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Abstract. Recently many computational modules of hippocampal sys-
tem have been proposed, investigating mainly the development of place
cells, similar to mammals. In most approaches, however, place cells are
not employed by other structures for further use. We propose a biolog-
ically plausible computational model of neocortical-hippocampal coop-
eration, which is based on familiarity recognition by neocortex, followed
by a recall process in the hippocampus. Our model is implemented and
tested in a simulated robotic platform, which shows that neocortex is able
to interact with hippocampus for the development of a self-localization
behaviour.

1 Introduction

The hippocampus is one of the most studied areas of the mammalian cortex be-
cause of its prominent role in the memorization of spatial information. Different
groups of cells have been detected in the rat’s hippocampus, which preferably fire
when the rat is in a particular portion of its environment, but they are largely
independent of its orientation and actual view [1]. These cells are usually termed
place cells. Similar cell groups have also been detected in the hippocampus of
other mammals.

The cortical structures included in hippocampal system are organized in two
major components, namely parahippocampal region and hippocampal formation.
Following recent trends in the area, we focus our study in the investigation of the
entorinal cortex (EC) from parahippocampal region and dentate gyrus (DG) and
Amon’s horn structures CA3, CA1 from hippocampal formation. Lately, place
cells have been detected in all these structures.

A number of hippocampal computational models have been proposed in the
literature, which are able to develop place cells based on allothetic sensory stim-
uli. Early approaches to hippocampal computational models consist of an ar-
rangement of appropriately connected neurons on a planar map. For example
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in [2] allothetic visual information is used to perform quantization of the en-
vironment, while idiothetic motor information is integrated in a feed-forward
neural model to connect locations. A similar idea is used by [3] but with a much
more sparse representation of the environment. However, according to [4], [5],
the existence of a topographical relation between environmental location and
hippocampal cells seems not valid.

Since the anatomical structure of CA3 consists of a high number of synapses
within pyramidal cells, it is usually assumed to perform relational computations.
This is taken into consideration by recent hippocampal models which use CA3
structures with recurrently connected neurons. For example in [6] a neural model
with recurrent connections similar to CA3 is proposed, which operates in two
modes (learning-recall) and is able to implement place cells, encoding different
environments. Still, this model ignores to a certain extent the functional contri-
butions of other areas. A combination of planar map with recurrent connections
which use attractor dynamics is presented in [7].

The projection from CA1 to EC is usually omitted in many proposed models.
This is a very critical design decision, since a recurrent cellular structure is
computationally represented by a feed forward one. A computational model with
re-entrant projections from CA1 to EC is presented in [12], but it is not tested
for the development of place cells.

Certain hippocampal models are oriented towards the development of naviga-
tion abilities [8], [2], as suggested by the implied assumption that hippocampal
results must become useful for the development of various behaviours. These
models assume that information about goal location is given in the hippocam-
pus, even though there is no experimental evidence of its existence [9]. Our
approach complies with recent findings which support the belief that hippocam-
pal system is not directly involved in navigation, since it has been experimentally
proved that rats with hippocampal lesions are able to navigate to visible goals
[10],[11]. Thus, in the present study we don’t investigate navigational abilities of
hippocampus. In contrast, we focus on the cooperation of neocortical and hip-
pocampal structures to infer self-location. Additionally, this information can be
further used by the neocortical structures (prefrontal, motor cortex) responsible
for action planning and execution.

A similar work investigating neocortical-hippocampal cooperation [12] uses
separate input and output EC structures to mediate interaction. However, it has
only been tested in the memorization of static relational information and not
in the memorization of continuous spatial information and the development of
place cells. The interaction of hippocampus with neocortex is also investigated
in [9], mainly focusing on the egocentric-allocentric transformation of sensory
stimuli.

In summary, existing hippocampal models exhibit shortcomings, with more
important ones being the following;:

— They assume the afferent input to hippocampal system from cortical associ-
ation areas without implementing a computational model of neocortex.

— They represent EC with an input layer, which makes impossible the devel-
opment of place cells in EC.

— They omit the re-entrant projection from CA1 to EC.

— They don’t investigate cooperation of hippocampal and neocortical areas.
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— They assume global view of the environment, which largely simplifies the
self-localization problem.

In this work, we present a detailed hippocampal model with separate, bio-
logically plausible, computational modules for each hippocampal area (EC, DG,
CA3, CAl) and we test its interaction with neocortex. Similar to other models
we use a large number of recurrent connections in CA3 to perform relational
computations. Instead of representing EC by a poor input layer of sensory al-
lothetic information, we provide a model of neocortical sensory association area
(AC) with afferent and efferent EC connectivity. Our model is able to develop
place cells in all hippocampal areas, similar to mammalian hippocampus. This is
done by employing familiar features detected in AC, to recall the exact location
in hippocampus. Our approach is based on the assumption [12] that neocortex
supports familiarity recognition, while hippocampus supports conflict resolution
and recall. In contrast to [12], we don’t use a separate output area to accept hip-
pocampal results, but the same AC structure, since it is bidirectionally connected
to hippocampus. Even though our approach is currently tested in a spatial prob-
lem, we believe that it is also able to encode individual events within episodes,
whether spatial or not [5], by encoding the relation within event features. The
existence of a detailed computational model for AC, the single model for EC,
together with the recurrent connectivity within AC-EC and EC-CA1 modules,
constitute the main contributions of our approach.

In the following section we present the details of our approach for the hip-
pocampal processing of sensory stimuli and the cooperation with neocortex. The
results from the application of our model in a spatial learning task of a simulated
robot are presented in section 3. Finally, conclusions and suggestions for further
work are drawn in the last section.

2 Methodology

Our approach is in accordance to the flow of information in the mammalian
central nervous system. The general layout is shown in Fig 1. Environmental in-
formation reaches the somatotopically organized sensory cortex which is located
in the medial parietal area. There are separate areas to receive signals for dif-
ferent senses. Posterior Parietal Cortex receives afferent projection from sensory
cortices to perform high order processing. This part of the cortex undertakes
egocentric to allocentric transformation of sensory information, and also relates
different stimuli in the Association Cortex (AC). Experimental evidence for ego-
allo transformation in Posterior Parietal Cortex is given in [9]. AC projects to
EC which is the gate of hippocampus. We have used the three standard areas
to represent hippocampal formation, which all receive afferent connections from
EC. DG examines current information to emphasize novel features and projects
to CA3 which perform temporal and spatial relational processing. The results of
CA3 together with the detailed input from EC are passed to CA1 to perform fine
tuning. The integration of the results with new sensory information takes place
in EC which receives afferent projection from CAl. Efferent projections from
EC to AC are used to store the statistical regularities of environmental stimuli
in neocortex for further use (e.g. action planning). In the following, we give a
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Fig. 1. The flow of information in the proposed neocortical-hippocampal model

simple, yet effective, computational model for egocentric - allocentric transfor-
mation of sensory stimuli, and the description of the computational module used
to represent all cortical areas.

2.1 Egocentric-Allocentric Transform of Sensory Information

Animals receive egocentric information from their sensors which is modulated by
their orientation in the environment. However, it has been experimentally shown
that hippocampal system process allocentric (orientation invariant) information.
In order to perform the egocentric to allocentric transformation, current orien-
tation is needed. Cells encoding head direction have been observed in presubicu-
lum and anterior thalamus [13]. Presubiculum projects to posterior parietal area,
which is assumed to perform egocentric to allocentric mapping. Thus, allocen-
tric information is fed in the hippocampus. This is a common hypothesis for all
hippocampal computational models.

The existing computational models assume a hard-wired transformation from
egocentric to allocentric information. Instead, we have implemented a simple
computational module to perform this transformation, given the current orien-
tation ¢ of the animal. For the sake of simplicity we assume that the number of
head-direction (HD) neurons is equal to the number of light or distance sensors;
let this number be M (it is also possible to formulate it in the case where the
mentioned numbers are different; this formulation is omitted here due to space
limitations). Each HD neuron has a preferred direction 6 of maximal activation
and follows the gaussian model (this is similar to the activation model of real
HD cells [13]). Let us assume that the information of the i — th egocentric dis-
tance sensor is given by h;. The allocentric distance measure is achieved by the
following summation over all HD neurons
Zj:o...M—l h(i_i_j)%Me*(fﬁ*e(M—j)%M)2
Y im0 pry €Ol )?

i =

(1)

where f; is the new orientation invariant measure. This formula has a slight
smoothing effect in sensory stimuli, which is due to the averaging performed.
Intuitively, it considers stimuli from all sensors, rotated by certain angles, and
weighted each time by a factor that is proportional to the matching of rotation
and head direction. It is interesting to observe that this formula can be directly

used to combine our approach with other computational models that develop
HD cells (e.g. [14]).
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2.2 The Cortical Computational Module

We have implemented a general computational module to represent cortical ar-
eas. This model bears similarities with other works in the definition of synapses
[14], and the computational model of the neurons [6]. In contrast to the majority
of hippocampal models, a separate module is employed to represent each area
of hippocampus and neocortex.

Synapse Definition Each cortical computational module consists of a popula-
tion of excitatory and inhibitory neurons. A rectangular plane with both sets of
neurons uniformly distributed simulates the cortical area. Thus, an excitatory
and inhibitory grid is defined on the cortical plane with each neuron occupying
a predefined position. In order to achieve common spatial properties for neurons
in the middle and neurons in the borders of the plane, we assume that opposite
planar sides are met and the neurons near by can be connected. Interconnectivity
of neurons follows the general rule of locality [14] for short and long range in-
teractions. Short-range interaction concerns the intracortical connectivity while
long-range the cortico-cortical connectivity.

The local intracortical connectivity is expressed by the rule that close neurons
are more likely to be connected. It is simulated with a stochastic gaussian linking.

2
If d is the distance of neurons a,b then ¢t = e+ defines the probability of synaptic
connection for those neurons. Variance o determines the sharpness of synaptic
connection. Using a random number r € [0,1] a synapse from a to b is defined
if r < t. The synapse is assigned with a random weight wg; € [0, 1] to represent
its strength. The same process is repeated for all pairs of neurons (excitatory to
excitatory, excitatory to inhibitory, inhibitory to excitatory) to define the local
connectivity within a cortical module. We assume that inhibitory neurons are
used to enforce separability within local planar areas, thus inhibitory-inhibitory
synapses are not used, and only three different sets of synapses are defined WFF,
WEI WIE In that way, bi-directionally neural pairs can be defined, with the
flexibility of different weight in each direction.

Long range cortical connectivity follows the general rule that neighbouring
cells project to neighbouring areas. This is simulated in our model by a gaus-
sian stochastic projection. Thus, different cortical modules are connected using
their spatial properties inherited by the planar model. Interconnectivity of mod-
ules concerns linking of the respective excitatory neurons and defines one-way
synapses. For each cortical module B, which receives afferent projection from
a module A, a set of input neurons Inp is defined, equal to the number of ex-
citatory neurons in module A. They are located in the same positions as their
respective excitatory neurons in module A. The connectivity from input neuron
a to excitatory neuron b is defined by employing the same gaussian stochastic
linking described above, with o,pr connectivity variance. Thus a set of input
synapses V with random synaptic weights is defined in module B.

Neuron Model All neurons of the cortical module, follow a modified version of
the Wilson-Cowan neuronal model, similar to [6]. Let p represent the potential,
and q the activation of a neuron. The potential of each neuron is updated based
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on the afferent input information, and the excitatory and inhibitory signals ac-
cepted by neighbouring neurons. This is expressed mathematically, in a single
form for both excitatory and inhibitory neurons, by:

%Apb =—pp+ Z VabiNPa + Z WapGa + Z WapGa — Z Wabqa

Vap EV wap EWEE wap EWET wap EWIE
(2)

where u presents the membrane time constant. Then, the activation of the neuron
is defined using the non-linear sigmoid function

_ 1
T 14 eape—0)

3)

qb

where 3 stands for the threshold, and « is the slope of the activation function.

Learning Rules A learning process adjusts the initially random strength of
synapses to encode the spatial properties of the environment. We have used
four biologically plausible Hebbian-like rules to train cortical modules. Principal
Component Analysis rule is used to maximize information flow within neurons,
while Anti-Hebbian learning gives us the possibility to develop a novelty detec-
tion mechanism. We have also used Postsynaptic and Presynaptic rules, which
simulate the biological heterosynaptic and homosynaptic learning. The pure Heb-
bian rule is not used here, to avoid monotonic changes in synaptic efficacy. Thus
synaptic weights can be freely adjusted in the range [0,1]. Assuming that there
is a synapse with strength z,; from neuron @ with activation ¢, to neuron b with
activation ¢, then learning rules are described bellow.

— PCA Rule [15]: This well known rule has the effect of adjusting the weights
to pass the principal component of presynaptic activation to postsynaptic
unit. The mathematical expression of the rule is Az, = q5(¢a — @v2an)-

— AntiHebbian Rule [16]: It adjusts synaptic strength to decorrelate neurons
a,b. The mathematical expression of the rule is Az, = &k + %, where
k > 0 is a small forgetting factor, to avoid vanishing.

— PostSynaptic Rule [17]: Generally it increases the synaptic weight, but it can
decrease it when postsynaptic unit is active and the presynaptic unit is not.
Its mathematical expression is Azup = 245(qa — 1.0)gp + (1.0 — 24p)qaQp-

— PreSynaptic Rule [17]: Generally it increases the synaptic weight, but it can
decrease it when presynaptic unit is active and the postsynaptic unit is not.
Its mathematical expression is Azup = zep(qp — 1.0)qs + (1.0 — 245)Gaqe-

3 Experimental Results

In order to evaluate our neocortical-hippocampal model we have tested it on
a simulated Khepera robot. We have used a modified version of the khepera
simulator, with uniformly distributed sensors and similar range of view for both
light and distance sensors. The goal of our experiments was to implement a self-
localization process of the robot in the environment, based on the familiarities
detected in the neocortical structure, and the recall of location by hippocampus.
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We have performed numerous tests of our model, with a large range of pa-
rameter values. In all cases, the results obtained have shown the validity of our
model. In the following we present a detailed sample experiment. We specify the
actual experimental setup and then report on the obtained results.

3.1 Experimental Setup

Our model (Fig. 1) receives information from 8 distance and 8 light sensors,
which are uniformly distributed in a circle around the robot. This somatotopic
relation is preserved in the Sensory Cortex, similar to mammals. Each sensor
is assigned a position in a circle of the Distance or Light Sensory cortex. Both
circles have diameter of 60, and a random centre. Then, environmental infor-
mation is transformed from egocentric to allocentric measures using the process
described in section 2.1. Both of the allocentric Distance and Light Sensory Cor-
tex are projected to AC and then to hippocampus via EC. After hippocampal
processing, recalled memory is projected back to AC, again via EC. The vari-
ances orppr employed for the cortico-cortical projections are shown in Table 1.

We use planes of common size 100 x 100 distance units for all cortical mod-
ules. The numder of excitatory and inhibitory neurons (ExcN, InhN) used in
each cortical module is shown in Table 2. Similar to actual biological models,
the number of excitatory neurons is much larger than the inhibitory. To avoid
equality of hippocampal cortical modules, neuron locations are perturbated by
a rectangular noise of length 6 in each side. The same table shows the rest of the
parameters used for cortical module construction. All modules have a small num-
ber of recurrent interconnections within excitatory neurons depending on ogp.
These neural connections simulate synapses within cortical layers. However, in
CA3 a large value of ogg is used to simulate high recurrent connectivity within
CA3 pyramidal cells. The connectivity within excitatory and inhibitory neurons
is defined by ogy, org. It is clear that excitatory and inhibitory neurons have
a local and global effect, respectively. This model of local excitation (through
excitatory neurons) and global inhibition (through inhibitory neurons), imposes
competition within different areas of the cortical plane.

The neurons in most modules have relatively high values of potential change i
to capture the fast environmental changes, together with a high slope a for sharp
representation. Only CA3 neurons have a large range of variance in potential
change to explore temporal relations (some neurons are updated rapidly and
some others very slowly). This fact, in conjunction with the large number of
synapses in CA3, allows a spatio-temporal relational processing in this module.
The thresholds in each module have been set experimentally and do not have a
special biological meaning.

Different learning rules were used to adjust the various types of synapses in
each module. Similar to the learning functionality of neocortex and hippocam-
pus, we assume that hippocampus is specialized for rapid memorization, while
neocortex is specialized for slowly learning about statistical regularities in the
environment. Thus, the learning rate for AC was set to 0.01, while hippocampal
structures learned with a three times faster rate. Learning rules applied in each
module are shown in Table 3. Since PCA rule adjust synaptic weight to obtain
large information flow, it is used in the input synapses of most modules. Post-
synaptic rule is used in CA3 input to allow EC and DG structures to modulate
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Table 1. Variances ornpr used for the definition of synaptic projections within layers.
DSC and LSC stands for Distance and Light Sensory Cortex, respectively

DSC LSC AC EC DG CA3 CA1l

AC 15 15 - 10 - - -
EC - - 10 - - - 10
DG - - - 10 - - -
CA3 - - - 12 10 - -
CAl1l - - - 12 - 10 -

Table 2. The parameters used for the construction of cortical modules. Each neuron
of a module gets a random value of potential change p in the defined range

ExcN InhN ogg orr o p a p
AC 64 36 10 20 30 [0.8-0.9] 2.5 1.8
EC 49 25 12 15 20 [0.7-0.8] 3.0 1.2

CA3 49 25 20 25 30 [0.2-0.9] 2.0 0.8

|

DG 49 25 12 15 20 [0.7-0.9] 3.0 0.5
]

CAl 49 25 10 15 25 [0.8-0.9] 3.0 04

its activity based on their activation. Postsynaptic rule has a disjunctive effect
when it is used in EE synapses, while Presynaptic rule has a conjunctive func-
tionality. Antihebbian rule enforces decorrelation within neurons, and it is used
here similar to [16] as a novelty detector. The forgetting factor k& was set to 0.05.
PCA rule is used in EI synapses with a sharp inhibitory effect while Postsynaptic
rule with a more smooth one. Similarly, PCA enforces sharp inhibition when it
is used in IE synapses, while Presynaptic rule performs smooth inhibition.

Table 3. Each cortical computational module uses a different set of learning rules to
adjust synaptic weight.

Input-Exc. Exc.-Exc. Exc.-Inh. Inh.-Exc.

AC PCA PreSyn.  PostSyn. PreSyn.
EC PCA PostSyn. PCA PreSyn.
DG PCA AntiHeb. PCA PCA
CA3 PostSyn.  PostSyn. PostSyn. PreSyn.
CAl1 PCA PostSyn. PCA PCA

It should be noted that the experimental setup described here is by no means
bound to the specific parameter values that are detailed. The later are enumer-
ated for the completeness of the presentation of experimental results. Indeed, we
have verified experimentally that these parameters can vary with practically no
effect on the performance of the proposed model.
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Fig. 2. Results of Self-localization via place-cell development in (a) CAl and, (b) AC

3.2 Findings

In our experiment, we set the simulated robot to move around in the environment
in a wonder mode for 10000 steps. The range of view of the robot was limited
to a maximum of two sides at a time (those which are vertically connected).
We have used an environmental shape with many angles to enforce the locality
of robot view. Also, two light sources were used, to mix stimuli from different
sensors. The simulated workspace employed is depicted in the middle of Fig 2;
each light source is represented on it by a yellow oval.

The results of place cell development in CA1 for different locations (those
marked with the numbers 1 through 9) are shown in Fig 2(a). Evidently, these
results indicate the effective development of place cells in CA1l and compare
promisingly to other results from the literature [2],[6]. Furthermore, similar neu-
ral firing is present in the other areas of hippocampal system (EC,DG,CA3).

The recalled locations are also transfered to AC (Fig 2(b)) and are readily
available for further use (e.g. motor control). The activation in this module is
generally higher since it is directly connected to environmental stimuli. How-
ever, its activation is modulated by the knowledge in hippocampal system. It
is clear, that even if the somatotopic relation of sensory stimuli is preserved,
learning results do not consist a pure circular projection of environmental in-
formation within cortical layers. Learning rules together with inter- and intra-
cortical synapses perform the appropriate transformations to store feature re-
lations in synaptic weights. We believe that this novel result, i.e. transfer of
recalled location to AC, confirms the validity and suitability of the proposed
model. Additionally, in order to test the stability of our model we let the robot
run for 50000 steps and we got very similar results.

4 Conclusions

We have presented a model of neocortical-hippocampal cooperation and its ap-
plication to self-localization. It is based on a general computational module to
represent all cortical areas. Our approach complies with the main structural,
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functioning and learning properties of the mammalian cortex, constituting it a
biologically plausible model. The introduced model has been successfully tested
in the development of place cells for localization, similarly to the mammalian
hippocampus. Moreover, this knowledge is also projected to neocortex for fur-
ther use. Since AC in mammals is one of the areas which relate sensory and
motor processing, our future work aims at the use of spatial knowledge for ac-
tion planning in the motor cortex. Furthermore we believe that our model is also
able to encode general events within episodes (not only spatial) since it stores
the relations between features.
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