0-7803-9048-2/05/$20.00 ©2005 IEEE

Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

A Hierarchical Coevolutionary Method
to Support Brain-Lesion Modelling

Michail Maniadakis and Panos Trahanias
Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), 71110 Heraklion, Crete, Greece

and

Department of Computer Science, University of Crete, 71409 Heraklion, Crete, Greece
E-mail: {mmaniada, trahania} @ics.forth.gr

Abstract— The current work addresses the development of
cognitive abilities in artificial organisms, a topic that has attracted
many research efforts recently. In our approach, neural network-
based agent structures are employed to represent distinct brain
areas. We introduce a Hierarchical Collaborative CoEvolutionary
(HCCE) approach to design autonomous, yet cooperating agents.
Thus, partial brain models consisting of many substructures
can be designed. Replication of lesion studies is used as a
means to increase reliability of brain model, highlighting the
distinct roles of agents. The HCCE is appropriately designed
to support systematic modelling of brain structures, able to
reproduce biological lesion data. The proposed approach designs
cooperating agents properly, by considering the desired pre- and
post- lesion performance of the model. The effectiveness of the
proposed approach is illustrated on the design of a computational
model of Primary Motor cortex and Premotor cortex interactions
in the mammalian brain. The model is successfully tested in
driving a simulated robot, with different pre- and post- lesion
performance.

I. INTRODUCTION

Cognitive abilities of animals are supported by the perfor-
mance of their Central Nervous System (CNS). The latter
consists of several interconnected modules with different func-
tionalities [1]. A lot of research is recently oriented towards
determining how these modules cooperate to accomplish real
world tasks [2]. Even if the detailed, exact properties of
each brain area are not clear yet, many computational models
have been proposed capturing their basic characteristics [3],
[4], [5], [6]. Recently, computational studies investigate the
performance of the models in lesion conditions as a means to
increase their reliability [7], [8], [9].

We have recently introduced a systematic method to design
biologically plausible computational models of partial CNS
structures [10], [11]. In accordance to the distributed orga-
nization of the mammalian CNS, an agent-based modelling
approach is followed. Specifically, the model consists of a
collection of neural agents, each one representing a CNS
area. The agent-based approach enforces the autonomy of
brain areas, supporting also problem decomposition in small
tractable tasks.

The performance of agents is specified by means of en-
vironmental interaction similar to an epigenetic! learning
process. The dynamics of epigenetic learning are designed

!Epigenesis here, includes all leamning processes during lifetime.

by an evolutionary process which simulates phylogenesis,
similar to [12], [13]. Consequently, both genetically encoded
features and subjective experience have a significant role in
the formation of model’s performance. Following the phy-
logenetic/epigenetic approach, the objective adopted during
the evolution of agents, is to furnish them with abilities to
develop similar performance to the respective brain areas, after
a certain amount of environmental interaction.

Instead of using a unimodal evolutionary process we em-
ploy a cooperative coevolutionary approach which is able
to highlight the specialties of brain areas represented by
distinct agents [10]. Additionally, the coevolutionary approach
facilitates the integrated performance of substructures in the
composite model. The combination of these two particular
features (partial autonomy and collaborative performance) in a
single design method seems particularly appropriate for brain
modelling.

In the present work, we propose a hierarchical extension of
this approach, which exploits the inherent ability of coevolu-
tionary methods to integrate partial structures. We introduce
a Hierarchical Colaborative CoEvolutionary (HCCE) scheme
which supports the coevolution of a large number of species
(populations). Specifically, evolutionary processes at lower
levels are driven by their own dynamics to fulfill the special
objectives of each brain area. The evolutionary process at
the higher levels, tunes lower level coevolutionary process to
achieve the integrated performance of partial structures. The
architecture of multiple coevolutionary processes tuned by a
higher level evolution can be repeated for as many levels as
necessary, forming a tree hierarchy.

It should be noted that the composite model does not
have to perform in a hierarchical mode. The performance of
partial CNS structures can be either hierarchical or completely
parallel, depending on the biological prototype. Hence, the hi-
erarchical coevolutionary approach does not imply any further
constraints. It is introduced only to support the design process
of brain modelling.

Furthermore, following recent trends aiming at the study
of computational models in lesion conditions [7], [8], [9],
we adapt our method to accomplish systematic modelling of
biological lesion experiments. The agent-based representation
of brain areas facilitates lesion simulation by simply deacti-
vating appropriate agent structures. Thus, the performance of



the model in pre- and post- lesion conditions can be tested.
Furthermore, appropriate fitness functions can be specified for
the evolution of partial structures, to indicate the performance
of the model when all substructures are present, and also
indicate the performance when some partial structures are
eliminated. Following this approach, biological lesion data can
be considered during the coevolutionary design process and
computational structures are properly formulated to replicate
pre- and post- lesion performance. Consequently, increased
reliability is offered to the final model.

The rest of the paper is organized as follows. In the next
section, we present the basic characteristics of the neural agent
structures employed for the representation of CNS areas, and
the hierarchical collaborative coevolutionary scheme which
supports agents’ design. The results of the proposed approach
on a brain modelling task are presented in section III. Specif-
ically we demonstrate the design of a computational model
of primary motor cortex - premotor cortex interactions in
the mammalian brain. The model is embedded in a robotic
platform, which supports environmental interaction. When
both cortical agents are active the robot is able to achieve goal
oriented purposeful motion, while when the agent of premotor
cortex is eliminated it can only achieve a wall avoidance
behavior. Finally, conclusions and suggestions for future work
are drawn in the last section.

II. METHOD

Modern theories for the explanation of mammalian cogni-
tion argue that the observed behavior of animals is a result
of phylogenetic development, and epigenetic environmental
experience [14]. Evidently, this argument may also form a
basis to accomplish brain modelling tasks [12], [13]. An
evolutionary method can be employed to specify the dynamics
of real-time learning process.

A. Computational Model

We have implemented two different neural network based
agents, to supply general computational structures for brain
modelling: (a) a computational cortical agent to represent brain
areas, and (b) a link agent to support information flow across
brain areas. Thus, an appropriately complex connectivity can
be defined, to simulate connectivity of CNS modules.

We note that the proposed computational model is not
restrictive for the coevolutionary method, but rather serve as a
guide on how coevolutionary approaches can be employed to
support brain modelling tasks. Additional constraints can be
integrated to increase its biological reliability. The computa-
tional details of cortical and link agents have been presented
elsewhere [6], [10], [11]. In the present document, due to space
limitations, we will summarize only their basic characteristics.

1) Cortical Agent: Each cortical agent consists of a pop-
ulation of excitatory and inhibitory neurons, following the
Wilson-Cowan model similar to [15]. A rectangular plane
simulates cortical area. Both sets of neurons are uniformly
distributed in the cortical plane. Four sets of intra-cortical
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Fig. 1. A schematic representation of the agents employed to represent brain
areas. Part (a) illustrates the artificial neural structure of cortical and link
agents. Intra-cortical synapses and neighborhoods are illustrated with solid
lines. Inter-cortical synapses and neighborhoods are illustrated with dashed
lines. Part (b) illustrates the compact representation of agents connectivity
which is followed throughout the paper. Cortical agents are illustrated with
blocks, while link agents are illustrated with double arrows.

synapses are defined depending on the nature of presynaptic
and postsynaptic neurons (excitatory-excitatory, excitatory-
inhibitory, inhibitory-excitatory, inhibitory-inhibitory). The
connectivity of neurons follows the general rule of locality.
Synapse formation in cortical agents is based on circular
neighborhoods. This is demonstrated graphically in Fig 1.

2) Link Agent: An appropriate link agent is specified to
allow information flow across cortical agents. Inter-cortical
synapses of link agents are specified based on the spatial
properties inherited by the planar model of cortical agents.
Synapse definition follows the principle that neighboring cells
project to neighboring areas. Thus, a circular neighborhood
measure is also employed to specify locality across cortical
agents. Inter-cortical locality is approximated by the circular
neighborhoods defined after projecting the neurons of the
linked cortical agents on a common virtual plane (Fig 1). Only
excitatory neurons are used as outputs of the efferent cortical
module, while both excitatory and inhibitory neurons receive
input in the afferent module. Thus, two sets of synapses are
specified for each link agent (excitatory-excitatory, excitatory-
inhibitory). Using the link structure any two cortical agents can
be connected. As a result, the connectivity of CNS modules
can be easily simulated.

3) Epigenetic Learning: Experience based subjective learn-
ing has an important contribution to the final performance
of brain models. To enforce epigenetic learning, each set of
synapses (for both link and cortical agents) is assigned a
Hebbian-like learning rule to enforce agents’ self-organization,
similar to [16]. The assignment of the proper learning rule
in each synapse set allows the emergence of the desired
performance in agent structures, after a certain amount of
environmental interaction. We have implemented a pool of



10 Hebbian-like rules that can be appropriately combined
to produce a wide range of functionalities during lifetime
adjustment.

B. Hierarchical Collaborative CoEvolution (HCCE)

Similar to a phylogenetic process the specification of param-
eter values for all agents is approached in a systematic way
by using an evolutionary mechanism, as it has been suggested
in [12], [13]. Furthermore, coevolutionary algorithms have
been recently proposed that facilitate exploration, in problems
consisting of many decomposable subcomponents [17]. They
involve two or more coevolved species (populations) with
interactive performance. The brain modelling problem fits
very well to collaborative coevolutionary approaches, because
separate coevolved species can be used to perform design
decisions for each partial model of a brain area, enforcing both
a performance similar to reality and the cooperation within
computational brain modules.

We have presented a new evolutionary scheme to improve
the performance of collaborative coevolutionary algorithms,
by explicitly addressing the collaborator selection issue [10],
[11]. The present work extents this scheme to a hierarchical
multi-level architecture. Our method combines the hierarchical
evolutionary approach [ 18], with the maintenance of successful
collaborator assemblies [19], to develop a powerful coevolu-
tionary scheme.

We employ two different kinds of species (populations) to
support the coevolutionary process encoding the configurations
of either a Primitive agent Structure (PS) or a Coevolved agent
Group (CG). PS species specify partial elements of the model,
encoding the exact structure of either cortical or link agents. A
CG consists of groups of PSs with common objectives. Thus,
CGs specify configurations of partial solutions by encoding
individual assemblies of cortical and link agents. The evolution
of CG modulates partly the evolutionary process of its lower
level PS species to enforce their cooperative performance. A
CG can also be a member of another CG. Consequently several
CGs can be organized hierarchically in a tree-like architecture,
with the higher levels enforcing the cooperation of the lower
ones.

The HCCE-based design method for brain modelling is
demonstrated by means of an example (Fig 2). We assume the
existence of two cortical agents connected by three link agents
representing their afferent and efferent projections (Fig 2(a)).
One hypothetical HCCE process employed to specify agent
structure is illustrated in (Fig 2(b)).

Similar to [18], [10] all individuals in all species are as-
signed an identification number which is preserved during the
coevolutionary process. The identification number is employed
to form individual assemblies within different species. Each
assembly specifies a complete problem solution which is
further tested on the desired task.

Each variable in the genome of a CG is joined with one
lower level CG or PS species. The value of that variable can be
any identification number of the individuals from the species
it is joined with. PSs encode the structure of either cortical or
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Fig. 2. Hierarchical collaborative coevolutionary design of agents. Part
(a) represents schematically a hypothetical connectivity of agents. Part (b)
represents the hierarchical coevolutionary scheme utilized to evolve partial
structures. CGs are illustrated with oval boxes, while PSs are represented by
ovals.

link agents. The details of the encoding have been presented
in [10], [11], and thus they are omitted here due to space
limitations. CGs enforce cooperation of PS structures by se-
lecting the appropriate cooperable individuals among species.
Additionally, a new genetic operator, termed Replication [10],
exploits the most able to cooperate individuals in each partial
species. A snapshot of the exemplar HCCE process described
above is illustrated in (Fig 3).
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Fig. 3. An overview of the hierarchical coevolutionary scheme, with CG
species tuning the evolutionary processes of PS species. Identification numbers
are represented with an oval.

In order to test the performance of a complete problem
solution, populations are sequentially accessed starting by the
higher level. The values of CG individuals at various levels
are used as guides to select collaborators among PS species.
Then, PS individuals are decoded to specify the structure of
cortical and link agents, and the performance of the proposed
overall solution is tested on the desired task.

The hierarchical organization is able to simulate lesion
studies by deactivating appropriate nodes of the tree hierarchy.
Deactivated nodes correspond to lesioned structures of the
composite model. Consequently, all lesion conditions can
be considered. Furthermore, the coevolutionary process can
utilize appropriately formulated fitness functions to specify the



desired pre- and post- lesion performance of the model. As
a result, the proposed architecture is able to reproduce data
obtained by biological lesion studies.

Evolutionary processes at both CG and PS species are
driven by their own fitness functions. This is particularly
important for agents’ coevolution since different objectives
can be defined for each agent, thus preserving their autonomy.
Especially for a brain modelling application, separate fitnesses
are able to highlight the special features of partial agents
representing distinct brain areas.

An evaluation index represents how good is the solution
formed by an individual assembly in a given task. In the case
of lesion experiments, individuals are assigned a combination
of evaluation indexes (for the accomplishment of tasks where
the composite model is performing, and the accomplishment
of tasks with performance of the eliminated model). For each
task, individuals are assigned the maximum of the evaluation
indexes ‘achieved by all solutions formed with their member-
ship. Evaluation indexes are further combined to form the
fitness value of the individual under discussion.

Just after the testing of collaborator assemblies and the
assignment of their fitness values, an evolutionary step is
performed on each species to formulate the new generation
of its individuals. This process is repeated for a predefined
number of evolutionary epochs.

III. RESULTS

The effectiveness of the proposed approach is illustrated
on the design of a partial brain computational model, which
simulates primary motor cortex (M1) - premotor cortex (PMC)
interactions. The relevant experiments are indicative of the
proposed coevolutionary CNS modelling approach.

PMC (including all non-primary motor areas) is referred
as the higher level of motor programming [20], while M1
is considered as the place where the final commands of
movement are generated by encoding movement parameters
[21]. Thus, PMC activation modulates M1 performance to
accomplish goal-driven movements [22]. This organization has
been mostly concluded from lesion studies regarding upper
limb movement, but similar conclusions are drawn from recent
studies aiming at the movement of lower limbs [23], [24].

Computational models of both PMC and M1 have been
proposed in the literature eg. [3], [5], [4], which however do
not emphasize on their interactions. Recently a simple model
of PMC modulating M1 performance is presented in [20], but
it is not tested on a real application.

The present work employs the hierarchical collaborative
coevolutionary approach to design a model of PMC-MI1 real-
time performance. In this endeavor, environmental interaction
is of utmost importance, since it is difficult to investigate
CNS areas performance without embedding the models into
a body to interact with its environment. A mobile robot
is utilized to support environmental interaction, in order to
prove the validity of the result. Specifically, we employ a
two wheeled robotic platform equipped with 8 uniformly
distributed distance and light sensors.
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Fig. 4. A schematic overview of the PMC-M1 model. Computational cortical
agents are illustrated with blocks, while link agents are illustrated with double
arrows.

The experiment aims at reproducing a lesion scenario
which is in agreement to the biological data presented above.
In accordance to the long-term goal of facilitating artificial
organisms with intelligent performance, we emphasize on
the accomplishment of behavioral tasks by the robot. The
scenario assumes that the performance of the composite PMC-
M1 model is able to achieve goal-oriented light following
robot movement, but when PMC lesion is performed, the goal
oriented behavior is affected, and the robot is only able to
achieve wall avoidance navigation. By means of the above
scenario, the role of each agent in the composite model can
be highlighted.

The composite computational model follows the biological
prototype [25]. Sensory information is projected to the recip-
rocally connected neocortical structures via link agents, and
from there to the spinal cord with appropriate additional link
structures (Fig 4). Pain sense is activated when robot bumps in
a wall, and is directly projecting to spinal cord motor neurons
to produce a reflexive movement.

The model consists of 12 subcomponents (3 cortical and
9 links agents) which have to cooperate to accomplish the
desired performance. A hierarchical coevolutionary process is
utilized to specify the dynamics of real-time learning in each
agent structure. The partial computational structures of the
composite model are mapped in a hierarchical coevolutionary
tree, as it is illustrated in (Fig 5). Comparing figures 4 and 5,
it can be easily realized that hierarchical coevolutionary design
does not imply hierarchical performance of the computational
model.

One PS species is employed for each partial component
of the computational model. Three CG structures are used to
drive the hierarchical coevolutionary process. CG1 coordinates
coevolution of structures relevant to M1 functionality, CG2
coordinates coevolution of structures relevant to PMC func-
tionality, while CG3 coordinates coevolution of groups CG1
and CG2 and also SC structure which is common for both M1
and PMC performance.

PMC lesion is simulated, by deactivating CG2 node, to-
gether with all lower level substructures. PMC lesion assumes
also the deactivation of all link agent structures under CG2,
since their performance has no computational meaning without
PMC functioning.

The performance of the PMC-M1 computational model is
tested on two different tasks. The composite model is tested
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Fig. 5. A schematic overview of the hierarchical coevolutionary process,
illustrating the hierarchical mapping of PMC-M1 model.

on the accomplishment of light following behavior, while
the eliminated model (after PMC lesion) is tested on wall
avoidance navigation. Both behaviors emerge after real-time
adjustment of agent structures by means of robot-environment
interaction. Separate criteria are designed to evaluate the
accomplishment of each task.

The goal-oriented task is simulated by a moving light
source that the robot should follow. The success of the task is
evaluated by the function:

2B\’ —
F p= <1 T\I) Z
where we assume that the robot is tested for M steps, is the
maximum instant value of all light sensors, and B is the total
number of robot bumps. The first term minimizes the number
of robot bumps on the walls, while the second supports robot
following of the light source.

The success of wall avoidance task is evaluated by the
function:

Fy = (Z(s +sr 1)* (1.0 p2)>

M
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where we assume that the robot is again tested for M steps,
s ,sr are the instant speeds of the left and right wheel, p
is the maximum instant activation of distance sensors, and
B is the total number of robot bumps. The first term seeks
for forward movement far from the walls, the second supports
straight movement without unreasonable spinning, and the last
term minimizes the number of robot bumps on the walls.

These evaluation criteria are used to design fitness func-
tions which guide the coevolutionary process. Specifically, a
separate fitness function is designed for each CG:

Fc 1 = Fw VF F
Fc 2 = VFw F F
Fc 3 = Fw Fr

where Fc ; represent the fitness function of the ¢ th CG. All
PS species share a common fitness function with the owner
CG. It is clear that Fc ; emphasize more the accomplishment

of wall avoidance navigation, Fc 2 pays more attention on
the accomplishment of light following, while Fc 3 aims to
coordinate lower level coevolutionary processes by equally
enforcing the accomplishment of both tasks.

Fig. 6. A sample result of model performance in the light following task
by the composite PMC-M1 model. Robot path is illustrated by a solid line,
while the dashed line, illustrates the path of light source.

//\

Fig. 7. A sample result of model performance after PMC lesion in the wall
avoidance navigation task.

The employment of the above fitness functions enforces
the coevolutionary process to consider the hypothetical le-
sion scenario during the design process. Consequently, partial
computational structures are properly designed to develop
the desired pre- and post- lesion performance. We mention
that even if CG2 structures are not participating in the wall
avoidance task, they are also affected by its success in order
to avoid exploiting the subset of M1 structures that are unable
to accomplish wall avoidance navigation.

Following the above fitness functions different agent struc-
tures are designed emphasizing in different criteria of the
composite model performance. This fact, together with the
successful accomplishment of the lesion scenario highlights
the different roles of partial structures in the composite model.

Specifically, M1 is able to move the robot, but without the
ability to achieve purposeful motion. The latter is achieved by
means of PMC which successfully modulates M1 performance
to develop light-following behavior. A sample result of light
following behavior from the PMC-M1 model is illustrated in
Fig 6. Wall avoidance behavior from the eliminated model is
illustrated in Fig 7.

All PS species evolved by populations of 100 individuals.
CGl, CG2, and CG3 species are evolved by populations of
200, 200, 300 individuals respectively. Evolution was per-
formed for 70 epochs in synchronous steps for all populations.



IV. CONCLUSIONS

In the present work, we introduced a computational frame-
work for the design and implementation of brain models able
to replicate biological lesion data. The proposed method is
based on the employment of neural agent modules to represent
brain areas, which are connected using appropriate link agent
structures. The agent-based approach is in accordance to
the distributed nature of mammalian CNS. Furthermore, it
supports the autonomy of brain areas, and consequently allows
the investigation of model performance in lesion conditions.

Agent structures are adjusted in real-time by following a
self-organized process which simulates epigenetic learning of
biological organisms. The dynamics of epigenetic learning are
designed following an evolutionary approach which simulates
phylogenesis. As a result, both genetically encoded features
and environmental experience specify the performance of the
model.

We employ a hierarchical collaborative coevolutionary
(HCCE) approach to support design specification of agent
structures. The collaborative coevolutionary process is suitable
for agents’ design because it offers increased search abilities of
partial components, and is able to emphasize both the specialty
of brain areas and their cooperative performance.

The hierarchical organization of the coevolutionary process
supports the elimination of agent structures to simulate lesion
experiments. Thus, the role of each partial structure in the
composite model can be examined. Additionally, HCCE sup-
plies a mechanism to specify the performance of the model
in pre- and post- lesion conditions, by forming appropriate
fitness functions. Consequently, the proposed method seems
particularly appropriate for implementing reliable models of
brain areas, with the ability to replicate lesion data.

Following this approach, the distinct role of each agent
structure in the composite model is highlighted. This has been
confirmed with the results shown in the previous section, as
. well as other results obtained in our experiments (not presented
here due to space limitations). Evidently, further work is
needed to fully ascertain the general applicability and validity
of our approach.

We also note that by adopting the coevolutionary method
for design specification, our approach is inherently furnished
with the ability to integrate partial brain models. The proposed
hierarchical collaborative coevolutionary scheme can be also
utilized to integrate the performance of partial brain models,
by introducing an appropriate number of additional higher
level evolutionary process. Thus, the incremental integration
of gradually more partial brain models on top of existing ones
constitutes the main direction of our future work. We believe
that by exploiting the proposed approach, a powerful method
to design large scale reliable brain models can emerge.
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