Dependency Management for the Preservation
of Digital Information

Yannis Tzitzikas

Computer Science Department, University of Crete, GREECE, and
Institute of Computer Science, FORTH-ICS, GREECE
tzitzik@ics.forth.gr

Abstract. The notion of dependency is ubiquitous. This paper ap-
proaches this notion from the perspective of digital information preser-
vation. At first, an abstract notion of module and dependency is intro-
duced. Subsequently, and for building preservation information systems,
the notion of profile is proposed as a gnomon for deciding representation
information adequacy (during input) and intelligibility (during output).
Subsequently some general dependency management services for identi-
fying and filling gaps during input and output are described and analyzed
(also described as protocols that could be used in the communication be-
tween a preservation information system and information consumers and
providers).

1 Introduction

The preservation of digital information is an important requirement of the mod-
ern society. Digital information has to be preserved not only against hardware
and software technology changes, but also against changes in the knowledge
of the community. According to the OAIS reference model [2], metadata are
distinguished to various broad categories. One very important (for preservation
purposes) category of metadata is named Representation Information (RI) which
aims at enabling the conversion of a collection of bits to something useful. In
brief, the RI of a digital object should comprise information about the Struc-
ture, the Semantics and the needed Algorithms for interpreting and managing a
digital object. Figure 1 shows one corresponding part of the information model
of OAIS.

In order to abstract from the various domain-specific and time-varying de-
tails, in this paper we model the RI requirements as dependencies. This view
is very general and can capture a plethora of cases. Subsequently, we identify a
set of core services for managing dependencies. These services aim at identifying
the knowledge gaps (missing RI), and at computing and proposing ways to fill
these gaps. These services can be used during both importing and exporting
information (to and from a preservation information system). As different users
(consumers or providers), or communities of users, have different characteris-
tics (in terms of RI), we introduce the notion of DC (Designated Community)
profile. Subsequently, we describe protocols (interaction schemes) that could be

class OAIS Information Model/
Information Object Data Object
0 & >
interpretedUsing
Representation Physical Object Digital Object Bit Sequence
Information > ~
1.7 1.7
Structure Semantic Software Algorithms
Information Information Information Informatoin

Fig. 1. The information model of OAIS

used in the communication between a preservation information system and in-
formation consumers and providers. This work can be exploited for building
advanced preservation information systems and registries. Motivation for this
work is the ongoing EU project CASPAR, (FP6-2005-1ST-033572) whose objec-
tive is to build a pioneering framework to support the end-to-end preservation
lifecycle for scientific, artistic and cultural information.

The paper is organized as follows. Section 2 formalizes the notion of de-
pendency and knowledge gap, while Section 3 describes interaction schemes for
identifying and filling these gaps. Finally, Section 4 concludes the paper and
identifies issues for further research.

2 Formalizing Dependencies

Let Obj = {o1,...0,} be set of all objects of the domain, e.g. the set of all
data objects of an archive. Let 7 be the set of all modules (or components)
that are needed for understanding/executing/managing the objects in Obj. We
adopt a very general interpretation of the term module. It can be a software or
hardware module. In addition, it could be a knowledge model expressed either
formally or informally, explicitly or tacitly. For instance, it could be an English-
To-Greek dictionary that is useful for a Greek-speaking person to understand a
piece of text written in English. It could also be a ontology A (which could be
expressed in RDF/S) that is useful for understanding the contents of a metadata
file (expressed in RDF), or for understanding another ontology B (e.g. if B uses
or specializes elements defined in A).

There is dependency relation between modules in the sense that a module
may require the availability of one or more other modules in order to function.
We can model this as a graph I" = (7, <). A relationship ¢ < ¢’ means that '

depends on ¢, e.g. it may mean that ¢’ cannot function without the existence of
t. Below we describe some small examples (based on the needs of the CASPAR
project). Figure 2(a) shows the dependencies of a text file written in English.
However, a Greek-speaking consumer may define a dependency graph like the
one illustrated in Figure 2(b).

README.txt README.txt

ENGLISH ENGLISH2GREEK|
TEXT EDITOR LANGUAGE TEXT EDITOR DICTIONARY

GREEK
WINDOWS XP WINDOWS XP LANGUAGE

() (b)
Fig. 2. Dependencies for a text file

FITS! is a standard data format that is used in astronomy. To understand
such a file one needs to understand the FITS standard which is in turn de-
scribed in a PDF document. To understand the keywords contained in a FITS
file one needs to be able to understand the FITS dictionary (that explains the
usage of keywords). Figure 3(a) illustrates these dependencies, while Figure 3(b)
shows the dependencies of a digital object representing an interactive multime-
dia performance. Finally, an example of dependencies between formal knowledge
expressed in the form of RDF Schemas is shown in Figure 4 (where fat arrows
are used to denote dependencies between namespaces).

FITSFLE MULTIMEDIA
PERFORMANCE DATA

C3D ‘ DirectX ‘ ‘MAX/MSP

3D scene

XML
ISPECIFICATION|
PS?\I\T JAVA VM

UNICODE 3D motion A motion to music
data files data files mapping strategy
(a) (b)

Fig. 3. Dependencies of scientific and multimedia performance data

A general remark is that there is no standard method for defining what a mod-
ule is. For instance, we may have modules of various levels of abstraction. One
module in one dependency graph could correspond to a large number of inter-
connected and interdependent finer modules in another dependency graph. For
instance, the WINDOWS XP module in Figure 2 is actually the aggregation of sev-
eral interconnected modules?. Hereafter we shall make the working assumption

! http://fits.gsfc.nasa.gov/

2 Hierarchical clustered graphs could be probably used for modeling and formalizing
the dependencies among modules of different granularity, but this goes beyond the
scope of this paper.

rdf-rdfs

Resource ’

—> isA i
—> property defined in the schema O Class defined in the schema
--> property defined in other schemas i} Class defined in other schemas

+=-$> instanceOf

Fig. 4. Dependencies between RDF Schemas

that the dependency graph is acyclic, i.e. it is a DAG. Equivalent modules (e.g.
all editors that can read and edit ASCII texts) can be captured by assuming
that each element of 7 is not atomic but it is a set of equivalent modules (this
is like having disjunctive dependencies).

The intelligibility of a digital object, i.e. of an element in Obj, may require
the existence of one or more modules in 7. We can model this by a binary
relation R (R C Obj x T). To keep notations simple we abuse notation and we
will also use < to denote R. So we can view all dependencies (among modules
and between object and modules) as one graph I' = (T'U Obj, <). For example,
if the management of an object o requires two modules t1, t5 where t5 requires a
module t3 we can write t; < o, t3 < 0, t3 < t5. Table 1 introduces some notations
that will be used in the sequel.

Table 1. Notations

’Notation‘Deﬁnition

T the set of all modules and objects

t an element of 7'

S a subset of 7

t <t |t depends ont (in other words, t' requires t)
<* the transitive closure of <

min(S) |the minimal elements of S w.r.t. <*

maxz(S) |the maximal elements of S w.r.t. <*

Nr(t) |{t |t <*t},ie. all modules that ¢ requires
Nr(S) |U{Nr()|te S}

The minimal elements of 7, i.e. the set min(7T), comprises the primitive
modules which are assumed to be always available (e.g. an Operating System, a
programming language, or the English vocabulary). However, probably nothing

in this world is self-existent so the notion of primitive modules is actually a
convention.

Regarding OAIS, we could say that the interpretedUsing relation of Figure
1 defines a plain dependency graph with the only difference that the nodes of this
graph may be further specialized, i.e. classified under the indicative categories
that are shown (e.g. Algorithm, Semantics, Structure, etc). In any case, the
resulting object graphs would contain a dependency graph like the one we have
introduced so far.

2.1 Intelligibility of Data Objects

Given an object or module ¢, we can define the required for understandability
(or intelligibility) modules of ¢ as follows: req(t) = Nr(t). If S C 7T, then we can
define req(S) = U{ req(t) | t € S}. Let u be an actor (e.g. user, or information
consumer) and let T;, be the modules available to him (e.g. software/hardware
modules available at his computer or knowledge available at his/her mind), where
T, C T. Now suppose that u is given a set of objects A (A C Obj). The set
A could be the answer of a query ¢ posed to an information system, or the
result of browsing an information space, or the result of any other method (e.g.
u may have received the set A by email). The prerequisites for understanding
the set A is req(A). For example, consider the case illustrated in Figure 5 where
T = {t1,...,ts}, A = {0z,04}, and T,, = {t3,ts}. Since T,, contains ts and
none of its narrower modules t7 and tg, we can understand that tg is a primitive
module for u. So we can safely make the assumption that u knows ¢; and ts.
We can call this unique module assumption (uma), meaning that each module
is uniquely identified by its name and that its required modules are always the
same. Here we have reg(o;) = 7 and req(oy) = {t3,%s,t7,ts}. Also note that
maz(reg(oz)) = t1 and max(req(oy)) = ts.

t4 t5 t6

Fig. 5. Example of a dependency graph (between objects and modules)

We can easily see that u can understand an object o if maxz(reg(o)) C Ty,.
In the current example u can understand o, because maz(req(oy)) = ts3 € Ty,
however u cannot understand o, because max(req(o;)) = t1 € T,,.

2.2 Intelligibility Gaps

Consider the case of an object o, that is not understandable by u. In this case
we can say that we have an intelligibility gap. To fill the gap, we need to find the
missing modules. The set of missing modules that « needs in order to understand
an object o are given by the formula: Missing(o,u) = reqg(o) — Nr(T,). In our
examplea Missing(om, ’LL) = reQ(Oz)_NT(Tu) = T_{t37 Lo, t7, tS} = {tla o, 14, t5}‘
Clearly, if A C Obj, then we can define Missing(A,u) = U{ Missing(o,u) | o €
A}.

Note that without the unique module assumption (uma), we could not make
the assumption that u knows t7 and tg. In that case we would have to define
Missing(o,u) = req(o)—T,. In our running example we would have Missing(o,,u)
=req(o,) — Ty =T — {t3,t6} = {t1,t2,t4,t5,t7,ts}. The relationships between
two dependency graphs are specified formally below.

Consider an information provider p and an information consumer u, each
having a dependency graph I}, and I}, respectively.

Definition 1. Let I, = (T, <,) and I}, = (T}, <p) be two dependency graphs.
We say that I7, is subgraph of I',, and we write I, C Iy, if (a) T, C T}, and
either (b1) <,C<p, or (b2) <u=<p . -

Note that (b2) is more strict than (bl). Specifically, and regarding the re-
lationships between the elements of T, (bl) ensures that p has at least the
relationships that w has, while (b2) ensures that p has exactly the relationships
that « has. For instance, I, of Figure 5 satisfies (b2). If I', did not contain
the relationship tg < ¢35 then it would satisfy only (bl). If I' did not contain
the relationship tg < t3 then it would not satisfy neither (b1l) nor (b2). Note
that: (bl) implies that Nr,(t) 2 Nry(t), Vt € T,, while (b2) implies that
Nry(t) = Nry(t), vt € T,.

3 (Intelligibility-aware) Interaction Schemes

Consider an information provider p and an information consumer u. Here we
describe various interaction methods that could be used for identifying and filling
intelligibility gaps.

3.1 For Consuming (Delivering) Information

Without loss of generality we can assume a query-and-answer interaction scheme
where u sends to p a query ¢ and p returns a set of objects A. Below we describe
some interaction schemes that enrich the query-and-answer interaction scheme
with intelligibility-related concerns.

Note that given an object o and a user u, for computing Missing(o,u) =
req(o) — Nr(T,) one needs to be able to compute req(o) and Nr(T,). If req(o)
or Nr(T,) are very large in size then this could cause inefficiencies (especially in
a distributed setting). For this reason below we describe a number of options.

Interaction Schemes with Fixed Number of Messages

(A) w submits a query, p returns the answer with all modules that are required.

(1) u — p: query(q)

(2) p — w: return(A4, req(A))

Note that req(A) does not necessarily return the modules themselves. It
may return references to these modules which one could use in order to
find the actual modules (e.g. for downloading and installing them). The
user can identify the missing modules (i.e. those elements in req(A) which
are unknown to him) and proceed accordingly. However in practice req(A)
could be very large in size.

(B) u submits her query and profile, p returns answers accompanied by the miss-
ing modules.

(1) u — p: query(q, Tv,)

(2) p — w: return(A4, Missing(A,u))

Note that if T, is smaller than req(A) then this scheme is more efficient than
(A). We can further improve the above scheme, specifically we can reduce
the data that have to be exchanged, if I, C I},. In particular, in that case
step (1) can be replaced by:

(1) u — p: query(q, max(Ty))

(C) w registers her profile once, p returns answers accompanied by the missing
modules. This scheme avoids sending the profile with each query. Instead, u
registers a (DC) profile T, once, which is then exploited in the subsequent
query-and-answer interactions. Again the provider sends back the answer
and the missing modules.

(1) u — p: register(u, Ty,)

(2) u — p: query(q)

(3) p — w: return(A, Missing(A,u))

We can further improve the above scheme, specifically we can reduce the data
that have to be exchanged for the registration, if I, C I},. In particular, in
that case, step (1) can be replaced by:

(1) u — p: register(u, maz(Ty))

Progressive Interaction Schemes (with variable number of messages)
In some cases it might be useful (or efficient) to provide gradual/progressive
methods for identifying and filling intelligibility gaps. Two such schemes are
described bellow.

(Ai) This is a progressive version of scheme (A). Instead of sending req(A), the
provider at first sends only the maximal elements.
(1) u — p: query(q)
(2) p — w: return(A4, max(req(A)))
The user can identify the missing modules (i.e. those elements in max(req(A))
which are unknown to her) and proceed accordingly. Note that u could also
ask again p about the required modules of the elements of max(req(A4)) and
so on, i.e. the dialog could be continued as shown next. Below we use recmsg
to denote the previously received message.

(3) u: repeat

(4) w M :=recmsg —T, //ie M :=max(req(A)) —Ty,
(5) u: If M # () then

(6) u— p: getDirectReqsO f (M)

(M p— return(mazx(req(recmsg)))

(8) u: until M =0

For instance, in our running example the formula max(req(o,)) — Ty, returns

the highest missing module, i.e. ¢;. The entire sequence of M’s is shown

below:

Mi: t; (= max(req(oz)) — Ty)

Ms: ta (= max(req(ty)) — Ty)

Ms: {tq,t5} (= max(req(tz)) — Tu)

My: {ts} (= max(req(ts)) — Tu)

M5Z @
Note that tg could be already known to u as it is narrower than tg € T),.

(D) w submits only the query, p returns only the answer.
Here u sends to p only ¢. If u cannot understand the result, she can send
to p what she did not understand. With the assumption that each object
has links to its direct required modules, v can identify the direct missing
modules and send these to p and continue in this way until reaching to her
primitive elements or getting all elements of reg(A).

(1) v — 9 query(q)

(2) p — w: return(A)

(3) w: repeat

(4) u: M := computeDirectReqsO f(recmsg) =T,
(5) u: If M # 0 then

(6) u— p: getDirectReqsO f (M)

(M p—w return(max(req(recmsg)))

(8) w: until M =0

3.2 For Providing (ingesting) Information

A preservation system could follow a policy of the form: the dependencies of the
stored objects should be known and stored. This means that the submission of
information, e.g. the submission of an object or module ¢, to the system should
be accompanied by adequate representation information. In other words req(t)
should be known. However as there is not any objective method for deciding
whether req(t) is complete or not (may nothing is complete in the strict sense)
we can again use the notion of profile in order to decide whether the submitted
RI is complete or not (with respect to a specific profile or with respect to all
profiles known by the preservation system).

As one can imagine, the provision (ingestion) of information has many simi-
larities with the consumption (delivery) of information. We could capture the in-
gestion of information by changing the previously described interaction schemes.

Specifically we could ignore the query submission step and consider that the user
u is the preservation system who wants to ingest the set of objects A that p sends
to u. Fore reasons of space their detailed description is omitted.

3.3 Complex Objects and Other Technicalities

Let us for example consider the case of Web pages. Consider a digital file named
a.html. The extension of the filename gives us a hint about the type of the dig-
ital object, so we may write type(a.html) = HTML, and as a.html > HTML,
we may generalize and consider that for every o € Obj, it holds o > type(o), if
type(o) is known. However, an html page is a text that may contain pointers to
other types of data (images, sounds, etc). In order to obtain this content, we need
a HTML parser. So we could say that computeDirect ReqsO f(a.html) needs the
availability of an HTML parser®. Consequently, compute Direct ReqsO f (o) could
be as follows: compute Direct ReqsO f (o) = type(o)Utype(o).parse(o).getContents().
To compute all required modules of an object we have to continue analogously.

4 Concluding Remarks

Dependencies are ubiquitous and dependency management is an important re-
quirement that is subject of research in several (old and new emerged) areas, from
software engineering [6-8, 1] to ontology engineering [3, 5]. In software engineer-
ing the various build tools (e.g. make, gnumake, nmake, jam, ant) are definitely
related, as well as the problems of installability, deinstallability and maintainabil-
ity. Recall that the art of large-scale design is to minimize dependencies (recall
Model Driven Architecture). However we could say that the preservation of the
intelligibility of digital objects requires a generalization (or abstraction) able to
capture also non software modules (e.g. explicit or implicit domain knowledge).
The agenda of ontology engineering includes similar in spirit problems, e.g. the
problem of how to reflect a change of an ontology to the dependent ontologies
(i.e. to those that reuse or extend parts of it), which may be stored in differ-
ent sites, as well as the schema evolution problem, i.e. the problem of reflecting
schema changes to the underlying instances.

A modern preservation system should be generic, i.e. able to preserve hetero-
geneous digital objects which may have different interpretation of the notion of
dependency. The dependency relations should be specializable and configurable
(e.g. it should be possible to associate different semantics to them). Focus should
be given on finding, recording and curating the dependencies. For example, the
makefile of an application program is not complete for preservation purposes.
The preservation system should also describe the environment in which the ap-
plication program (and the make file) will run. Recall the four worlds of an
information system (Subject World, System World, Usage World, Development

3 As another example, for a .java named file we need to parse the file in order to
extract all import statements, while for a .rdf named file, we need to parse it in
order to extract the namespaces it uses.

World) as identified by Mylopoulos [4]. Finally, the provision of notification ser-
vices for risks of loosing information (e.g. obsolescence detection services) is
important.

The contribution of this paper lies in specifying a generic view by adopting an
abstract notion of module and dependency and by introducing the notion of DC
profile. Subsequently it specified a number of core services around these notions,
allowing to check and control whether the ingestion of information is complete
and for computing the minimum extra information required to be delivered to
ensure the intelligibility of a digital object by the consumer. Based on these
services a number of interaction schemes for identifying and filling the intelli-
gibility gaps were presented. A proof-of-concept prototype based on Semantic
Web technologies has already been built. The benefits of adopting Semantic Web
languages, for the problem at hand, is that although the core dependency man-
agement services need to know only a very small core ontology (defining the
abstract notion of module and dependency), it is possible to refine (specialize)
the dependency relation.

Issues for further research include (a) extending the framework with convert-
ers (for tackling migration/emulation), (b) studying the effects of changes in the
dependency graphs (and what kind of notification services are required), and (c)
studying composite modules and dependencies of different granularity.

Acknowledgements This work was partially supported by the EU project
CASPAR (FP6-2005-IST-033572). Many thanks to David Giaretta and the rest
"CASPARtners”.

References

1. X. Franch and N.A.M. Maiden. Modeling Component Dependencies to Inform their
Selection. 2nd Intern. Conf. on COTS-Based Software Systems, 2003.

2. International Organization For Standardization. “OAIS: Open Archival Information
System — Reference Model”, 2003. Ref. No ISO 14721:2003.

3. M. Jarrar and R. Meersman. Formal Ontology Engineering in the DOGMA Ap-
proach. International Conference on Ontologies, Databases and Applications of Se-
mantics (ODBase), pages 1238-1254, 2002.

4. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. “Telos: Representing
Knowledge about Information Systems”. ACM Transactions on Information Sys-
tems, 8(4), October 1990.

5. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. An Environment for
Distributed Ontology Development Based on Dependency Management. Proc. of
the 2nd International Semantic Web Conference (ISWC2003), pages 453-468, 2003.

6. M. Vieira, M. Dias, and D.J. Richardson. Describing Dependencies in Component
Access Points. Proceedings of The 23rd International Conference on Software En-
gineering (ICSE’01), Toronto, Canada, pages 115-118, 2001.

7. M. Vieira and D. Richardson. Analyzing dependencies in large component-based
systems. ASFE, 00:241, 2002.

8. M. Walter, C. Trinitis, and W. Karl. “OpenSESAME: An Intuitive Dependability
Modeling Environment Supporting Inter-component Dependencies”. Procs of 2001
Pacific Rim International Symposium on Dependable Computing, pages 76-83, 2001.

