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Abstract. Recently, brain models attempt to support cognitive abili-
ties of artificial organisms. Incremental approaches are often employed
to support modelling process. The present work introduces a novel com-
putational framework for incremental brain modelling, which aims at
enforcing partial components re-usability. A coevolutionary agent-based
approach is followed which utilizes properly formulated neural agents to
represent brain areas. A collaborative coevolutionary method, with the
inherent ability to design cooperative substructures, supports the imple-
mentation of partial brain models, and additionally supplies a consistent
method to achieve their integration. The implemented models are em-
bedded in a robotic platform to support its behavioral capabilities.

1 Introduction

The long-term vision of developing artificial organisms with mammal-like cogni-
tive abilities, has recently given impetus in brain modelling studies. The brain
of mammals consists of several interconnected modules with different function-
alities [5], which implies that models with distributed architecture should be
designed. Recently, we proposed a novel coevolutionary method [6] [8], to design
distributed partial brain models. Specifically, neural network agents are coe-
volved by distinct species (populations) emphasizing both their autonomy and
cooperability with the remaining structures.

Additionally, incremental brain modelling approaches have been proposed
[9,15,13]. However, the computational structures employed by the proposed in-
cremental approaches suffer in terms of scalability, and can not be used widely as
a brain modelling computational framework. This is because substructures are
originally designed to handle a specific amount of incoming information. Thus,
by performing incremental modelling steps, the structures are difficult to oper-
ate successfully because new modules are integrated, and additional information
volume is projected on them. Furthermore, no optimization method is employed
to support the incremental modelling process.

The coevolutionary method matches adequately the incremental modelling
processes due to its inherent ability to integrate distributed structures. In the
present work, we propose a brain modelling method focusing on the integration
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of partial models in gradually more complex ones. Specifically, in order to elim-
inate the problem of existing computational models employed by incremental
processes, we utilize neural modules with internal dynamics, which self-adapt
their performance as new structures are integrated on top of them. Intermedi-
ate link modules are employed which are connected on the key points of existing
structures, to properly modulate their performance. Furthermore, a coevolution-
ary optimization method facilitates the incremental process, offering a consistent
mechanism to support the reusability of substructures. The proposed approach
is assessed by embedding the implemented brain model in a robotic platform, to
furnish it with cognitive capabilities.

The rest of the paper is organized as follows. In the next section we present the
proposed computational framework consisting of the agent structures employed
to represent partial brain areas, and the collaborative coevolutionary scheme
which specifies the computational details of brain models. Computational ex-
periments which follow the proposed framework to design a partial brain model
are presented in section 3. Specifically, we demonstrate the implementation of
a computational model simulating posterior parietal cortex - prefrontal cortex -
primary motor cortex - spinal cord interactions in a delayed response task. Fi-
nally, conclusions and suggestions for further work are drawn in the last section.

2 Computational Framework

The proposed computational framework is inspired by the biological prototype,
while at the same time serves the special needs of incremental modelling. Specif-
ically, brain areas are modelled by flexible neural network agents. Similarly to
a phylogenetic process, an evolutionary approach is employed to specify the
computational details for each agent [14]. Instead of using a unimodal evolution-
ary process, a collaborative coevolutionary method is utilized to support neural
agent specification, offering enhanced search abilities of partial brain elements
[11]. In the following, we present in turn the computational structures, and the
coevolutionary approach.

2.1 Computational Model

We implement two different neural agents, to supply a general computational
framework: (i) a cortical agent to represent brain areas, and (ii) a link agent
to support information flow across cortical modules. Their structures are an
extension of those presented in [8], [7].

Link Agent. The structure of link agent is appropriately designed to support
connectivity among cortical modules. Using the link agent any two cortical mod-
ules can be connected, simulating the connectivity of brain areas.

Each link agent is specified by the projecting axons between two cortical
agents (Fig 1(a)). Its formation is based on the representation of cortical agents
by planes with excitatory and inhibitory neurons (see below). Only excitatory
neurons are used as outputs of the efferent cortical agent. The axons of projecting
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Fig. 1. Schematic representation of the computational model. Part (a) illustrates
a link agent which supports information flow from cortical agent A to B. Only the
active projections are represented with an × on their termination. Part (b) illustrates
synapse definition in cortical agent B. Neighborhood radius for i) afferent axons is
illustrated by a solid line, for ii) neighboring excitatory neurons by a dashed line,
and for iii) neighboring inhibitory neurons by a dotted line. Sample neighborhoods for
excitatory neurons are illustrated with grey, while neighborhoods for inhibitory neurons
are illustrated with black.

neurons are defined by their (x, y) coordinates on the receiving plane. Cortical
planes have a predefined dimension and thus projecting axons are deactivated if
they exceed the borders of the plane. The proposed link structure facilitates the
connectivity of sending and receiving cortical agents supporting their combined
performance.

Cortical Agent. Each cortical agent is represented by a rectangular plane. A
cortical agent consists of a predefined population of excitatory and inhibitory
neurons, which all follow the Wilson-Cowan model with sigmoid activation as it
is described in [8]. Both sets of neurons, are uniformly distributed, defining an
excitatory and an inhibitory grid on the cortical plane. On the same plane there
are also located the axon terminals from the efferent projected cortical agents.

All neurons receive input information either from i) projecting axons, or
ii) excitatory neighboring neurons, or iii) inhibitory neighboring neurons. The
connectivity of neurons follows the general rule of locality. Synapse formation is
based on circular neighborhood measures. A separate radius for each of the three
synapse types, defines the connectivity of neurons. This is illustrated graphically
in Fig 1(b), which further explains Fig 1(a). All excitatory neurons share common
neighborhood measures. The same is also true for all inhibitory neurons.

The performance of cortical agents is adjusted by the experiences of the
artificial organism, obtained through environmental interaction, similar to epi-
genetic1 learning [2]. To enforce experience based subjective learning, each set of
synapses is assigned a Hebbian-like learning rule defining the self-organization
internal dynamics of the agent. We have implemented a pool of 10 Hebbian-like
rules that can be appropriately combined to produce a wide range of function-
1 Epigenesis here, includes all learning processes during lifetime.
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alities. The employed learning rules are the union of those employed in [3], [6],
and thus they are omitted here due to space limitation. Agents plasticity al-
lows synaptic adjustments at run-time based on environmental experience. The
most common, but harder to evolve, alternative of genetically-encoded synaptic
strengths, results to a rather unmanageable problem complexity.

2.2 Collaborative Coevolution

An evolutionary process determines the self-organization dynamics of partial
brain structures, enforcing the emergence of valuable behaviors during lifetime.
However using a unimodal evolutionary approach, it is not possible to explore
effectively partial solutions, which correspond to brain substructures. Coevo-
lutionary algorithms have been recently proposed to facilitate exploration in
problems consisting of many decomposable subcomponents (e.g [10,11]). Dis-
tinct species (populations) are employed to estimate solutions for each partial
component of the problem. Accordingly, increased search competencies are in-
herently available in coevolutionary algorithms, while the special characteristics
of substructures can be also taken into account. Recently, we introduced the
usage of collaborative coevolution for the design of partial brain models [6] [8],
while in the present study we demonstrate that this approach can also serve the
incremental modelling process.

Specifically, a two level collaborative coevolutionary scheme is employed. The
species representing distinct elements of the composite system are evolved inde-
pendently at the lower level. Additionally, an evolutionary process performs at
a higher level, to select the appropriate individuals from each species that coop-
eratively are able to construct a good composite solution. Thus the parameter
space is segmentally searched in the lower level by evolved species, while at the
same time, the high level evolutionary process searches within species to identify
the best collaborator schemes.

We employ two kinds of species encoding the configurations of either a Prim-
itive agent Structure (PS) or a Coevolved agent Group (CG). PS species specify
partial elements, encoding the exact structure of either cortical or link agents. A
CG consists of a group of cooperating PSs with common objectives. Thus, CGs
specify configurations of partial solutions by encoding individual assemblies of
cortical and link agents (see Fig 2).

A general purpose genotype is employed for both the lower level evolution of
species, and the higher-level collaborator selection process. According to that,
each individual is assigned an identification number and encodes two different
kinds of variables. The first kind is allowed to get a value from a set of un-
ordered numbers, e.g. {1,5,7,2}, with the ordering of the elements being of no
use. These variables are called SetVariables. The second kind of variables is al-
lowed to get a value within a range of values, e.g. [0,1]; therefore, they are called
RangeVariables. The computational details of PS (either cortical or link) and
CG structures can be easily mapped to the genotype, following a process very
similar to the one described in [8]. This is omitted here due to space limitations.
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Fig. 2. A schematic overview of the coevolutionary process. CG is represented by a
rounded box, while PSs are represented by a free shape. Identification numbers are
represented with ovals.

In order to test the performance of individuals, the population at the higher
level is accessed. The parameter values at CG-level guide collaborator selection
among PS species (Fig 2). Then collaborators are combined to form the proposed
solution which is further tested. During fitness assignment, CG-individuals are
assigned a fitness value f , representing how good is the solution formed by the
selected collaborators. Individuals of the coevolved PS-species at the lower level
are assigned the maximum of the fitness value achieved by all the solutions
formed with their membership. Thus an individual of the lower level species is
assigned the value f = max{fi} where fi is the fitness value of the i-th solution
formed with the collaboration of the individual under discussion.

Evolutionary steps are performed based on the standard evolutionary op-
erators. First, individuals of each species are sorted according to their fitness
values. Then, a predefined percentage of individuals are crossed over. An indi-
vidual selects its mate from the whole population, based on their accumulative
probabilities. Finally, mutation is performed in a small percentage of the resulted
population. Genetic operators are applied in both levels in the same way.

2.3 Discussion

The plasticity of agent structures, which stems from the assignment of learning
rules, constitute a key feature of the proposed computational model. Specifically,
it facilitates the incremental modelling process by adjusting the performance of
each module to various circumstances of incoming information, enforcing the
reusability of substructures. This is a novel feature of our approach since, al-
though neural structures with self-organization characteristics are widely used in
many different domains, their suitability on modelling incrementally distributed
systems has not been studied before.

It should be noted that coevolution is not the only methodology to approach
incremental modelling. Other optimization processes (e.g. unimodal evolution)
would theoretically be able to support the incremental process. However, coevo-
lution offers many advantages in terms of searching effectively partial solutions,



CoEvolutionary Incremental Modelling of Robotic Cognitive Mechanisms 205

Light
Sense

Distance
Sense

Robot

L1 L2

L4

L3

L7

L8

L5

A
ct

ua
to

rs

L6

M1

SC

PPC PFC

Fig. 3. A schematic overview of the Primary Motor Cortex model. Cortical agents are
illustrated with blocks, while link agents are illustrated with a double arrow.

because it is originally designed to work with substructures instead of the com-
posite solution. As a result coevolution matches adequately to the agent-based
distributed brain modelling. This has been illustrated in [6], [8] where one-step
coevolutionary processes are employed to design brain models consisting of in-
dependent but cooperable substructures with distinct functional goals.

Furthermore, the proposed coevolutionary scheme can be hierarchically orga-
nized supporting the concurrent optimization of many substructures in one-step
[7]. The hierarchical approach can be used also to overcome the well known prob-
lem of incremental modelling where the constraints imposed by the structure of
initial models can be too hard, harming the forthcoming incremental steps. By
commencing a hierarchical coevolutionary process which loads the results of the
first incremental steps it is possible to further optimize them considering also
the needs of the new components. As a result “single-step” and “incremental”
processes can support each other, performing in a complementary way.

3 Results

The effectiveness of the proposed approach is illustrated on the design of a
partial brain computational model, which simulates posterior parietal cortex
(PPC) - prefrontal cortex (PFC) - primary motor cortex (M1) - spinal cord
(SC) interactions, emphasizing on working memory (WM) usage (Fig 3). We note
that the proposed model does not aim to be a detailed replica of the biological
prototype (e.g. premotor areas are not represented), but it serves as a guide on
how incremental coevolution can be employed to support brain modelling.

Several biological experiments highlight the behavioral organization of these
brain areas. They are based on delayed response (DR) tasks which require to re-
tain memory relative to a sample cue for a brief period, in order to decide upon
future behavioral response (e.g. [12]). M1 encodes primitive motor commands
which are expressed to actions by means of SC. PPC-PFC reciprocal interac-
tion operates in a higher level encoding WM, to develop plans regarding future
actions. PFC activation is then passed to M1 which modulates its performance
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Fig. 4. A schematic overview of the incremental coevolutionary process employed to
design the model of Fig 3. Part (a) illustrates the process employed to design the
model of M1-SC interaction, part (b) illustrates the process designing the model of
PPC-PFC interaction, and part (c) illustrates the coevolutionary process which serves
their integration.

accordingly. Thus, the higher level orders specify the expressed actions, aiming
at the accomplishment of the DR-task.

The interactions of the brain areas under discussion are modelled incremen-
tally. The process starts by two coevolutionary processes implementing separate
computational models of both M1-SC and PFC-PPC interactions. These two
models are further integrated by means of another coevolutionary process op-
erating on top of them. Both partial and composite models are embedded on
a simulated mobile robot to furnish it with cognitive abilities and prove the
validity of results. We employ a two wheeled robotic platform equipped with 8
uniformly distributed distance and light sensors.

Three tasks (adjusted to the needs of robotic applications) are properly spec-
ified, in order to demonstrate the effectiveness of the computational procedure.
The first task T 1, accounts for primitive motion abilities without purposeful
planning. For mobile robots, a task with the above characteristics is wall avoid-
ance navigation. Since M1-SC are the brain modules which serve basic motor
commands, and they are operative after lesion of the higher level structures [5],
it is assumed that they are relevant for the accomplishment of wall avoidance
navigation.

M1-SC interactions are modelled by means of a coevolutionary process il-
lustrated in (Fig 4(a)). The success of wall avoidance task is evaluated by the
fitness function:

F1 =

(∑
M

(sl + sr − 1) ∗ (1.0 − p2)

)
∗
(

1 − 2
M

∣∣∣∣∣
∑
M

sl − sr

sl ∗ sr

∣∣∣∣∣
)3

∗
(

1 − 2

√
B

M

)3

where we assume that the robot is tested for M steps, sl, sr are the instant speeds
of the left and right wheel, p is the maximum instant activation of distance
sensors, and B is the total number of robot bumps. The first term seeks for
forward movement far from the walls, the second supports straight movement
without unreasonable spinning, and the last term minimizes the number of robot
bumps on the walls. A sample result is illustrated in Fig 5(a).

The development of WM-like performance specifies the second task T 2.
Working memory (WM) is the ability to hold and manipulate goal-related infor-
mation to guide forthcoming actions. The PFC and PPC are the brain structures
most closely linked to WM [1]. Thus PPC-PFC are responsible for WM develop-
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Fig. 5. Part(a) illustrates robot performance on wall avoidance navigation (solid line),
and the delayed matching-to-sample task (dotted line). Targets are illustrated with
double circles. Part(b) illustrates the average activation of excitatory neurons at PFC.
Dark activation values indicate that the cell remain active during all the observed
period, while light values indicate low activity in the same period. Evidently, each side
of light cue presence is encoded by a different activation pattern.

ment in the proposed computational model. In the present experiment, a light
cue is presented in the left or right side of the robot. WM performance aims at
persistent PFC activity, related each time to the respective side of light cue.

Two different states l, r are defined, associated to the left or right side of light
source appearance. For each state, separate activation-averages over the time of
M simulation steps, aj, are computed, with j identifying excitatory neurons of
PFC agent. The formation of WM related to the side of light cues is evaluated
by measuring the persistency of activation in PFC:

F2 =
1
2
(

vl

ml
+

vr

mr
) ∗ min

⎧⎨
⎩

∑
j,al

j>ar
j

(
al

j − ar
j

)
,

∑
j,ar

j >al
j

(
ar

j − al
j

)⎫⎬⎭
where ml, vl, mr, vr are the mean and variance of average activation at the
respective states. The first term seeks for consistent PFC activation, and the
second supports the development of a distinct set of active neurons for each
state. A sample result is illustrated in Fig 5(b).

When the first two processes are completed, a third coevolutionary scheme
commences to design the intermediate link structure which integrates the perfor-
mance of the two partial models in a compound one. Following the hierarchy of
motor brain areas in mammals, the memory held by PFC activation modulates
M1 performance to develop goal directed motion [5,4]. The successful interac-
tion of substructures is demonstrated by means of a delayed response (DR) task.
Specifically, a light cue is presented on the left or right side of the robot. The
robot has to move at the end of a corridor memorizing the side of sample cue
appearance, and then make a choice related to 90o turn left or right, depending
on the side of light cue presence.
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A target location is defined in each side of the corridor depending on the
position of the initial light cue (Fig 5). The robot has to approximate the target
location without bumping on the walls. The successful approximation to the
target location is estimated by:

G =
(

1 + 3.0 ∗
(

1 − d

D

))3

∗
(

1 − 2

√
B

M

)2

where d is the minimum euclidian distance between the target and the robot,
D is the euclidian distance between the target and the starting location of the
robot, and B is the total number of robot bumps. The accomplishment of T 3 is
evaluated by means of two subtasks testing separately the right or left turn of
the robot for the respective positions of the light cue, employing each time the
appropriate target location:

F3 = Gl ∗ Gr

The third hierarchical scheme performs on the results of the previous two
processes evolving additionally the link agent L5 to support their connectivity
(Fig 4(c)). The ten best individuals of CG1 and CG2 species are used as indica-
tive partial structures to form a basis for the construction of the global model.
Thus, only two species are evolved. The lower level species encoding the struc-
ture of L5 link agent, and CG3 species which choose the appropriate collaborator
assembly. A sample result is illustrated in Fig 5(a).

It is easily observed that the self-organization dynamics of M1-SC structures
allow the modulation of their performance according to the higher level orders.
Thus, their functionality is adapted successfully from wall avoidance to goal
reaching. As a result, the proposed computational framework achieves the con-
struction of a new complex model from simple components, while the behavioral
repertory of the robot is enriched.

4 Conclusions

In the present work we proposed an incremental computational framework to
support brain modelling efforts. It follows an agent based approach able to sim-
ulate the distributed organization of brain areas. The employed cortical agents
exhibit self-organization dynamics which serve both the experience-based learn-
ing, and the incremental modelling process by adjusting the performance of
agents on circumstances with different amounts of incoming information. The
employed link agents are properly formulated to connect the key sending and
receiving points of cortical structures in order to achieve their integrated per-
formance. Furthermore, the coevolutionary design approach, which matches the
distributed architecture of the computational model, facilitates the integration
of substructures in composite ones.

The proposed computational framework exploits the inherent ability of co-
evolution to integrate partial structures, exhibiting the following advantages:
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– it offers a systematic methodology to facilitate incremental brain modelling
process by gradually adding new coevolved species to represent brain areas,

– it supports both individual and cooperative characteristics of brain areas,
– it supports the construction of complex behaviors from simple components.

Consequently, the proposed method can potentially support large-scale brain
modelling tasks and the development of competent artificial cognition mecha-
nisms. Further work is currently underway, to investigate the suitability of our
approach in large scale brain modelling tasks and the endowment of cognitive
abilities to artificial organisms.
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