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ABSTRACT
This paper concerns versioning services over Semantic Web (SW)
repositories. We propose a novel storage index (based on partial or-
ders), called POI, that exploits the fact that RDF Knowledge Bases
(KBs) (a) have not a unique serialization (as it happens with texts)
and (b) their versions are usually related by containment (⊆). We
discuss the benefits and drawbacks of this approach in terms of
storage space and efficiency both analytically and experimentally
in comparison with the existing approaches (including the change-
based approach). We report experimental results over synthetic
data sets showing that POI offers notable space saving, e.g. com-
pression ratio (i.e. uncompressed/compressed size) ranges between
1,800% and 18,163%, as well as efficiency in various cross version
operations. POI is equipped with three version insertion algorithms
and could be also exploited in cases where the set of KBs does not
fit in main memory. Although the focus of this work is SW data
versioning, POI can be considered as a generic indexing scheme
for storing set-valued data.

1. INTRODUCTION AND MOTIVATION
The provision of versioning services is an important requirement

of several modern applications of the Semantic Web, e.g. for digi-
tal information preservation [3, 14], and for e-learning applications
[13]. Two key performance aspects of a version management sys-
tem is the storage space and the time needed for creating (resp.
retrieving) a new (resp. existing) version. In the Semantic Web
(SW) there exist only limited support of versioning services. Most
of the related works [9, 16, 10, 11] propose high level services
for manipulating versions but none of these have so far focused on
the performance aspect of these services (they mainly overlook the
storage space perspective). In general, we could identify the fol-
lowing approaches:

(a) Keep stored each version as an independent triple store. This
is actually the approach adopted in all previous works [16,
11, 9] on versioning for SW repositories. The obvious draw-
back of this approach is the excessive storage space require-
ments.

This paper is an extended version of the paper entitled “On Storage Policies
for Semantic Web Repositories that Support Versioning” that was presented
at the 5th European Semantic Web Conference, Tenerife, Spain, June 2008.

(b) Keep stored only the deltas between two consecutive ver-
sions [12, 2]. To construct the contents of a particular ver-
sion one has to execute a (potentially long) sequence of deltas
(which could be computationally expensive). However, ap-
propriate comparison functions and change operation seman-
tics can result in smaller in size deltas as described in [17].
The extreme case where only the change log is kept stored
and marked positions (on that log) are used to indicate ver-
sions, is elaborated on [15] which also provides methods for
reducing the size of a sequence of deltas.

In this paper we propose and analyze an approach (actually a stor-
age index structure) that stands between the above two extremes. It
aims at exploiting the fact that it is expected to have several versions
(not necessarily consecutive) whose contents overlap. In addition,
it exploits the fact that RDF graphs have not a unique serialization
(as it happens with text), and this allows us to explore directions
that have not been elaborated by the classical versioning systems
for texts (e.g. [12, 2]). Specifically, we view an RDF KB as a
set of triples. We introduce a storage data structure, called POI,
based on partial orders that exploits the expected overlap (specif-
ically the ⊆-relationships) between versions’ contents in order to
reduce the storage space, also equipped with algorithms (including
an auxiliary caching technique) for efficient version insertion and
retrieval. It is important to note that the structure (and occupied
space) of POI is independent of the version history. Knowledge of
version history can be exploited just for speeding up some opera-
tions (specifically the insertion of versions that are defined by com-
bining existing versions). It follows that the benefits from adopting
POI are not limited to versioning. It could also be exploited for
building repositories appropriate for collaborative applications, e.g.
for applications that require keeping personal and shared spaces
(KBs) as it is the case of modern e-learning applications (e.g. see
trialogical e-learning [13]). In such cases, we need to store a set of
KBs that are not historically connected and are expected to overlap.

In comparison to the change-based approaches (proposed in the
context of the SW [17] or not [4, 5]) we could say that POI stores
explicitly only the versions with the minimal (with respect to set
containment) contents. All the rest versions are stored in a posi-
tively incremental way, specifically positive deltas are organized as
a partially ordered set (that is history-independent) aiming at min-
imizing the total storage space. It follows that POI occupies less
space than the change-based approach in cases where there are sev-
eral versions (or KBs in general) not necessarily consecutive (they
could be even in parallel evolution tracks) whose contents are re-
lated by set inclusion (⊆).

Regarding version retrieval time, the cost for retrieving the con-
tents of a version in the change-based approach is analogous to the
distance from the closest stored snapshot (either first or last ver-



Service Pre-condition Post-Condition
1 insert(S, i) i 6∈ id(V ) V ′ = V ∪ {(S, i)}
2 merge(i, j, h,¯) {i, j} ⊆ id(V ), h 6∈ id(V ) V ′ = V ∪ (D(i) ¯ D(j), h),

next′(i) = next(i) ∪ {h},
next′(j) = next(j) ∪ {h}

Table 1: Version creation services
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Figure 1: Example of storage policies for versions

sion, according to the delta policy adopted [5]). Having a POI the
cost is independent of any kind of history, but it depends on the
contents of the particular version, specifically on the depth of the
corresponding node in the POI graph.

In comparison with other works on versioning (not in the SW
context), [5] focuses on providing fast access to the current (or re-
cent) versions, while we focus on minimizing the storage space, in
an attempt to support applications with vast amounts of overlapping
versions. [6] focuses on composite versioned objects, i.e. objects
composed of other versioned objects.

In general, POI is an advantageous approach for archiving set-
based data, especially good for inclusion-related and “oscillating"1

data. This is verified analytically and experimentally. The remain-
der of this paper is organized as follows: Section 2 introduces basic
notions and notations. Section 3 introduces POI. Section 4 elabo-
rates on the storage requirements of POI by providing analytical
and experimental results. Section 5 provides version insertion algo-
rithms and reports experimental results. Section 6 discusses other
operations that can be performed efficiently with a POI. Finally,
Section 7 summarizes and identifies issues for future research.

2. FRAMEWORK AND NOTATIONS

DEF. 1. If T is the set of all possible RDF triples (or quadruples
if we consider graph spaces [7]), then :

• a knowledge base (for short KB) is a (finite) subset S of T ,

• a named knowledge base (for short NKB) is a pair (S, i)
where S is a KB and i is an identifier,

• a multi knowledge base (for short MKB) is a set of NKBs
each having a distinct identifier, and

• a versioned knowledge base (for short VKB) is a MKB plus
an acyclic subsequent relation over the identifiers of the NKBs
that participate to MKB.

Let Id be the set of all possible identifiers (e.g. the set of natural
numbers). If v = (S, i) is a NKB (i.e. S ⊆ T , i ∈ Id) then we
will say that i is the identifier of v, and S is the content of v (we
shall write id(v) = i and D(i) = S respectively).
1Suppose, for instance, a movie database describing movies, the-
aters and showtimes. Unlike movie descriptions, which rarely
change, theaters and showtimes change daily.

Let V = {v1, . . . , vk} be a MKB. We shall use id(V ) to denote
the identifiers of vi, i.e.

id(V ) = { id(v) | v ∈ V }
and D(V ) to denote their KBs, i.e.

D(V ) = {D(i) | i ∈ id(V )}
We shall use TV denote the set of all distinct triples of V , i.e.

TV = ∪i∈id(V )D(i)

So D(V ) is a family of subsets of TV .
A subsequent (version) relation over a MKB V is any function

of the form next : id(V ) → P(id(V )), where P(·) denotes pow-
erset. For instance, suppose that next(i) = {j, k}. In this case we
will say that i is a direct previous version of j and k, and that j and
k are direct next versions of i. If next(i) = ∅, then we will call
version i leaf version of V . We call a version id i root version of
V , if there does not exist any version id j, such that i ∈ next(j).
A pair (V, next) is a VKB if the graph (id(V ), next) is acyclic.

Table 1 presents some version management services and their
semantics in the form of conditions that should hold before their
call and after their run. In particular, insert adds a new version with
id i and version content S. Additionally, merge differs from insert
service in that the content of the new version (with identifier h) is
the result of the application of a set operator, denoted by ¯, on the
contents of two (or more) existing versions (having identifiers i and
j). In this way we could model operators like those proposed in [8].

3. THE PARTIAL ORDER INDEX (POI)
Consider a versioned knowledge base (V, next). Specifically

consider a V comprising four versions with: D(1) = {a, b}, D(2)
= {a, b, c}, D(3) = {a, c} and D(4) = {a, b, c}, where a, b, c
denote triples. This means that V = {({a, b}, 1), ({a, b, c}, 2),
({a, c}, 3), ({a, b, c}, 4)}. Below we present methods for storing
V (we will not discuss the storage of next as this is trivial and of
minor importance). To aid understanding, Figure 1 sketches the
storage policies that we will investigate in the sequel.

One trivial approach, which is adopted by current SW versioning
tools [16, 11, 9], is to store each individual NKB independently and
entirely. This is the Individual Copies (IC) approach.

Another approach [17, 4, 5] is to store the initial NKB and the
deltas of every other version with respect to its previous version.
This is the Change-Based (CB) approach.



Notation Definition Equivalent Notation
R a binary relation over the set of nodes N →
Rt the transitive closure of the relation R →t

Rr the reflexive and transitive reduction of the relation R →r

Up(n) = {n′ | (n, n′) ∈ R} = {n′ | n → n′}
Down(n) = {n′ | (n′, n) ∈ R} = {n′ | n′ → n}
Upt(n) = {n′ | (n, n′) ∈ Rt} = {n′ | n →t n′}
Downt(n) = {n′ | (n′, n) ∈ Rt} = {n′ | n′ →t n}
content(n) = ∪{ stored(n′) | n′ ∈ Upt(n)}

Table 2: Notations for Storage Graphs
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Figure 2: Best (upper) and worst (bottom) case for POI

Since versions usually contain overlapping sets of triples, we
propose the use of an index in order to reduce the number of triple
copies. For instance, in the example of Figure 1 four copies of
triple a are stored in the IC approach (see the left part of Figure 1).
However, with the use of the index we propose, only two a copies
are stored (see the right part of Figure 1). To describe this index,
we first introduce some preliminary background material and defi-
nitions.

Given two subsets S, S′ of T , we shall say that S is below than
S′, denoted by S ≤ S′, if S ⊇ S′. So, ∅ is the top element of ≤,
and the infinite set T is the bottom element. Clearly, (P(T ),≤) is
a partially ordered set (poset).

We can define the partial order of a versioned KB by restricting
≤, on the elements of D(V ). For brevity, we shall use the symbol
v to denote ≤|D(V ).

In our running example, we have D(V ) = {{a, b}, {a, b, c},
{a, c}, {a, b, c}} and the third diagram of Figure 1 shows the Hasse
diagram of the partially ordered set (D(V ),v). This diagram ac-
tually illustrates the structure of the so-called storage graph that we
introduce below.

A storage graph Υ is any pair 〈Γ, stored〉 where Γ = (N, R)
is a directed acyclic graph and stored is a function from the set of
nodes N to P(T ). If (n1, n2) ∈ R, i.e. it is an edge, we will also
write n1 → n2.

For a node n ∈ N , stored(n) is actually a set of triples, so
it is the storage space associated with node n. Table 2 shows all
notations (relating to storage graphs) that will be used.

For each node n of a storage graph we can define its content,
denoted dy content(n), by exploiting the structure of the graph
and the function stored. Specifically we define:

content(n) = ∪{ stored(n′) | n →t n′} (1)

so it is the union of the sets of triples that are stored in all nodes
from n to the top elements of Γ. We should stress that content(n)
is not stored, instead it is computed whenever it is necessary.

The Partial-Order Index, for short POI, is a storage graph whose
structure is that of (D(V ),vr). Note that vr denotes the reflexive
and transitive reduction of v. Consider a NKB (D(i), i). Each
version id i is associated with a node ni whose storage space is
defined as:

stored(ni) = D(i) \ {D(j) |D(j) v D(i) }
= D(i) \ { stored(nj) | ni →t nj }
= D(i) \ { stored(nj) | nj ∈ Upt(ni) }

It follows easily that if ni →t nj then it holds stored(ni) ∩
stored(nj) = ∅. The fourth diagram of Figure 1 illustrates the
storage graph of this policy for our running example. For each node
ni the elements of stored(ni) are shown at the internal part of that
node. Although we have 4 versions, Γ contains only 3 nodes. As
an example, D(4) = {a, b} ∪ {a, c} = {a, b, c}.

4. ANALYZING STORAGE SPACE REQUIRE-
MENTS

In this Section, we compare IC , CB and POI with respect to
storage space.

To show the best and worst cases for POI we consider two exam-
ples. In the first example, we consider 10 knowledge bases (KBs)
ai, where i ∈ [0, 9] each being a set of triples where each triple is
assigned a unique identifier. Specifically assume that the contents
of the KBs are:
a0 = a5 = {1, 2, 3, 4, 5, 6},
a1 = a6 = {2, 3, 4, 5, 6},
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Figure 4: Storage space requirements (left) and retrieval costs (right) of IC, CB and POI

a2 = a7 = {3, 4, 5, 6},
a3 = a8 = {4, 5, 6}, and
a4 = a9 = {5, 6},
where 1...6 are triple identifiers. We assume that they form a single
evolution track, i.e. ai+1 is the next version of ai for all i ∈ [0, 9].
The upper part of Figure 2 illustrates what is stored in IC, POI
and CB approach. The stored triples are drawn in a colored back-
ground. Especially for CB we draw with different background the
triples that should be added with those that should be deleted (both
are stored).

In the second example, we consider 6 knowledge bases (KBs)
ai, where i ∈ [0, 5], again forming a single evolution track. Specif-
ically assume that the contents of the KBs are:
a0 = {1, 2, 3, 4},
a1 = {2, 3, 4, 5},
a2 = {3, 4, 5, 6},
a3 = {4, 5, 6, 7},
a4 = {5, 6, 7, 8}, and
a5 = {6, 7, 8, 9},
where 1...9 are triple identifiers. The bottom part of Figure 2 illus-
trates what is stored in IC, POI and CB approach.

Let us now describe formally the best and worst case of each
policy. If Z denotes a policy, we shall use spacet(Z) to denote the
number of triples that are stored according to policy Z. It is not
hard to see that

|TV | ≤ spacet(POI) ≤ spacet(IC) =
∑

i∈id(V )

|D(i)|

|TV | ≤ spacet(CB) ≤ 2
∑

i∈id(V )

|D(i)|

Regarding the first formula, strict inequality holds, i.e. spacet(POI)
< spacet(IC) if there is a version whose content is a subset of the
content of another version. The worst case for POI is when all

nodes of the storage graph are leaves (except for the root). This is
the case drawn in the bottom part of Figure 2. That case leads to
space requirements equal to those of IC. On the other hand, the
best case for POI, is when the content of every version is a subset
of the content of every version with greater (or equal) content car-
dinality. In that case every triple is stored only once in the storage
graph. This is the case drawn in the upper part of Figure 2. Re-
garding CB, the worst case is to have a track where the same set of
triples is once stored and once deleted in an alternative fashion. In
that case, CB stores 2× spacet(IC) triples. The best case for CB is
when the contents of the KBs form a chain with respect to ⊆ (also
holding in the best case for POI) and they are consecutive in the
version history (which is not required for the best case of POI). In
that case CB stores every triple only once and thus coincides with
the best case of POI.

Regarding graph size, for IC and CB no index structure has to be
kept as we store explicitly the entire of every version. Concerning
POI, the number of nodes of the storage graph is |D(V )|. Notice
that |D(V )| ≤ |id(V )|, i.e. less than or equal to the number of
versions2. The number of edges coincides with the size of the re-
lation vr . This relation can have at most N2

4
relationships. This

value is obtained when Γ is a bipartite graph, whose N
2

nodes are
connected with all other N

2
nodes. More on the overall comparison

of these policies are described below.

4.1 Experimental Evaluation
In order to measure the storage space required by each policy we

created a testbed comprising from 100 to 1000 versions, each hav-
ing 10,000 triples on average, where the size of each triple is 100
bytes (a typical triple size). As in real case scenarios, a new version
is commonly produced by modifying an existing version, in order

2In the example of Figure 1, |D(V )| = 3 while |id(V )| = 4



to generate the content of a new version, we first choose at random
a parent version and then we either add or delete triples from the
parent contents. The difference in triples with respect to the parent
content is 10%, i.e. 1000 triples. We have an additional parameter d
that defines the probability to choose triple additions (so with prob-
ability 1−d we subtract triples). In this respect, we create versions
whose contents are either supersets or subsets of the contents of ex-
isting versions. We experimented with d in the range of [0.5, 1.0]
(we ignored values smaller than 0.5 as subtractions usually do not
exceed additions). For additions, we assumed that the 25% of the
additional triples are triples which already exist in the KB (in the
content of a different than the parent version), while the rest 75%
are brand new triples. This is motivated by the fact that in a version-
ing system it is more rare to re-add a triple which exists in an old
version and was removed in one of the subsequent versions, than to
add new triples. Clearly, as d approaches 1, more new triples are
created and less are deleted (so the total number of distinct triples
increases). The minimum (resp. maximum) sized version contains
6000 (resp. 13000) triples, while |TV | = 43000. We should also
stress that, if we only create versions by adding triples, then the
resulting storage graph resembles a tree. The higher the probabil-
ity of deleting triples is, the higher the probability of having nodes
with more than one fathers becomes. In the later case, we have in-
creased number of edges. The more edges we have the higher the
probability of having nodes with overlapping stored contents.

We compared the three approaches IC, CB and POI using a PC
with a Pentium IV 3.4GHz processor and 2 GB of main memory,
over Windows XP. For the change-based approach (CB), we com-
pute and store the delta ∆e [17] between two consecutive versions.
Regarding, the storage graph of POI, we assume node size equal
to 20 bytes and edge size equal to 12 bytes. To further reduce the
storage space, we used a table listing all triples each associated
with a unique identifier. The contents of each version (specifically
n.stored) is represented as a set of identifiers (rather than triples).

We first show the characteristics of POI and then we proceed
with its comparison with the rest two policies. The left part of Fig-
ure 3 shows the number of graph edges of POI. As d increases,
the number of edges (and consequently of paths) decreases and
POI gains advantage by its invariant to store every triple only once
in a single path. The right part of Figure 3 shows the number of
triples stored in POI. Notice that as d increases, the number of
stored triples tends to decrease (because duplicates decrease).

To show that POI saves space in cases where there are versions
with equal or inclusion-related content, we used datasets that guar-
antee that each distinct triple set is content of K versions. The
left part of Figure 4 shows the total size of IC, POI, and CB for
d = 0.5 and various values of K (specifically 1 ≤ K ≤ 10)3.
Notice that CB and POI are much better than IC (9 and 18 times
better respectively), and the greater the value of K is, the better
POI than CB is. For K = 1 POI is roughly 2 times better than
CB, while for K = 10, POI is roughly 18 times better than CB.
In terms of compression ratio, i.e. uncompressed/compressed size,
CB achieves from 900% (for K = 1) to 991% (for K = 10), while
POI from 1,800% (for K = 1) to 18,163% (for K = 10).

Regarding version retrieval times, we measured the time to re-
trieve the contents of all versions and report the average. The re-
sults are shown in the right part of Figure 4 for various values of d
and K = 1. Obviously, IC is the best regarding content retrieval,
since no structure should be traversed, as every node is assigned
to its content. In contrast, POI needs to traverse all the ancestors
of the given node. CB slightly outperforms POI, but we have to

3The total number of versions is 100*K.

note that the history paths in our datasets are very small. In a re-
alistic setting CB would be much slower than POI. Once again,
the decrease in number of edges as long as d increases, results in
shorter traversals for POI and as a consequence its difference with
IC tends to decrease. In any case, POI content retrieval time is
acceptable (i.e., max. of 0.013 sec).

5. VERSION INSERTION ALGORITHMS
The insertion algorithms exploit the structure and the semantics

of the storage graph. Intuitively, we have to check whether the new
version is subset or superset of one of the existing versions. To this
end, we start from the root(s) of the storage graph and we descend.
To be more specific, let B be a family of subsets of T , let < be
the cover relation over these and let <r be its transitive reduction.
Suppose that we want to insert a new subset A (i.e. A 6∈ B) and
update accordingly the relation <r . We define:

Parents(A) = min
<
{ B | A < B} = { B | A <r B}

Children(A) = max
<
{ B | B < A} = { B | B <r A}

where min denotes minimal and max denotes maximal.
To update <r we have to add the relationships A <r p for ev-

ery p ∈ Parents(A), and c <r A for every c ∈ Children(A).
In addition we have to eliminate redundant relationships (that may
exist between Parent(A) and Children(A), specifically we have
to eliminate all c <r p relationships where c ∈ Children(A) and
p ∈ Parents(A)). Let now see how we could find the children
and the parents of a set A and update appropriately the relation
<r . Returning to the problem at hand, this scenario corresponds
to the case where each node n of a storage graph had explicitly
stored contents(n). Algorithm InsertInPoset sketches the crux of
the algorithm in pseudocode. It is based on a Stack and two sets
called PARENTS and NOTPARENTS. The root of the storage is
denoted by root(Γ) and every storage graph has a single root cor-
responding to a dummy version with an empty content. Note that
the relation → of the storage graph corresponds to the relation <r ,
i.e. a → b ⇒ content(b) ⊂ content(a). An indicative example
of version addition is illustrated in Figure 5. The stack contents are
shown in every step.

Algorithm InsertInPoset
Input: A: a set of triples.
Output: updated cover relation of the poset so that to contain a

node corresponding to A (if there is no such node already).
1. /* FIND PARENTS */
2. Stack = new STACK();
3. PARENTS = new Set();
4. NOTPARENTS = new Set();
5. while not(isEmpty(Stack))
6. do n = pop(Stack);
7. if n ∈ NOTPARENTS
8. then push(Stack, {x ∈ Down(n) | x /∈ PARENTS)});
9. else if n.contents = A /* a node with contents A

already exists */
10. then break;
11. else if n.contents ⊂ A /* all upper nodes of n are

certainly not parents */
12. then PARENTS = (PARENTS∪{n})\Upt(n);
13. NOTPARENTS = NOTPARENTS∪Upt(n);
14. push(Stack, Down(n));
15. /* FIND CHILDREN */
16. Stack = new STACK(PARENTS); /* a new stack with initial

contents the set PARENTS */
17. CHILDREN = new Set();
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Figure 5: Example of adding a new version using Algorithm Insert POIds

18. while not(isEmpty(Stack))
19. do n = pop(Stack);
20. if (n.contents ⊃ A)
21. then CHILDREN = CHILDREN ∪{n};
22. else push(Stack, Down(n));
23. /* CONNECT A */
24. nA = new node(A);
25. for each c ∈ CHILDREN
26. do Add(c → nA); /* i.e. Add( c <r A) */
27. for each p ∈ PARENTS
28. do Add(nA → p); /* i.e. Add( A <r p) */
29. /* ELIMINATE REDUNDANCIES */
30. for each c ∈ CHILDREN
31. for each p ∈ PARENTS
32. do if c → p
33. then Delete(c → p); /* i.e. if c <r p then

Delete(c <r p) */

To implement version insertion we could use Alg. InsertInPoset.
The only difference is that in a storage graph n.contents (where n
is a node) is not explicitly stored (instead only n.stored is stored).
One naive approach would be to compute n.contents by taking the
union of the stored triples of its (direct and indirect) broader nodes,
i.e. to use the formula (1). Each such computation would require
O(d(n)) set union operations where d(n) is the depth of the node
n multiplied to the average number of parents. If the storage graph
is a tree, then all set union operations would actually be concate-
nations (and thus faster). In case of DAG, we have to perform set
union operations only for nodes that have more than one father.
We will hereafter call this algorithm POI-plain insertion (for short

Insert POIp) algorithm.

5.1 POI-DoubleStack (Insert POIds) Insertion
Algorithm

To reduce the number of set union operations that are issued
by the Insert POIp algorithm for computing content(n) for
a node n, here we present a more time efficient algorithm which
employs a second stack (actually it is a cache) for keeping stored
(and thus reusing) results of operations that have already been com-
puted. The second stack, called CStack (where ′C′ comes from
contents), stores elements comprising of two components: a ver-
sion id and its content (i.e. a set of triples). The extension of Alg.
InsertInPoset with the second stack is Algorithm Insert-POIdsc .

Algorithm TSContent
Input: n: a node id.
Output: the set of triples comprising the content of node n (the

stack CStack is updated, if necessary).
1. if e = lookup(CStack, n)
2. then return e.content; /* returns the contents of element e

*/
3. else
4. Res = stored(n);
5. for each n′ ∈ Up(n)
6. do Res = Res ∪ TSContent(n′); /* this is a con-

catenation if |Up(n) = 1|*/
7. push(CStack, (n, Res)); /* pushes a pair (key, content)

to the stack */
8. return Res;

To compute the contents of a node n it uses the function TSCon-



tent (Algorithm TSContent) which accesses the second stack. If
the storage graph were a tree then we would be sure that all broader
nodes of a node are in the stack (in both Stack and CStack stacks).
However the storage graph is a DAG in the general case, so this is
not always true. That’s why TSContent uses a lookup and if the
sought element is not in CStack it creates and stores it to CStack.
We will hereafter call this algorithm Insert POI-DoubleStack (for
short Insert POIds) insertion algorithm.

To reduce the total space needed by CStack, Alg. Insert-POIdsc

actually uses a different implementation of Alg. TSContent called
TSContentAndClean (Alg. TSContentAndClean) that frees the
contents of those versions that are not needed any more. Specif-
ically, an element of CStack should be removed if one of the fol-
lowing two conditions holds:
(a) its content is not a subset of A, so the traversal of the storage
graph will not continue to its descendants and therefore its contents
are not needed any more,
(b) it is not a (definite) parent of the node to be inserted and all its
children are already in CStack. Specifically, if all its children are
already in CStack the version content is not needed because it is a
subset of the content of every child of it.

To this end we extend the structure of each CStack element
with a third component, denoted by Y , which is actually a variable
initialized to the number of children (of the corresponding node)
that is decreased by one whenever lookup finds and fetches that
element. When it reaches 0, the element (if not a parent) should
be removed because that means that the contents of all its children
are already stored in CStack. We will hereafter call this algorithm
Insert POI-DoubleStack(Clean) (for short Insert POIdsc).

Algorithm Insert-POIdsc

Input: A: a set of triples.
Output: updated storage graph and CStack.
1. /* FIND PARENTS */
2. Stack = new STACK();
3. PARENTS = new Set();
4. NOTPARENTS = new Set();
5. push (Stack, {root(Γ)});
6. while not(isEmpty(Stack))
7. do n = pop(Stack);
8. if n ∈ NOTPARENTS
9. then push(Stack, {x ∈ Down(n) | x /∈ PARENTS)});
10. else
11. if n.contents = A /* a node with contents A

already exists */
12. then break;
13. else
14. if TSContentAndClean(n, PARENTS, n)⊂ A
15. then PARENTS = (PARENTS∪{n})\Upt(n);
16. NOTPARENTS = NOTPARENTS∪Upt(n);
17. delElems(CStack, Upt(n));
18. push(Stack, Down(n));
19. else delElem(CStack, n);
20. /* FIND CHILDREN */
21. Stack = new STACK(PARENTS);
22. CHILDREN = new Set();
23. while not(isEmpty(Stack))
24. do n = pop(Stack);
25. if TSContentAndClean(n, PARENTS, n) ⊃ A
26. then CHILDREN = CHILDREN ∪{n};
27. else push(Stack, Down(n));
28. /* CONNECT A */
29. nA = new node(A);
30. nA.stored = A \∪{TSContentAndClean(n′) | n′ ∈ Parents};

31. for c ∈ CHILDREN
32. do Add(c → nA); /* i.e. Add( c <r A) */
33. for p ∈ PARENTS
34. do Add(nA → p); /* i.e. Add( A <r p) */
35. /* ELIMINATE REDUNDANCIES */
36. ... as in Alg. InsertInPoset
37. /* UPDATE THE STORED CONTENTS OF THE CHILDREN

NODES */
38. for c ∈ CHILDREN
39. do c.stored = c.stored - A;

Algorithm TSContentAndClean
Input: n: a node id
1. PARENTS: the ids of n’s parents
2. initialN : a node id (in the root call of the routine n = ini-

tialN).
Output: the sets of triples comprising the content of node n. The

stack is updated (addition, deletion) if necessary.
3. if e = lookup(CStack, n)
4. then Res = getElemContent(CStack, n);
5. if (e.Y == 1) & (n /∈ PARENTS)
6. then delElem(CStack, n);
7. else editElem(CStack, (n, Res, Y), (n, Res, Y-1));

/* decreases the 3rd component of the stack el-
ement */

8. else
9. Res = stored(n);
10. for each n′ ∈ Up(n)
11. do Res = Res ∪ TSContentAndClean(n′, PAR-

ENTS, initialN); /* concatenation */
12. push(CStack, (n, Res, |Down(n)|)); /* pushes a triple

(key, content, number of children) to the stack */
13. return Res;

Figure 5 shows these stacks in our running example. Specifi-
cally, the left stack is the Stack, the center stack is the CStack
as employed by TSContent algorithm, while the right one is the
CStack as employed by TSContentAndClean algorithm. Af-
ter the PARENTS have been computed, CSTack remains the same
and therefore we show only Stack. Notice how shorter CStack is
according to TSContentAndClean.

5.2 Experimental Evaluation
To compare the Insert POI implementations we employed the

same testbed of 100 versions, of 10,000 triples on average, that
has been presented in Section 4.1. The left (resp. right) part of
Figure 6 illustrates the average version insertion time (resp. main
memory required) in log scale. Of course, the size of the storage
graph is the same irrespectively of the employed insertion algo-
rithm. As one would expect, Insert POIp is the slowest but the
less main memory consuming implementation of POI. On the other
edge of the time-space tradeoff, lies Insert POIds, which is the
fastest but the most main memory consuming implementation. In
particular, Insert POIp is from 181 (for d=0.5) to 3.7 (for d=1)
times slower than Insert POIds, but Insert POIds needs 4
orders of magnitude more main memory. POIdsc is 2-3 times less
main memory consuming than Insert POIds and from 2.3 (for
d = 0.5) to 1.1 (for d = 1) slower than Insert POIds. Figure 7
summarizes the above results.

5.3 History-based Version Insertion Speedup
We have provided a general method for inserting versions and

recall that the storage space requirements of POI are independent
of the evolution history. However the knowledge of the evolution
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history can speed up version insertion, especially in the case we
insert versions that are defined through set operations over existing
versions. For instance, consider the case we want to insert a new
version v3 such that D(v3) = D(v1) ∪ D(v2), where v1, v2 are
existing versions. In that case, the search for parents begins with
the POI nodes n1, n2 that correspond to v1 and v2 respectively,
instead of the root, because D(v1) ⊂ D(v3) and D(v2) ⊂ D(v3).
Nodes n1 and n2 will be the parents of the POI node that corre-
sponds to v3, unless there exists a descendant n4 (corresponding
to an existing version v4) of n1 or n2, such that D(v4) ⊂ D(v3).
Additionally, the case where D(v3) = D(v1)∩D(v2) is in a sense
dual to the previous one, as the children of n3 will be n1, n2 or
some nodes above them.

6. OTHER APPLICATIONS & EXTENSIONS
Below we discuss a number of operations that can be performed

efficiently if a POI is available.
Cross version operations can take advantage from the existence

of a POI. For instance, inclusion checking can clearly benefit from
a POI. To decide whether D(i) ⊆ D(j) one could pose a reacha-
bility query on the storage graph (no need to access the contents of
the versions). Moreover, by adopting a labeling scheme [1] for the
storage graph Γ we could decide inclusion in O(1).

Additionally, let S be a set of triples. Suppose we want to find all
versions i such that S ⊆ D(i) (or D(i) ⊆ S). Such queries would
be very expensive in the IC or in the CB approach. By employing
a POI we can use the insertion algorithm to insert S to the storage
graph. Let n be the inserted node. The sought versions are those
that point in nodes of Downt(n) (resp. Upt(n)).

We should also mention, that, if the storage graph 〈Γ, stored〉
does not fit in main memory, then we could keep only Γ in main
memory, while the function stored could be kept in a relational
storage with schema Stored(vid,tid) where tid is the triple
identifier. To retrieve the contents of a version i, that points to a

node ni, we need to compute Upt(ni) using Γ and then send to the
db a disjunctive query (with all ids in Upt(ni)).

The employment of ORBMSs (Object-Relational DBMSs) is ben-
eficial (with respect to storage space) as they support set-valued at-
tributes. In that case, stored could be stored in a table with schema
Stored(vid,SetOf(tid)). To retrieve the contents of a ver-
sion i, again we have to compute Upt(ni) using Γ and then send
to the DBMS a disjunctive query (with all ids in Upt(ni)) and take
the union of the sets obtained.

7. CONCLUDING REMARKS AND FURTHER
RESEARCH

To the best of our knowledge, this is the first work that focuses on
the storage aspect of SW repositories that support versioning. We
proposed an index called POI, we verified the space gains of this
index experimentally and we provided an efficient version insertion
algorithm with acceptable main memory space requirements. From
our experiments, POI can be 180 times more space economical
compared to IC and 18 times compared to CB for parallel version
tracks (with replication factor equal to 10). Moreover, POI allows
performing efficiently various cross-version operations.

It is worth mentioning that we have experimented also with stor-
age graphs that have a semi-lattice structure, specifically with graphs
that contain a node for each intersection of version contents. Such
graphs guarantee that each triple is stored at most once. However,
the storage gains obtained are compensated by the space required to
keep the excessive number of nodes and edges of the storage graph.
In future, we plan to compare POI with the inverse POI, i.e. with
storage graphs that store explicitly the maximal elements and the
internal nodes are negative deltas. We also plan to experiment with
real data sets (currently we have not managed to find long version
histories of SW data). Last, we could explore possible combina-
tions of POI with change-based storage policies for enabling more
sophisticated policies.
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[12] W. F. Tichy. RCS-Ůa system for version control. Software
Practice & Experience, 15(7):637–654, July 1985.

[13] Y. Tzitzikas, V. Christophides, G. Flouris, D. Kotzinos,
Hannu Markkanen, Dimitris Plexousakis, and N. Spyratos.
“Emergent Knowledge Artifacts for Supporting Trialogical
E-Learning". Intern. Journal of Web-based Learning and
Teaching Technologies (IJWLTT), 2(3):16–38.

[14] Y. Tzitzikas and G. Flouris. “Mind the (Intelligibily) Gap".
In Procs of the 11th European Conf. on Research and
Advanced Technology for Digital Libraries, ECDL’07,
Budapest, Hungary, September 2007. Springer-Verlag.

[15] Y. Tzitzikas and D. Kotzinos. “(Semantic Web) Evolution
through Change Logs: Problems and Solutions". In Procs of
the Artificial Intelligence and Applications, AIA’2007,

Innsbruck, Austria, February 2007.
[16] M. Volkel, W. Winkler, Y. Sure, S. R. Kruk, and M. Synak.

"SemVersion: A Versioning System for RDF and
Ontologies". In Procs. of the 2nd European Semantic Web
Conf., ESWC’05., Heraklion, Crete, May 29 Ű June 1 2005.

[17] D. Zeginis, Y. Tzitzikas, and V. Christophides. “On the
Foundations of Computing Deltas Between RDF Models". In
Procs of the 6th Intern. Semantic Web Conf.,
ISWC/ASWC’07, pages 637–651, Busan, Korea, November
2007.


