� are cleaned through the operation elimObj�ComO�A�B�� fc��� c

�
�� � � �g�� It also holds that

src�c��� � src�c�� and src�c��� � src�c��� As src�c�� � src�c�� then src�c��� � src�c��� and contexts
c�� and c�� are merged through the merge operation� and a new context c� is produced with names
A�c�� � B�c��� Then� during the operation �A

�
B�

�
C� the cleaned context o is produced by

copying c�� Context c� is cleaned through the operation elimObj�ComO�A
�
B�C�� fo� � � �g�� Also�

N � A�c�� �B�c���

On the other hand� during the operation B
�
C� a new cleaned context c��� is produced by copying c�

and having name B�c��� Context c
��
� is cleaned through the operation elimObj�ComO�B�C�� fc��� � � � �g��

Then� during the operation A
�
�B

�
C�� two new cleaned contexts� c��� and c���� � are produced by

copying contexts c� and c
��
� � and A�c�� and B�c��� respectively� Then� contexts c

��
� and c���� are cleaned

through the operation elimObj�ComO�A�B
�
C�� fc��� � c

���
� � � � �g�� As src�c

��
�� � src�c���� �� contexts c

�
�

and c���� are merged through the merge operation and a new context c�� is produced with names
A�c�� �B�c��� As ComO�A

�
B�C� � ComO�A�B

�
C�� it follows that c��
N � l� and o
 c���

Let A� B be lexicons� and C be a reference to a context �call this context c�� Then� there are con�
texts c�� c�� such that l� � �A

�
B�

�
C � �A

�
B�

�
�lex�c� � fc�
 str�C�g�� and l� � A

�
�B

�
C� �

A
�
�B

�
�lex�c� � fc��
 str�C�g��� As lex�c� � fc�
 str�C�g and lex�c� � fc��
 str�C�g are lexicons and

associativity holds among lexicons� it follows that associativity holds among A� B� C as well�
Similarly� we can prove the associativity property in the case that any of A� B� or C is a context�

�
� Distributivity�

Let l� � �A
� B� � C� and l� � �A � C�
� �B � C��

We shall prove that
 l�
 l�� that is

o � Obj� N � P�N �

o
N � l� � o
N � l� � � �o�
 o�
N � l� � o
 o���

We will �rst prove the forward derivation� The backwards derivation is proved similarly�
Let A� B� C be lexicons� We distinguish the following cases

�� o is a simple object�

� o is a context�

�a� o is a context such that src�o� � o�

i� No merging takes place between o and other cleaned contexts during the computation of
l��

ii� o is produced by merging o with one or more cleaned contexts�

�b� o is a cleaned context �i�e� src�o� �� o��

Cases ��
�a�i

Then� o is contained in either A
� B� or C� or both� Without loss of generality� assume that o

is contained in A
� B� but not in C� Then� o � ComO�A�B� and N � A�o� � B�o�� Therefore�

o � objs�A� and o � objs�B�� Thus� o
A�o� � A � C and o
B�o� � B � C� From this it follows that
o � ComO�A � C�B � C� and o
 �A � C��o� � �B � C��o� � l�� Hence o
A�o� �B�o� � l��

Case
�a�ii

Without loss of generality� assume that o is contained in A
� B� and there is a cleaned context c

contained in C such that src�c� � o�

Then� on one hand� o � ComO�A�B� and �A
� B��o� � A�o� � B�o�� Therefore� o � objs�A� and

o � objs�B�� The merge operation �called during the computation of l�� merges o with c resulting
again in the context o� but now with names �A
� B��o� �C�c�� Hence� N � �A�o� �B�o�� �C�c��

A Theory of Contexts in Information Bases ��

On the other hand� the merge operation �called during the computation of A � C� merges o with c�
resulting again in the context o� but now with names A�o� � C�c�� Similarly� the merge operation
�called during the computation of B � C� merges o with c� resulting again in the context o� but now
with names B�o��C�c�� Therefore� o � ComO�A � C�B � C� and o
 �A � C��o�� �B � C��o� � l��
That is o
 �A�o� � C�c�� � �B�o� � C�c�� � l�� Hence� since distributivity of set union and set
intersection is hold� o
N � l��

Case
b

Without loss of generality� assume that there is a context c contained in A
� B such that src�c� �

src�o�� and there is a context c� contained in C such that src�c�� � src�o��

As o is contained in A
� B� assume that there are contexts c�� c� contained in A� B� respectively�

which both recursively contain objects in I � ComO�A�B� and src�c�� � src�c�� � src�o�� Then�
during the operation A
� B� two new cleaned contexts� c�� and c�� are produced in the Step �b of

Lexicon Intersection Algorithm by copying contexts c� and c�� respectively� Then� the objects of c
�
�

and c�� that are not in I or do not recursively contain objects in I are eliminated from these contexts
through the operation elimObj�I� fc��� c

�
�� � � �g�� As src�c

�
�� � src�c��� � src�o�� contexts c�� and c

�
� are

merged through the merge operation� and the new context c is produced with names A�c���B�c���
Then� during the operation �A
� B� � C� contexts c� c� are merged through the merge operation

and the context o is produced with names N � �A�c�� �B�c��� �C�c
���

On the other hand� during the operation A � C� contexts c� and c� are merged through the merge
operation� and a new context c��� is produced with names A�c�� � C�c��� Similarly� during the op�
eration B � C� contexts c� and c� are merged through the merge operation� and a new context c���
is produced with names B�c�� � C�c��� Note that contexts c��� and c��� recursively contain objects
in I and thus they also recursively contain objects in I � � ComO�A � C�B � C�� Then� dur�
ing the operation �A � C�
� �B � C�� contexts c��� and c��� are �rst cleaned through the operations

elimObj�I �� fc��� � c
��
� � � � �g�� and then merged through the merge operation� This will produce a new

context c�� with names �A�c�� � C�c��� � �B�c�� � C�c���� Hence� c��
N � l� and� since I � contain
contexts equivalent to the contexts contained in I � objs�C�� o
 c���

Let A� B be lexicons� and C be a reference to a context �call this context c�� Then� l� � �A
� B� � C �

�A
� B� � �lex�c� � fc
str�C�g�� and l� � A
� �B
� C� � �A
� �lex�c� � fc
str�C�g�
� �B
� �lex�c� � fc

str�C�g�� As lex�c� � fc
 str�C�g is a lexicon� and associativity holds among lexicons� it follows that as�
sociativity holds among A� B� C as well�

Similarly� we can prove the associativity property in the case that any of A� B� or C is a context� �

Proof� �of Lemma ����
Let l � l� � l�� We shall prove that l is an operational lexicon� that is

�� We will �rst prove that l is a well�de�ned context�
We will prove that for each object o of l there is a unique reference of o w�r�t� l� Let �rst o be a
context� which comes from a root context c of l� or l� ��comes from� means that either �i� o is the
context c� or �ii� o is the result of cleaning the context c� or �iii� o is the result of merging a context
of l� with a context of l�� one of which is c�� Assume that c is a context of l� �proceed similarly if
c is a context of l��� From the de�nition of the Union� Intersection� and Di�erence operations� we
have

names�c� l�� 	 names�o� l� ���

As c is a root context of l�� there is a name n � names�c� l�� such that there is no name n w�r�t�
l�� Equation ��� implies that n � names�o� l�� We will prove that n is a unique reference of o w�r�t�
l� Assume that there is another object o� such that n � npaths�o�� l�� Then� there is an object o��

contained in l� or l� such that o� comes from o�� �� o� Then� n � names�o��� l�� or n � names�o��� l���
However� this is impossible because n is a unique name w�r�t� l� and there is no name n w�r�t� l��
Any other object o of l comes from objects that are not root contexts� but they are recursively
contained in a root context �call this context c�� Since o is contained in l� there must be a context
c� of l coming from c �this is because of the de�nition of the Union� Intersection and Di�erence
operations�� Since c is well�de�ned� c� is well�de�ned as well� Thus� there is a unique reference r of
o w�r�t c�� As c is a root context� we proved above that there is n such that n is a unique name of
c� w�r�t� l� Thus� n�r is a unique reference of o w�r�t� l�

�� Manos Theodorakis et al�

We shall now prove that every nested subcontext of l satis�es the acyclicity property� As every
nested subcontext of l�� l� satis�es the acyclicity property� it can be easily seen that every nested
subcontext of l satis�es the acyclicity property as well�

� We will now prove that if c is a root contexts of l then src�c� is well�de�ned�
Let c be a root context of l� Then� c either �i� is a root context of l� or l�� or �ii� is the result of
cleaning a root context c� of l� or l�� or �iii� is the result of merging a context c� of l� with a context c��

of l�� For case �i�� as l� and l� are operational contexts� src�c� is a well�de�ned context� Similarly for
case �ii�� src�c� � src�c��� and hence src�c� is a well�de�ned context� For case �iii�� c� or c�� should be
root context� Thus� src�c�� or src�c��� is a well�de�ned context� Therefore� src�c� � src�c�� � src�c���
is a well�de�ned context as well�

�� We will now prove that any object of l which is not a root context is recursively contained in a root
context of l�
Let o be an object of l which is not a root context� Then� o comes from an object o� of l� or l��
which either �i� is a root context of l� or l�� or �ii� is recursively contained in a root context of l�
or l�� Consider �rst case �i�� and without loss of generality� assume that o� is a root context of l��
As o is not a root context of l� o� is recursively contained in a root context c� of l�� Let c be the
context of l which comes from c�� Obviously� c is a root context of l and o is recursively contained in
c� Consider now case �ii�� and without loss of generality� assume that o is recursively contained in a
root context c� of l�� Let c be the context of l which comes from c�� Obviously� c is a root context
of l and o is recursively contained in c�

�

C� OPERATIONS ON VERSIONING

In this Appendix� we give the detailed algorithms of the operations presented in section
�

Operation C�� Check
out�
check
out�Input r � NP� n � N ��

�� With this operation� a designer checks�out a new version of the version o �referred to as r� from the

public workspace into his�her private workspace� The new version is a copy of o and is given the name

n w�r�t� the private workspace� This operation also copies the history context that contains o from the

public to the private workspace� ��
�� CurrentWorkingContext� CC�

� SCC�	�Public��

�� o � lookupOne�r��

�� o copy � copy�o��

�� hc � whereContainedIn�o�HISTORY ��

�� hc copy � copy�hc��

�� insert�hc copy�names�hc�HISTORY ��Home��

�� insert�o copy� fng� hc copy��

�� updateHistory�o copy� hc copy��

��� If o � objs�CurrentWorkingContext� then deleteObj�o�CurrentWorkingContext��

��� insert�o copy� fng� CurrentWorkingContext��

�
� CC � CurrentWorkingContext�

��� End�

Operation C�� Check
in�
check
in�Input r� h � NP� n � N ��

�� With this operation� a designer checks�in his own new version �referred to as r� into the public workspace

with a name n� This operation also inserts the new version into the history context referred to as h and

will update the version history hierarchy� ��

�� o � lookup�r��

� hc � lookup�h��

�� v � copy�o��

A Theory of Contexts in Information Bases ��

�� insert�v� fng� hc��

�� updateHistory�ver o� hc��

�� End�

Operation C�� Export to group�
export�Input exportedListOfContexts � P�NP�� exportedCxtName � N ��

�� With this operation� the designer creates a context c which contains a copy of the context referenced

by each name path ri contained in the input set exportedListOfContexts� Then� it inserts the context c

into the group workspace� under the name exportedCxtName� ��
�� toBeExportedCxt � createCxt�fg��

� For each ri � exportedListOfContexts do

�� insert�lookupOne�ri�� fstr�ri�g� toBeExportedCxt��

�� insert�toBeExportedCxt�fexportedCxtNameg�GROUP ��

�� End�

Operation C�� Import from group�
import�Input r � NP� n � N ��

�� With this operation� a designer imports the context referred to by r from the group workspace into

his�her private workspace� ��

�� SCC�Group��

� c � lookupOne�r��

�� insert�c� fng�Home��

�� End�

Operation C�� Update history�
updateHistory�Input v � Obj� c � Cxt��

�� This operation creates a link object �named �derived�from�� from the version named Current w�r�t�

context c to the version v� Then moves the name Current from the version currently named Current to

version v� ��
�� ccxt old � CC�

� SCC�c��

�� curr � lookupOne�Current��

�� Create a link object l from object curr to object v�

�� Insert the pair l
fderived�fromg in lex�c��

�� deleteName�curr�Current� c��

�� addName�v�Current� c��

�� SCC�ccxt old��

�� End�

The operation copy�Input o � Obj� Output o� � Obj� calls copyCxt�o� o�� in the case that o is a
context� or copies the simple object o to a new one o��

