Mind the (Intelligibility) Gap

Yannis Tzitzikas'? and Giorgos Flouris?
! Computer Science Department, University of Crete, GREECE
2 Institute of Computer Science, FORTH, GREECE
3 Istituto della Scienza e delle Tecnologie della Informazione, CNR, ITALY
tzitzik@ics.forth.gr, flouris@isti.cnr.it

Abstract. Intelligibility, evolution and emulation are some of the key
notions for digital information preservation. In this paper we define for-
mally these notions on the basis of modules and inter-module depen-
dencies. Subsequently, we discuss how we can handle the evolution of
modules and dependencies. This work can be exploited for building ad-
vanced preservation information systems and registries.

1 Introduction

Modern society and economy is increasingly dependent on a deluge of only dig-
itally available information. The preservation of digital information within an
unstable and rapidly evolving computing environment is a challenging problem
of prominent importance. [8] proposed tackling this problem on the basis of the
notion of dependency. In this paper we adopt the same abstract notion of module
and dependency but in a more expressive framework. We formalize the concept
of intelligibility of digital objects and we extend the model with emulators. As
preservation is an endless process, we also focus on the evolution of dependen-
cies and describe change operations and notification services. This work can be
exploited for building advanced preservation information systems and registries.

2 Dependencies and Dependency Graphs

2.1 Definitions and Notations

An archive’s digital collection consists of a set of objects, containing all the
data objects in the archive, as well as of a set of modules (or components)
needed for understanding/executing/managing such objects. In this paper, we
adopt a very general interpretation of the term module. It can be a software or
hardware module; it could also be a knowledge model expressed either formally
or informally, explicitly or tacitly; it could even be a digital object describing how
another module functions (e.g., a manual). For instance, it could be an English-
To-Greek dictionary that is useful for a Greek-speaking person to understand a
piece of text written in English, or an ontology that is useful for understanding
the contents of a metadata file. Thus, the distinction between digital objects

and modules is often vague, so, we will keep our terminology simple by using
the term module to refer to both modules and objects.

There is no standard method for defining what a module is, as we may have
modules of various levels of abstraction. An element modeled as one module
could in fact correspond to a large number of interconnected finer modules,
depending on the level of detail that we are interested at and/or is useful for the
application at hand. Similarly, a software module replicated in several places can
be viewed as a single module, or as a compound module consisting of a number
of replicas, either of which needs to be intelligible. Finally, complex modules,
e.g., a web page, may consist of images, text etc, and could be viewed as a single
module, or as many, all of which should be intelligible.

Modules (or objects) may require the availability of one or more other mod-
ules in order to function (or be understood). We can model this using a depen-
dency relation, denoted by >, where ¢ > ¢ means that ¢ depends on ¢/, e.g., it
may mean that ¢ cannot function without the existence of . In principle, ¢’ also
depends on some other module an so on, and such dependencies may continue
indefinitely, as probably nothing in this world is self-existent. Nevertheless, de-
pending on the application, we may consider some modules to be understandable
by all users of a digital archive; such modules will be called primitive.

Modules, in general, do not depend on one module but many. Consider for
example a file README. TXT written in English; the intelligibility of the file de-
pends on the availability of a suitable text editor (e.g., Notepad), plus a good
understanding of the English language by the reader. This can be modeled us-
ing two dependencies of the form trpapME > tNOTEPAD, tREADME > tENG-
This pair of dependencies has conjunctive semantics, in the sense that trpapym e
requires both tyorgpap and tgng in order to be understood.

In other cases, dependencies could have disjunctive semantics; for example,
the above file can be read using, e.g., Wordpad, even if Notepad is not avail-
able. To capture this kind of semantics, we will generalize our notations, by
defining the concept of the generalized module, which is just a set of modules
(e.g., {t1,t2}). A generalized module is interpreted disjunctively, in the sense
that {¢;,t2} means “either t1, or t2”. Standard modules can be captured using
singleton sets, e.g., {t}.

Generalizing our notations, we will henceforth use > to denote the depen-
dency relation between generalized modules. This way, the dependency {trraprmE}
> {tNOTEPAD ,<IWORDPAD } means that the intelligibility of the module trgrapymE
depends on the availability of at least one of tyorppaD, tWoORDPAD-

Thus, there are two basic dependency types. The first is conjunctive depen-
dencies, which are useful when there are some modules (e.g., t1,t2,...) which
are all necessary for the intelligibility of a module ¢; this type is modeled us-
ing a number of different dependencies, i.e., {t} > {t1}, {t} > {t2}, The
second is disjunctive ones, used when ¢ requires the existence of at least one of
t1,ta, ... for its intelligibility; this type is captured using generalized modules,
e, {t} > {t1,t2,...}.

The above basic types allow us to model many different types of depen-
dencies, including quite complex ones. For example, if we want to model that
“the readability of tgrrapyme depends on the existence of tpng, and either
tNoTEPAD OF tworDPAD , We can capture it using the pair of dependencies
{treapmre} > {tenc} and {trpapme} > {{NvorEPAD. twoORDPAD}. A more
difficult case is if we want to model that “the readability of trgapy e depends
on either knowledge of English (tgn¢a), or knowledge of Greek (tgr) and an
English-to-Greek dictionary (tgncecr)”; this would require the extra step of
transforming this description into the equivalent one: “trpapym e depends on
either tpna or tgr and either tpng or tpngagr”, which can be captured using
the pair: {treapme} > {tenc,ter} and {trpapmEe} > {tenc, tENG2GR}

We now have all the necessary ingredients for the formal definition of our
model. We denote by 7 the set of all modules (which include digital objects as
well); a generalized module, also called a node, is any set S of modules (S C T),
interpreted disjunctively. Thus, the set of all generalized modules is just the
powerset of 7, denoted by 27. A dependency relation is a binary relation >C
27 x 27 the notation S; > S, implies that at least one module of S; depends
on at least one module of S5. These notions can be more intuitively represented
in a graph I' = (2T, >), which we will call the dependency graph. Sometimes, it
will be useful to refer to families of nodes, which are conjunctively interpreted
sets of generalized modules, denoted by S; notice that S C 27, i.e., each element
of S is a generalized module S (i.e., a set of modules, interpreted disjunctively).

As explained before, certain notions, like module, primitive module, depen-
dency etc are just application-dependent conventions. In the following, we as-
sume that a dependency graph contains (models) all the modules and their
dependency-related information that is important for the application at hand.
Moreover, we make no assumptions as to the properties of > (e.g., acyclic, tran-
sitive etc), as such assumptions may be invalid for certain applications.

2.2 Types of Dependencies

Consider a relationship S; > S5. We can distinguish the following general cases,
depending on the size of Si:

= [S1] =1, [S2| > 1 (e.g., S1 = {t1},S2 = {ta1,t22,...,tam}). Here, Sy > 5o
means that ¢£; depends on one of to1,t29, ..., tom,. Such dependencies will be
called basic.

= [S1] > 1, [S2| > 1 (e.g., S1 = {ti1,t12,...,tin}, S2 = {ta1,t22,. .., tam}).
Here, S7; > S5 means that one of t11,%12,...,t1, depends on one of to71, tos,
.., tam,. Such dependencies will be called complex.

The above distinction is motivated by our belief that complex dependencies
are artificial and probably not useful in practice. For example, the (complex)
dependency {ti,ta} > {t3,t4} implies that either ¢; or ¢ depend on either 3
or t4. Most often, this will be just because, for example, ¢; (alone) depends on

! This idea is based on the algorithm transforming logical formulas in CNF.

t3, and to (alone) depends on t4. It is hard to find an example where a complex
dependency is not just a consequence of a number of basic ones. Another type
of dependencies is trivial dependencies. A dependency S; > Sy is called trivial
iff S C S,. Trivial dependencies can be either basic or complex and they are al-
ways true. For example, {t1,t2} always depends on {¢1, ta,t3} because, if neither
of t1, o, t3 is understandable, then, obviously, none of t1, t5 is understandable ei-
ther. Trivial dependencies could be considered as the counterpart of tautologies
in a logical theory. Finally, dependencies where either S; = () or Sy =) are not
intuitively useful, as they have no real-world counterpart.

The above observations imply that the only interesting dependencies are
those that are both basic and non-trivial; such dependencies will be called ed-
itable. In the rest of this paper, the symbol > will always refer to editable rela-
tions, and a dependency graph will be assumed to contain only editable arcs.

3 Intelligibility

3.1 Profiles

Now, let us consider a preservation system, say s, which supports a finite number
of users, say u1,...,u,, by archiving the digital objects that may be of interest
to them, as well as the modules that are useful for their intelligibility. The
related information (dependencies), that is useful for the system to determine
the useful modules is modeled in a dependency graph I" = (27, >). This graph I’
is assumed to capture the (known and interesting) state of affairs regarding the
dependencies between the various models and objects available in the “world”,
and may contain information on modules that are not available to the system
and/or any of its users.

The system s, as well as any of the users uq,...,u,, are assumed to have
access to some of the modules in 7; the sets of modules that they have access
to are called (system or user) profiles and denoted by Ts and Ty, respectively.
Notice that only atomic modules are included in a profile, as it makes no intuitive
sense to say that someone has access to either module ¢; or module t,.

3.2 Modules’ Intelligibility, Self-Intelligibility, Intelligibility Gaps

It is often useful to be able to determine whether a user u, with a profile Ty, can
understand a module t € 7. Using our definitions, in order for ¢ to be understood,
the modules that it depends upon should be available. To capture this notion,
we define the family of nodes that are directly required for intelligibility, denoted
by req(t), as follows: req(t) = {S C 7T | {t} > S}. Given the disjunctive nature
of nodes, in order for ¢ to be understood by u, he must have access to at least
one module from each node S € req(t); that is: SNT, # 0 for all S € req(t).
But this is not enough, because the modules required for understanding ¢,
should themselves be intelligible (not just accessible) by w. Normally, we can
assume that this is true; if a user can access some module ¢/, he has probably

taken actions already so as to make ¢’ intelligible, by importing all the necessary
modules, thus making his profile self-intelligible: T, is self-intelligible, iff for all
t € T, and for all S € req(t) it holds that SN T, # 0.

Using the notion of self-intelligibility, our original question on the intelligibil-
ity of a module ¢ can be answered as follows: if the user’s profile is self-intelligible,
all we need to check is whether SN T, # 0 for all S € req(t). It can be easily
shown that this will be true iff the set T, U {¢} is self-intelligible. In the general
case, we can say that a module ¢ is intelligible by a user w iff there is some profile
T.' C T, such that T," U {t} is self-intelligible.

A module ¢ not being understandable by u, means that there are certain
“missing” modules, which, if added to T,,, will make ¢ intelligible; such modules
are denoted by Missing(t,u) and form an intelligibility gap. Similarly, we can
define Missing(t, s) for the system.

3.3 Algorithmic Aspects

Let’s now see how the above quantities can be determined algorithmically. Firstly,
the algorithm for determining self-intelligibility is trivial and follows from the
definition. Moreover, if T, is self-intelligible, then, determining whether ¢ is in-
telligible by u is equivalent to determining whether T, U {t} is self-intelligible.

Unfortunately, this technique cannot be applied for a non-self-intelligible pro-
file T.,, because we would have to check the self-intelligibility of T,/ U {t} for all
T, C T,: this is not an efficient calculation. To address this problem we reduce
it to the problem of query answering in monadic and negation-free Datalog. For
reasons of space below we just sketch this reduction. If S is a node, we denote
by SV the disjunction of all modules in S, i.e., SY = Viegt. If t € T, then for
each S such that ¢t > S we can define SV and then take the conjunction of these
disjunctions, i.e., for each t we define the logical formula ECNF () = Ay~ g5V,
Let EPNF(t) be the equivalent logical formula in DNF. For each conjunction,
say t1 Aty in EPNE(t) we derive the Datalog rule ¢(X) : —t1(X), t2(X). Let R(t)
denote the resulting set of rules and R(I") the union of the rules for each module
in I'. Now for each t € T, that is primitive, we derive the fact t(Const) where
Const is a constant, and let R(T,,) denote these facts. We use the same constant
Const for each t € T,,. It can be easily proved that if the answer of the query
q =t in the knowledge base R(I") U R(T,) is not empty, specifically if it equals
{Const}, then t is intelligible by u. Otherwise, it is not intelligible, so it belongs
to the gap. Figure 1, illustrates the reduction with an example. Notice that the
profile T,, = {t1,t2,t4} is not self-intelligible because t; is not intelligible since
t1 > {t5,t6} and {t5,t6} N T, = (. In this example ¢ is not intelligible by u,
however tg is intelligible by u. Indeed the answer of the query ¢ = t is empty,
while the answer of the query g = tg is not empty?2.

As I' is expected to change less frequently than the profiles, we can keep the
rules R(I") stored (to avoid recomputing them); on the other hand, recomputing
R(T,) is faster, so frequent changes in the profiles should not cause major delays.

2 Notice that if T, were self-intelligible, then ¢ would be intelligible simply because for
each S € req(t), we have SNT, # (.

t(X):-t1(X),12(X).
t t8 t1 t(X):-t1(X),t3(X).

18(X):-t4(X),2(X).
/\/\/\ 18(X):-t4(X),13(X). R
t1 {t2t3} t4 {156} | |LOO-tAX), 5(X).

tL(X):-t4(X), t6(X).

12(C).
Tu={t1, t2, t4} 14(C). R(Tu)

Fig. 1. Deciding intelligibility using Datalog

Computing Missing(t,u) is more difficult, as, due to the disjunctive nature of
dependencies, there may more than one possible solution. Thus, different criteria
of minimality (e.g., cardinality) could be adopted to select a single solution. This
problem is quite relevant with abduction [2] and is a subject for future research.

4 Emulators

When a module, say ¢, requires (depends on) a particular module, say 1, which is
not available, we may consider using some kind of emulator, say to, which would
make ¢ dependent on another, available module, say t3. In this case, we say that ¢,
(the emulated module) was emulated by to (the emulator) and t3 (the emulation
target); the emulator and the emulation target will be collectively referred to as
the emulation scheme and the whole process will be called emulation. Emulation
is a common practice for achieving interoperability in information systems and
can take several different forms (conversion, transformation, translation etc).

In our README. TXT example (Section 2), the module tgrgapar g, which nor-
mally requires knowledge of the English language (tgn¢), can alternatively be
read using tgr (knowledge of the Greek language), provided that we use some
translator tool, or a dictionary tpygagr, that would translate it in Greek. In
this example, tgng is the emulated module, tgnGgoar is the emulator and tqr
is the emulation target.

As described in Section 2, the net effect of this emulation process is that
dependencies involving tgpapyme are captured by the pair: {trpapme} >
{tENGatGR} and {tREADME} > {tENc;,tENGQGR}. Notice that the emulation
process causes trpapym e to be no longer dependent on the emulated module
(tencg) alone; also trpapme does not depend on the emulation scheme (i.e.,
the emulator tpygagr or the emulation target tgr) alone.

In the general case, emulation can take more complex forms: a module ¢ may
depend on a number of nodes, some of which may be replaceable by an emulation
scheme, which may also consist of a number of nodes. Thus, in its most general
form, the “emulated module” and the “emulation scheme” can be families of
nodes, say S1,Ss respectively, but the general idea is the same.

Formally, So = {S21,...,S52m,} will be called an emulation scheme for S; =
{S11,...,51n} with respect to ¢ iff:

— For all i = 1,...,n, it is not the case that {t} > Sy;.
— Foralli=1,...,m, it is not the case that {t} > Sa;.

—Foralli=1,...,n,j=1,...,m, it holds that {t} > S; U Sa;.

In the README.TXT example, we have: t = trpapymE, S1 = {{tENG}},
So = {{tenc2cr}, {tar}}. Emulation schemes are quite useful in preservation
because every user or system that has access to either S; or So will be able to
understand the content of ¢; thus, whenever some member of the family S; is
close to becoming obsolete, it makes sense to consider using (or developing) an
emulation scheme for it (with respect to all the interesting modules in our sys-
tem), so as to retain their intelligibility when S; becomes obsolete. Notice that
this idea can also be used to model migration, where the role of the emulator in
that context is played by the software (module) that applies the migration.

5 Handling Changes

Modules and dependencies may change over time and such changes should be
supported. For this reason we describe a number of operations to handle change;
such operations can be exploited for defining a protocol between a preservation
information system and its users (information providers and consumers).

Following the general trend in fields dealing with changes, we define two gen-
eral classes of operations: atomic and complez [6]. Atomic operations are simple,
fine-grained operations, whereas complex are more coarse-grained operations,
being decomposable into a set of atomic ones. Complex operations usually rep-
resent some intuitive and frequently performed type of change, while atomic ones
represent some trivial change. Atomic operations are used as “building blocks”,
in terms of which more complex operators are built, thus facilitating the defi-
nition of the semantics of a complex change. Moreover, atomic operations allow
the engineer to override the default behavior of some complex change when-
ever necessary. Notice that, in principle, any sequence of atomic operations can
be considered a complex one, so there is no limit on the number of complex
operations that can be defined.

A change operation may cause all sorts of problems upon the related struc-
tures. To avoid this, two conditions must be verified following a change:

1. All related structures should be valid. Valid means that all dependencies (>)
in I" are editable and refer to nodes from 27 ; moreover, all profiles should
contain known modules only, i.e., modules in 7 (so: Ts, €7, T, C 7).

2. The system’s and users’ profiles should be self-intelligible.

There are several options regarding the correct reaction if one of the above
conditions fail; our policy is the following: if the first condition fails (invalid-
ity), the change should be either blocked, notifying the engineer of the issue, or
some side-effects should be spawned to render the validity condition true (the
exact reaction depends on the type of invalidity); if the second condition fails
(self-intelligibility), a notification should be issued to the engineer and/or the
respective profile owner in order to correct the situation. Non-self-intelligibility
is not handled automatically because (a) it is not a very severe problem and
(b) there is no single way to restore it, so whatever automatic method we may
devise is potentially problematic for certain applications.

5.1 Atomic Changes

Atomic changes should handle changes in modules and dependencies. For mod-
ules, we should consider addition and deletion in each of 7,Ts,T,; only the
addition and deletion of atomic modules is considered, as it makes no sense to
add (or delete) a generalized module (e.g., {t1,t2}). Regarding dependencies,
for reasons explained in Section 2, only editable dependencies will be amenable
to change, so we consider the addition and deletion of editable dependencies
from the graph I'. This gives a total of 8 atomic operations to consider. All
other operations, including replacement, will be handled by complex operations
(see subsection 5.2). Table 1 shows the change operations (atomic and complex)
considered in this paper and where each one is applied.

Table 1. Change Operations

Operation Applicable on
T|T.|Tu

Add_Mod(t)
Del_Mod(t)
Add_Dep(t, S)
Del_Dep(t, S)
Replace_Mod(t1,t2) o |o
UpgradeBackComp_-Mod(t1,t2)
AddEmulScheme(t,S1,S2)

Adding modules to the model (Add_Modr(t)). This operation is applica-
ble when a new module is created, or when we learn the existence of a module
that was previously unknown; in such cases, a new module (¢) is added in 7.
This operation cannot cause invalidity or self-intelligibility problems (so it has
no side-effects). It is rarely executed alone; usually, the new module will be asso-
ciated with a number of dependency arcs with other (generalized) modules, but
this kind of information should be added separately, using other operations.
Adding modules to a profile (Add_Mods(t) and Add_-Mod,(t)). These
operations are used in order to add a new module (¢) in Ty or T;,. They may cause
invalidity if ¢ is not already part of the model (¢ ¢ 7). Should this be the case, the
operation is blocked and the engineer is notified in order to take proper action.
The alternative option to deal with this problem would be to automatically add
t to 7; this may in fact seem more attractive. However, we chose otherwise
because the addition of a new module in 7 should be authorized by the engineer
and anyway accompanied with a number of dependency additions describing
the dependencies associated with ¢ (otherwise we end up with an incomplete
model). By notifying the engineer on the issue, we invite him to authorize the
addition by introducing the module and the relevant dependencies himself before
allowing the addition of the new module to the profile. These operations may
also cause non-self-intelligibility, in which case the operation should be executed
normally, but a notification should be issued to the engineer and/or respective
profile owner to correct the situation somehow.

Deleting modules from the model (Del_Mod~(t)). This operation is ap-
plicable when we spot a modeling error, i.e., when a non-existing module is
modeled in I'; it is not applicable to obsolete modules, as such modules should
not be removed from I, but from the respective profiles.

This operation may cause invalidity, because there may be dependency arcs
involving the deleted module, or involving a generalized module that includes it;
moreover, the module may belong to some profile. Thus, the following actions
(side-effects) should be taken along with the module deletion, in this order:

1. For each editable dependency of the form {t'} > S, where t € S, S # {t}
and t' # t, add a new dependency {t'} > S — {t} (see operation Add_Dep
below). Formally, the executed operation is Add_Dep(t', S — {t}).

2. Delete all editable dependencies of the form {¢'} > S where t € SU{t'} (see
operation Del_Dep below). Formally, the executed operation is Del_Dep(t’, S).

3. Delete module ¢ from the system’s and users’ profiles (see operations Del_M od
and Del_Mod,, respectively below). Formally, the operations executed are
Del_Mods(t) and Del_Mod,,(t) for all users u, respectively.

4. Upon execution of side-effects (steps 1-3), module ¢ can be deleted from 7.

Notice that the removal of ¢ from the profiles (step 3) should be accompanied
with a notification to the respective profile owner that module ¢ was non-existent
and is removed from the model. Normally, this should not be an issue, as no
user could have claimed to have access to a non-existent module, unless he did
so by mistake. Also, note that the fact that other operations (side-effects) are
executed along with Del_Mody(t) does not classify Del_Modr(t) as a complex
operation, as there is no other atomic operation that can handle step 4 above. An
operation having side-effects is different from an operation being decomposable
into an equivalent sequence of other operations.

Deleting modules from a profile (Del_Mods(t) and Del_Mody(t)). These
operations are used in order to delete a non-existent or obsolete module ()
from a profile (7T or T,,); they may cause non-self-intelligibility, in which case a
notification should be issued after the execution of the operation, as usual.
Adding dependencies to the model (Add_Dep(t,S)). This operation is
used to add a new editable dependency ({¢} > S) to the model. This operation
is useful when a new dependency is created (e.g., as part of the addition of a
new module), or when we learn about a previously unknown dependency.

Before executing this operation, it should be verified that the dependency to
be added ({t} > S) is editable and that {t} US C 7T, i.e., only already known
modules are used. Should this be the case, the addition of the dependency can
proceed normally, and no invalidities can occur; in a different case, we should
reject the operation, as it would cause an invalidity. Moreover, the addition of
the new dependency could render the system’s and/or some users’ profiles non-
self-intelligible; as usual, this problem is handled by issuing a notification.
Deleting dependencies from the model (Del Dep(t,S)). This operation
is applicable when we realize that an existing editable dependency is not really
true; it is also useful (as a side-effect) when a module is deleted from 7. As

usual, only editable dependencies can be deleted. This operation cannot cause
invalidity or self-intelligibility problems (so it has no side-effects).

5.2 Complex Changes

In this subsection we define a number of complex operations that we consider
useful; as already mentioned, such a list cannot possibly be complete. All opera-
tions will be defined in terms of the atomic operations of the previous subsection;
notice that the order of execution may be important. The various atomic oper-
ations should be performed in a transactional manner, i.e., if one operation in
the list fails, the whole complex operation fails and should be rolled back.
Replacing a module in a profile (Replace_Mod(t1,t2) and
Replace_Mod,(t1,t2)). These two operations are used in order to replace a
module ¢; with ¢5 in T or T, and are especially useful when a particular module
is becoming obsolete and is being replaced (e.g., by a newer version). A replace-
ment consists of a deletion of ¢1, followed by the addition of ¢5 in the profile;
the model 7 is not affected. Any more sophisticated functionality should be
captured using other operations. If ¢y is in the respective profile, or if ¢; is not,
then the operation is rejected; otherwise the following actions should be taken
to implement these operations:

1. Perform the operation Add_Mods(t2) (or Add_-Mod,(t2)).
2. Perform the operation Del_Mods(t1) (or Del_-Modg(t1)).

Upgrading a module with a backwards compatible version in the
model (UpgradeBackComp_Mod(t1,t2)). Often, modules (e.g., software
applications) are being upgraded; such upgrades (new versions) are handled as
new modules in our model. However, in many cases, the newer and the older
version of the module share some properties, such as dependency relations. To
save the engineer from the burden of defining such dependency relations when-
ever a new, backwards compatible version of a module is inserted, we offer the
operation UpgradeBackComp_Mod(t1,ts).

This operation adds a new module (¢2) in 7 and automatically creates a num-
ber of dependencies involving t5, based on the information on the dependencies
involving ¢;. In particular, any module depending on ¢; should now depend on #;
or ta; in addition, ¢ should depend on all (generalized) modules that ¢; depends
on. This behavior is justified by the fact that a backwards compatible version
normally depends on the same generalized modules as the older version, and
can be used as an alternative (to t1) way of understanding a module; any pos-
sible deviation from this default behavior should be captured using additional
operations that would restore the desired behavior, overriding the default one.

This operation presupposes that ¢ is already in 7 (¢; € 7), while ¢3 is not
(ta ¢ T); if either condition is false, the operation is rejected. Following this
operation, the old and the new version (t1,t2) will coexist in the graph. The
following actions should be taken to implement it:

1. Perform the operation Add_M ody(t2).

2. For each editable dependency {t1} > S do: Add_Dep(tz, S).

3. For each editable dependency {t} > S, for which ¢; € S, do: Add_Dep(t, SU
{t2}).

4. For each editable dependency {t} > S, for which ¢t; € S and t5 ¢ S, do:
Del_Dep(t, 5).

Following the successful execution of this operation, the users (and the system)
should be notified on the existence of a new, backwards compatible version of
t1; this might motivate many users (or the system) to upgrade.
Adding an emulation scheme to the model (AddEmulScheme(t, Sy, S2)).
This operation is used to denote that Ss is an emulation scheme for S; with re-
spect to t. The structures Sq, Sy are, as usual, families of nodes. This operation
automatically determines the relevant dependency changes and executes them,
saving us from the burden of updating all the dependencies manually.

Let S; = {S11,...,51n},S2 = {S21,...,S2m }; it is assumed, as usual, that
all related modules (i.e., t and those in Sy, Ss) are already in the graph (i.e.,
that {t}US11U...US1,US21U...USs, C 7) and that ¢t depends on the modules
of Sy, i.e., {t} > Sy; is in the graph for all ¢ = 1, ..., n. If any of these conditions
is not true, the operation is rejected. After the execution of the operation, So
should be an emulation scheme for S; with respect to ¢. The following actions
should be taken to implement this operation:

1. Foralli=1,...,n,j=1,...,m do: Add_Dep(t, S1; U Sa;).
2. For all i = 1,...,n do: Del_Dep(t, S1;).
3. Foralli=1,...,m do: Del_Dep(t, Sa;).

Other operations. Apart from the above complex operations, one could con-
sider a number of other operations, such as operations on renaming modules,
replacing dependency relations, or cleaning up the system (referring to the re-
moval of modules that are no longer necessary for the intelligibility of any module
in the system’s profile). Such operations can be defined in a similar way and are
omitted due to lack of space.

6 Concluding Remarks

Recently, there has been a number of theoretical attempts (like [1], [3]), standards
(like OAIS®) and ongoing international projects (like CASPAR* and PLAN-
ETS®) dealing with digital preservation, indicating a growing interest on the
problem and resulting to the study of several of its aspects, such as the defini-
tion of metadata and services for preservation, cost-related strategies for data
preservation planning etc.

In this paper, we formalized the notions of profile, intelligibility, emulation
and evolution based on the notion of dependency and described the services

3 OAIS reference model (ISO:14721:2003)
* http://www.casparpreserves.eu/
® http://www.planets-project.eu/

that should be supported by a modern information preservation system. De-
pendency management has been a subject of research in several (old and newly
emerged) areas, from software engineering [4], [9], [10], [11] to ontology engineer-
ing [5], [7]; to the best of our knowledge, this is the first paper that uses these
notions for digital preservation, so it is quite different from other theoretical
attempts on the problem ([1], [3]). Issues for further research include measuring
computational complexity and extending the model with complex dependencies,
composite modules and dependencies of different granularity.

Acknowledgements

This work was partially supported by the EU project CASPAR (FP6-2005-1ST-033572)
which aims at building a pioneering framework to support the end-to-end preservation
lifecycle for scientific, artistic and cultural information.

References

1. J. Cheney, C. Lagoze, and P. Botticelli. “Towards a Theory of Information Preser-
vation”. In Procs of the 5th FEuropean Conf. on Research and Advanced Technology
for Digital Libraries, ECDL ’01:, pages 340-351, London, UK, 2001.

2. T. Eiter and G. Gottlob. The complexity of logic-based abduction. Journal of the
ACM, 42(1):3-42, January 1995.

3. G. Flouris and C. Meghini. Steps towards a theory of information preservation. In
Proceedings of the International Workshop on Database Preservation, 2007.

4. X. Franch and N.A.M. Maiden. Modeling Component Dependencies to Inform
their Selection. In 2nd Intern. Conf. on COTS-Based Software Systems, 2003.

5. M. Jarrar and R. Meersman. Formal Ontology Engineering in the DOGMA Ap-
proach. Intern. Conf. on Ontologies, Databases and Applications of Semantics
(ODBase), pages 1238-1254, 2002.

6. H. Stuckenshmidt and M. Klein. Integrity and change in modular ontologies. In
Proceedings of the 18" International Joint Conference on Artificial Intelligence
(IJCAI-03), 2003.

7. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. An Environment for
Distributed Ontology Development Based on Dependency Management. Proc. of
the 2nd Intern. Semantic Web Conference (ISWC2003), pages 453-468, 2003.

8. Y. Tzitzikas. “Dependency Management for the Preservation of Digital Informa-
tion”. In Procs of the 18th Intern. Conf. on Database and Ezpert Systems Appli-
cations, DEXA’2007, Regensburg, Germany, September 2007. Springer-Verlag.

9. M. Vieira, M. Dias, and D.J. Richardson. Describing Dependencies in Component
Access Points. Procs of the 23rd Intern. Conf. on Software Engineering, ICSE’01,
Toronto, Canada, pages 115-118, 2001.

10. M. Vieira and D. Richardson. Analyzing dependencies in large component-based
systems. ASE, 00:241, 2002.

11. M. Walter, C. Trinitis, and W. Karl. OpenSESAME: an intuitive dependability
modeling environmentsupporting inter-component dependencies. Procs of 2001 Pa-
cific Rim International Symposium on Dependable Computing, pages 76-83, 2001.

