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Abstract- The current work addresses the development
of cognitive abilities in artificial organisms. In the pro-
posed approach, neural network-based agent structures
are employed to represent distinct brain areas. We in-
troduce a Hierarchical Collaborative CoEvolutionary
(HCCE) approach to design autonomous, yet cooper-
ating agents. Thus, partial brain models consisting of
many substructures can be designed. Replication of le-
sion studies is used as a means to increase reliability of
brain model, highlighting the distinct roles of agents.
The HCCE is appropriately designed to support system-
atic modelling of brain structures, able to reproduce bi-
ological lesion data. The proposed approach effectively
designs cooperating agents by considering the desired
pre- and post- lesion performance of the model. In order
to verify and asses the implemented model, the latter is
embedded in a robotic platform to facilitate its behav-
ioral capabilities.

1 Introduction

Cognitive abilities of animals are supported by the perfor-
mance of their Central Nervous System (CNS), which con-
sists of several interconnected modules with different func-
tionalities [1]. Even if the detailed, exact properties of
each brain area are not clear yet, many computational mod-
els have been proposed capturing their basic characteristics
[2, 3, 4, 5]. These efforts support the long-term vision of
developing artificial organisms with mammal-like cognitive
abilities.

We have recently introduced a systematic method to de-
sign computational models of partial CNS structures [6, 7].
In accordance to the distributed organization of the mam-
malian CNS, an agent-based modelling approach is fol-
lowed to enforce the autonomy of brain areas. Specifically,
the model consists of a collection of neural network agents,
each one representing a CNS area.

Similarly to an epigenetic learning process, the perfor-
mance of agents is specified by environmental interaction.
The dynamics of epigenetic learning are designed by an
evolutionary process which simulates phylogenesis, similar
to [8, 9]. Following the phylogenetic/epigenetic approach,
the objective adopted during the evolution of agents, is to
furnish them with abilities to develop similar performance
to the respective brain areas, after a certain amount of envi-
ronmental interaction. As a result, both genetically encoded
features and subjective experience have their own role in the

formation of model’s performance.
Instead of using a unimodal evolutionary process we em-

ploy a collaborative coevolutionary approach which is able
to highlight the specialties of brain areas represented by dis-
tinct agents [10]. Additionally, the coevolutionary approach
facilitates the integrated performance of substructures in the
composite model. The combination of these two particular
features (partial autonomy and collaborative performance)
in a single design method seems particularly appropriate for
brain modelling.

In the present work, we propose a hierarchical exten-
sion of this approach, which exploits the inherent ability
of coevolutionary methods to integrate partial structures.
We introduce a Hierarchical Colaborative CoEvolutionary
(HCCE) scheme which supports the coevolution of a large
number of species (populations). Specifically, evolutionary
processes at lower levels are driven by their own dynam-
ics to fulfill the special objectives of each brain area. The
evolutionary process at the higher levels, tunes lower level
coevolutionary processes to achieve the integrated perfor-
mance of partial structures. The architecture of multiple co-
evolutionary processes tuned by a higher level evolution can
be repeated for as many levels as necessary, forming a tree
hierarchy.

It should be noted that the composite model does not
have to perform in a hierarchical mode. The performance
of partial CNS structures can be either hierarchical or com-
pletely parallel, depending on the biological prototype.
Hence, the hierarchical coevolutionary approach does not
imply any further constraints. It is introduced only to sup-
port the design process of brain modelling.

Furthermore, following recent trends aiming at the study
of computational models in lesion conditions [11, 12, 13],
we adapt our method to accomplish systematic modelling of
biological lesion experiments. The agent-based representa-
tion of brain areas facilitates lesion simulation by simply
deactivating appropriate agent structures. Thus, the perfor-
mance of the model in pre- and post- lesion conditions can
be tested. Furthermore, appropriate fitness functions can
be specified for the evolution of partial structures, to indi-
cate the performance of the model when all substructures
are present, and also indicate the performance when some
partial structures are eliminated. Following this approach,
biological lesion data can be considered during the coevo-
lutionary design process, while the computational structures
are properly formulated to replicate pre- and post- lesion
performance of the biological prototype. Consequently, in-



creased reliability is offered to the final model.
The rest of the paper is organized as follows. In the next

section, we present the structure of neural agents employed
for the representation of CNS areas. In section 3 we intro-
duce the hierarchical collaborative coevolutionary scheme
which supports agents’ design. The results of the proposed
approach in a brain modelling task are presented in sec-
tion 4. Specifically we demonstrate the design of a com-
putational model of posterior parietal cortex (PPC) - pre-
frontal cortex (PFC) - primary motor cortex (M1) - spinal
cord (SC) interactions in the mammalian brain. The model
is embedded in a robotic platform, to support environmen-
tal interaction and prove the validity of results. The model
emphasizes on working memory usage in delayed response
tasks, replicating the performance of the biological proto-
type in pre- and post- lesion conditions. Finally, conclu-
sions and suggestions for future work are drawn in the last
section.

2 Computational Model

We implement two different neural agents, to supply a gen-
eral computational framework: (i) a cortical agent to repre-
sent brain areas, and (ii) a link agent to support information
flow across cortical modules.

2.1 Link Agent

The structure of link agent is appropriately designed to sup-
port connectivity among cortical modules. Using the link
agent any two cortical modules can be connected, simulat-
ing the connectivity of brain areas.

Each link agent is specified by the projecting axons be-
tween two cortical agents (Fig 1(a)). Its formation is based
on the representation of cortical modules by planes with ex-
citatory and inhibitory neurons (see below). Only excitatory
neurons are used as outputs of the efferent cortical agent.
The axons of projecting neurons are defined by their(x, y)
coordinates on the receiving plane. Cortical planes have a
predefined dimension and thus projecting axons are deacti-
vated if they exceed the borders of the plane. This is illus-
trated graphically in Fig 1(a), where only the active projec-
tions are represented with an× on their termination. As a
result, the proposed link structure facilitates the connectiv-
ity of sending and receiving cortical agents supporting their
combined performance.

2.2 Cortical Agent

Each cortical agent is represented by a rectangular plane. A
cortical agent consists of a predefined population of exci-
tatory and inhibitory neurons, which all follow the Wilson-
Cowan model with sigmoid activation as it is described in
[6]. Both sets of neurons, are uniformly distributed, defin-
ing an excitatory and an inhibitory grid on the cortical plane.
On the same plane there are also located the axon terminals
from the efferent projected cortical agents.

All neurons receive input information either from i) pro-
jecting axons, or ii) excitatory neighboring neurons, or iii)
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Figure 1: Schematic representation of the computational
model. Part (a) illustrates a link agent which supports in-
formation flow from cortical agent A to B. Part (b) illus-
trates synapse definition in cortical agent B. Neighborhood
radius for i) afferent axons is illustrated by a solid line, for
ii) neighboring excitatory neurons by a dashed line, and for
iii) neighboring inhibitory neurons by a dotted line. Sample
neighborhoods for excitatory neurons are illustrated with
grey, while neighborhoods for inhibitory neurons are illus-
trated with black.

inhibitory neighboring neurons. The connectivity of neu-
rons follows the general rule of locality. Synapse formation
is based on circular neighborhood measures. A separate ra-
dius for each of the three synapse types, defines the connec-
tivity of neurons. This is illustrated graphically in Fig 1(b),
which further explains the example of Fig 1(a). All excita-
tory neurons share common neighborhood measures. The
same is also true for all inhibitory neurons.

The performance of cortical agents is adjusted by the ex-
periences of the artificial organism obtained through envi-
ronmental interaction, similar to epigenetic1 learning [14].
To enforce experience-based subjective learning, each set
of synapses is assigned a Hebbian-like learning rule defin-
ing the self-organization internal dynamics of the agent. We
have implemented a pool of 10 Hebbian-like rules that can
be appropriately combined to produce a wide range of func-
tionalities. The employed learning rules are the union of
those employed in [15, 6], and thus they are omitted here
due to space limitation. Agent’s plasticity allows synap-
tic adjustments at run-time based on environmental interac-
tion. This is in contrast to the most common alternative of
genetically-encoded synaptic strengths which prevents ex-
perience based learning.

3 Hierarchical Collaborative CoEvolution
(HCCE)

Similar to a phylogenetic process the specification of pa-
rameter values for all agents is approached in a systematic
way by using an evolutionary mechanism, as it has been
suggested in [8, 9]. However, using a unimodal evolution-

1Epigenesis here, includes all learning processes during lifetime.



ary approach, it is not possible to explore effectively partial
solutions, which correspond to brain structures.

To alleviate for that, coevolutionary algorithms have
been recently proposed that facilitate exploration, in prob-
lems consisting of many decomposable subcomponents
[10]. They involve two or more coevolved populations with
interactive performance. Distinct populations are usually
referred asspeciesin the coevolutionary literature, and thus
this term will be employed henceforth.

The brain modelling problem fits very well to coevolu-
tionary approaches, because separate coevolved species can
be used to perform design decisions for each partial model
of a brain area. As a result, reliable models can be imple-
mented, because both the special features of each area and
the cooperation within computational brain modules can be
highlighted.

We have presented a new evolutionary scheme to im-
prove the performance of collaborative coevolutionary al-
gorithms, by explicitly addressing the collaborator selection
issue [6, 7]. The present work extents this scheme to a hier-
archical multi-level architecture. Our method combines the
hierarchical evolutionary approach [16], with the mainte-
nance of successful collaborator assemblies [17], to develop
a powerful coevolutionary scheme.

We employ two different kinds of species to support the
coevolutionary process encoding the configurations of ei-
ther a Primitive agent Structure (PS) or a Coevolved agent
Group (CG). PS species specify partial elements of the
model, encoding the exact structure of either cortical or link
agents. A CG consists of groups of PSs with common ob-
jectives. Thus, CGs specify configurations of partial solu-
tions by encoding individual assemblies of cortical and link
agents. The evolution of CG modulates partly the evolu-
tionary process of its lower level PS species to enforce their
cooperative performance. A CG can also be a member of
another CG. Consequently several CGs can be organized hi-
erarchically in a tree-like architecture, with the higher levels
enforcing the cooperation of the lower ones.

The HCCE-based design method for brain modelling is
demonstrated by means of an example (Fig 2). We assume
the existence of two cortical agents connected by three link
agents representing their afferent and efferent projections
(Fig 2(a)). One hypothetical HCCE process employed to
specify agent structure is illustrated in (Fig 2(b)).

Similar to [16, 6] all individuals in all species are as-
signed an identification number which is preserved during
the coevolutionary process. The identification number is
employed to form individual assemblies within different
species. Each variable in the genome of a CG is joined
with one lower level CG or PS species. The value of that
variable can be any identification number of the individuals
from the species it is joined with. PSs encode the structure
of either cortical or link agents. The details of the encoding
have been presented in [6, 7], and thus they are omitted here
due to space limitations. CGs enforce cooperation of PS
structures by selecting the appropriate cooperable individ-
uals among species. Additionally, a new genetic operator,
termed Replication [6], exploits the most able to cooperate
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Figure 2: Hierarchical collaborative coevolutionary design
of agents. Part (a) represents schematically a hypothetical
connectivity of agents. Part (b) represents the hierarchical
coevolutionary scheme utilized to evolve partial structures.
CGs are illustrated with oval boxes, while PSs are repre-
sented by ovals.
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Figure 3: An overview of the hierarchical coevolutionary
scheme, with CG species tuning the evolutionary processes
of PS species. Identification numbers are represented with
an oval.

individuals in each partial species. A snapshot of the exem-
plar HCCE process described above is illustrated in (Fig 3).

In order to test the performance of a complete problem
solution, populations are sequentially accessed starting by
the higher level. The values of CG individuals at various
levels are used as guides to select collaborators among PS
species. Then, PS individuals are decoded to specify the
structure of cortical and link agents, and the performance of
the proposed overall solution is tested on the desired task.

The proposed hierarchical scheme is able to support the
simulation of lesion conditions which is a typical case for
biological experiments. Specifically, by deactivating a CG
together with the PS structures corresponding to its lower
level species, we can easily simulate lesion of the respec-
tive brain areas. As a result, all necessary lesion conditions
can be considered during the evolutionary process, and the
role of each partial structures in the composite model can be
highlighted.

Furthermore, even if the majority of existing collabora-



tive coevolutionary methods assume that all species share
a common fitness function [18, 19, 20], our method allows
the employment of separate fitness measures for different
species. This matches adequately to the distributed agent-
based modelling of brain areas, because different objectives
can be defined for each partial structure preserving their au-
tonomy. This special feature of HCCE, facilitates addition-
ally the modelling of biological lesion data, because prop-
erly formulated fitness functions can be utilized to specify
the desired pre- and post- lesion performance of the model.

For each speciess, a fitness functionfs is designed to
drive its evolution. All PS species strictly under a CG (that
is PSs that have level difference 1 from the CG) share a
commonfs. The fitness function is formulated to evaluate
the performance of the model in different conditions, which
corresponds to the pre- and post- lesion state of the model.
Specifically a partial fitness functionfs,t evaluates the abil-
ity of an individual to serve taskt, while the overall fitness
function is estimated by:

fs =
∏

t

fs,t (1)

Furthermore, the collaborator selection process at the
higher levels of hierarchical coevolution will probably se-
lect an individual to participate in many assemblies. (e.g.
the case of individual 28 of PS species L1, of Fig 3). Let
us assume that an individual participates inK assemblies
which means that it will getK fitness valuesfs,t on its
ability to serve taskt. Then, similar to most existing co-
evolutionary approaches the individual will be assigned, the
maximum of the fitness values achieved by all the solutions
formed with its membership:

fs,t = maxk{fk
s,t} (2)

wherefk
s,t is the fitness value of thek-th (k = 1...K) so-

lution formed with the membership of the individual under
discussion. This value represents the ability of the individ-
ual to support the accomplishment of thet-th task.

The above equations describe fitness assignment in each
species of the hierarchical coevolutionary process. Just af-
ter the testing of collaborator assemblies and the assignment
of their fitness values, an evolutionary step is performed on
each species independently, to formulate the new genera-
tion of its individuals. First, individuals of the species are
sorted according to their fitness values. Then, a predefined
percentage of individuals are probabilistically crossed over.
An individual selects its mate from the whole population,
based on their accumulative probabilities. Finally, muta-
tion is performed in a small percentage of the resulted pop-
ulation. This process is repeated for a predefined number
of evolutionary epochs, driving each species to the accom-
plishment of each own objectives and additionally enforcing
their composite cooperative performance.

4 Results

The effectiveness of the proposed approach is illustrated on
the design of a partial brain computational model, which
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Figure 4: A schematic overview of the Primary Motor Cor-
tex model. Cortical agents are illustrated with blocks, while
link agents are illustrated with a double arrow.

simulates posterior parietal cortex (PPC) - prefrontal cortex
(PFC) - primary motor cortex (M1) - spinal cord (SC) in-
teractions, emphasizing on working memory (WM) usage
(Fig 4). We note that the proposed model does not aim to be
a detailed replica of the biological prototype (e.g. premotor
areas are not represented), but it serves as a guide on how
the proposed computational framework can be employed to
support brain modelling.

In order to design a reliable model, we focus on the dis-
tinct role of each area in the mammalian brain. Several
years of experimentation with biological organisms in de-
layed response (DR) tasks, has shed light on their behavioral
organization [21]. M1 encodes primitive motor commands
which are expressed to actions by means of SC. PPC-PFC
reciprocal interaction operates in a higher level encoding
WM [22], to develop plans regarding future actions. PFC
activation is then passed to M1 which modulates its perfor-
mance accordingly. As a result, all the above mentioned
structures cooperate for the accomplishment of a DR task
by the organism. Additionally, several experiments high-
light the performance of these structures in lesion condi-
tions. Specifically, PFC lesion affects planing ability of the
organism, resulting in purposeless motion [23], while M1
lesion eliminates motion ability of the organism [1].

Computational models regarding the structures under
discussion have been also presented in the literature. For
example computational models of M1 have been developed
in [2, 4], which however, do not emphasize on the self-
organized understanding of environmental characteristics
by the robot. Existing PFC computational models empha-
size on WM activity by means of recurrent circuits [22, 24].
However, these models are not operative, in the sense that
they are not linked to other structures to affect their perfor-
mance. A computational model aiming at the accomplish-
ment of memory guided tasks has been proposed in [25],
which however employs a compact artificial neural network
structure, without specific assumptions for the performance
of partial brain areas.

The present work employs the hierarchical collaborative
coevolutionary approach to design a model of the areas un-
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der discussion, which performs in real-time. In this en-
deavor, environmental interaction is of utmost importance,
since it is difficult to investigate CNS areas functionality
without embedding the models into a body to interact with
its environment. Thus, a simulated mobile robot is utilized
to support environmental interaction, while at the same time
the model enriches the behavioral repertory of the robot.
Specifically, we employ a two wheeled simulated robotic
platform equipped with 8 uniformly distributed distance and
light sensors.

The experimental process aims at reproducing a lesion
scenario which is in agreement to the biological data pre-
sented above. The composite computational model aims at
the accomplishment of a DR task, developing a behavior
similar to the one described in pre-lesion performance of
animals [21]. This is further supported by two partial be-
haviors. The first accounts for the development of WM-like
activation in PPC-PFC which are the brain structures most
closely linked to WM [22]. The second accounts for pur-
poseless motion by M1 when lesion occurs on the higher
level structures [23]. Both partial and composite models are
embedded on the robotic platform to furnish it with cogni-
tive abilities and prove the validity of results.

The employed scenario is properly adjusted to the needs
of robotic applications. Three tasks are designed to demon-
strate the effectiveness of the computational procedure and
also highlight the role of each agent in the model.

The first taskT1, accounts for primitive motion abili-
ties without purposeful planning. For mobile robots, a task
with the above characteristics is wall avoidance navigation.
Thus, for the needs of the present study, M1-SC structures
aim at wall avoidance navigation. The successful accom-
plishment of the task is evaluated by the function:

E1 =

(∑

M

(sl + sr − 1) ∗ (1.0− p2)

)

∗
(

1− 2
M

∣∣∣∣∣
∑

M

sl − sr

sl ∗ sr

∣∣∣∣∣

)3

∗
(

1− 2

√
B

M

)3

(3)

where we assume that the robot is tested forM steps,sl, sr
are the instant speeds of the left and right wheel,p is the
maximum instant activation of distance sensors, andB is
the total number of robot bumps. The first term seeks for

forward movement far from the walls, the second supports
straight movement without unreasonable spinning, and the
last term minimizes the number of robot bumps on the walls.

The development of WM-like performance specifies the
second taskT2. Working memory (WM) is the ability
to hold and manipulate goal-related information to guide
forthcoming actions. In the present experiment, a light cue
is presented in the left or right side of the robot. WM per-
formance aims at persistent PFC activity, related each time
to the respective side of light cue presentation.

Two different statesl, r are defined associated to the left
or right side of light source appearance. For each state,
separate activation-averages over the time ofM simulation
steps,aj , are computed, withj identifying excitatory neu-
rons of PFC agent. The formation of WM related to the side
of light cues is evaluated by measuring the persistency of
activation in PFC:

E2 =
1
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(
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whereml, vl, mr, vr are the mean and variance of average
activation at the respective states. The first term seeks for
consistent PFC activation, and the second supports the de-
velopment of a distinct set of active neurons for each state.

Finally, a third taskT3, aims to combine the above be-
haviors formulating a complex model. The successful inter-
action of all partial structures is demonstrated by means of a
delayed response (DR) task. Specifically, a light cue is pre-
sented on the left or right side of the robot. The robot has to
move at the end of a corridor memorizing the side of sample
cue appearance, and then make a choice related to90o turn
left or right, depending on the side of light cue presence.
A target location is defined on each side of the corridor de-
pending on the position of the initial light cue. The robot
has to approximate the target location without crashing on
the walls. The successful approximation to the target loca-
tion is estimated by:

G =
(

1 + 3.0 ∗
(

1− d

D

))3

∗
(

1− 2

√
B

M

)2

(5)

whered is the minimum euclidian distance between the tar-
get and the robot,D is the euclidian distance between the
target and the starting location of the robot, andB is the
total number of robot bumps. The accomplishment ofT3
is evaluated by means of two subtasks testing separately the
right or left turn of the robot for the respective positions of
the light cue, employing each time the appropriate target lo-
cation:

E3 = Gl ∗Gr (6)

We turn now at the design of the model by means of the
HCCE process. In accordance to the lesion experiment fol-
lowed in the present study, each agent needs to serve more
than one tasks. This guides the classification of the respec-
tive PSs in CGs. The tasks served by each group of agents



are illustrated in (Fig 5), at the right side of each CG. Specif-
ically, the structures underCG1 are related to M1-SC inter-
actions, and they need to serve both the wall avoidance and
the delayed response task. The structures underCG2 are re-
lated to PFC and its afferent and efferent projections, which
need to serve working memory persistent activation, and the
delayed response task. The structures underCG3 are re-
lated to PPC and its afferent projections which have to sup-
port working memory activation only (CG2 structures are
responsible for the proper formulation on working memory
and its projection to M1). Finally, a top level CG is em-
ployed to enforce cooperation within partial configurations
aiming to support the accomplishment of all the three tasks.

The testing phase for the individuals of the coevolu-
tionary scheme proceeds as follows. The top level species
is sequentially accessed. Each individual ofCG4, guides
collaborator selection among its lower level CG and PS
species. Individuals of PS species are decoded to detailed
agent structures. The composite model is tested on the ac-
complishment of DR taskT3. Next, PPC-PFC interaction is
isolated by deactivating the agents underCG1. The remain-
ing structures are tested on working memory taskT2. Fi-
nally, CG1 agents are activated back, and nowCG2 struc-
tures are deactivated to simulate PFC lesion. The remaining
agents are tested on the accomplishment of wall avoidance
navigation.

The fitness functions which guide the evolution of
species are designed accordingly to support the accomplish-
ment of the respective tasks. Individuals are assigned a
combination of evaluation indexes, for the accomplishment
of tasks where the composite model is performing, and the
accomplishment of tasks with performance of the elimi-
nated model. It is reminded that all PSs share the same
fitness functions with their higher level CG.

The agent structures grouped underCG1 serve the suc-
cess on tasksT1, T3. Thus, the fitness function employed
for the evolution ofCG1 and its lower level species is based
on the measures evaluating the success of the respective
tasks. Following the formulation introduced in eqs. (1),
(2):

fCG1 = fCG1,T1 ∗ fCG1,T3 with
fk

CG1,T1 = E1, fk
CG1,T3 =

√
E3

(7)

wherek represents each membership of an individual in a
proposed solution.

Similarly, CG2 design aims to support both the accom-
plishment ofT2 andT3 tasks. Thus, the fitness function
which guides the evolutionary process is defined by means
of the respective evaluation measures:

fCG2 = fCG2,T2 ∗ fCG2,T3 with,
fk

CG2,T2 = E2
2, fk

CG2,T3 =
√

E3
(8)

wherek is as above.
The third groupCG3, consists of PPC and all link agents

projecting on it. These structures need to serve only the
development of working memory activation in PFC. Thus,
the objective ofCG3 design, is the accomplishment ofT2.
The fitness function employed for the evolution ofCG3 is

Figure 6: A sample result of robot performance, driven by
M1-SC. The robot moves in a purposeless mode without
bumping on the walls.

defined by:
fCG3 = fCG3,T2 with,
fk

CG3,T2 = E2
(9)

wherek is as above.
Additionally, the top level evolutionary processCG4,

enforce the integration of partial configurations in a com-
posite model, aiming at the successful accomplishment of
all the three tasks. Thus, the top levelCG4 consists of
all lower level CGs. The fitness function employed for the
evolution ofCG4 supports the concurrent success on wall
avoidance taskT1, working memory taskT2, and DR task
T3. It is defined accordingly, following the formulation in-
troduced in eqs. (1), (2), by:

fCG4 = fCG4,T1 ∗ fCG4,T2 ∗ fCG4,T3 with,
fk

CG4,T1 =
√

E1, fk
CG4,T2 = E2

2, fk
CG4,T3 = E3

(10)
wherek is as above.

The exact formulation of the above fitness functions (eqs
(7) - (10))is a result of a trial and error procedure. Follow-
ing this approach, different species enforce the accomplish-
ment of each task with a different weight. For example,
compared toCG1, the fitness function which guidesCG4
evolution, enforce more the relative accomplishment ofT3
thanT1 (see definitions offk

CG1,T1 - fk
CG1,T3 andfk

CG4,T1

- fk
CG4,T3).
The coevolutionary process described above employed

populations of 200 individuals for all PS species, 300 indi-
viduals forCG1, CG2, CG3, and 400 individuals forCG4.
Additionally, an elitist evolutionary strategy was followed
in each evolutionary step with the 7 best individuals of each
species, copied unchanged in the respective new generation,
supporting the robustness of the evolutionary process. As a
result, after 200 evolutionary epochs the process converged
successfully and the cooperation of agent structures with
completely different objectives (e.g. those underCG1 and
those underCG3) is achieved.

Sample results of robot performance on each task are il-
lustrated in Figs 6, 7, 8. As it is indicated by the lesion
scenario, M1-SC are able to drive the robot in a purpose-



Light Position 1 Light Position 2 

Figure 7: The average activation of 16 excitatory neurons
at PFC, for each light position. Activation is demonstrated
with levels of grey.

Figure 8: A sample result of robot performance in the de-
layed match-to-sample task, for two different sides of light
cue presence. Goal positions are illustrated with double cir-
cles.

less manner, following a wall avoidance policy (Fig 6). At
the same time, PPC-PFC interactions are able to encode the
side of light cue appearance and memorize it for a brief fu-
ture period (Fig 7). Moreover, the composite model com-
bines successfully the performance of partial structures to
accomplish the DR task (Fig 8).

Consequently, the results observed by biological lesion
experiments related to delayed response tasks, are success-
fully replicated by the model. This is achieved by means
of the powerful HCCE process, which specifies the perfor-
mance of the model in pre- and post- lesion conditions. By
simulating lesion effects in biological organisms, realistic
models can be developed, while at the same time, the role
of each agent in the composite model can be highlighted.

5 Conclusions

The work described in this paper, addresses the develop-
ment of cognitive abilities in artificial organisms by means
of brain modelling. Specifically, we introduce a systematic
computational framework for the design and implementa-
tion of brain models.

The proposed approach is based on the employment of
neural agent modules to represent brain areas, which are
connected using appropriate link agent structures. The
agent-based modelling is in accordance to the distributed
nature of mammalian CNS. Furthermore, it facilitates the
autonomy of brain areas, and consequently allows the in-
vestigation of model performance in lesion conditions sup-
porting its reliability.

Agent structures are adjusted in real-time by following
a self-organized process which simulates epigenetic learn-
ing of biological organisms. The dynamics of epigenetic
learning are designed following an evolutionary approach
which simulates phylogenesis. As a result, both genetically
encoded features and environmental experience specify the
performance of the model.

We employ a hierarchical collaborative coevolutionary
(HCCE) approach to support design specification of agent
structures. The collaborative coevolutionary process is suit-
able for agents’ design because it offers increased search
abilities of partial components, and is able to emphasize
both the specialty of brain areas and their cooperative per-
formance.

The hierarchical organization of the coevolutionary
process facilitates the elimination of agent structures to sim-
ulate lesion experiments. Thus, the role of each partial
structure in the composite model can be examined. Addi-
tionally, by employing independent fitness functions for the
evolution of each species, HCCE supplies a mechanism to
specify the performance of the model in pre- and post- le-
sion conditions. Consequently, the proposed method seems
particularly appropriate for implementing reliable models
of brain areas, with the ability to replicate biological lesion
data.

Following this approach, the distinct role of each agent
structure in the composite model is highlighted. This has
been confirmed with the results shown in the previous sec-
tion, as well as other results obtained in our experiments
(not presented here due to space limitations). Evidently, fur-
ther work is needed to fully ascertain the general applicabil-
ity and validity of our approach.

We also note that by adopting the coevolutionary method
for design specification, our approach is inherently fur-
nished with the ability to integrate partial brain models. The
proposed hierarchical collaborative coevolutionary scheme
can be also utilized to integrate the performance of partial
brain models, by introducing an appropriate number of ad-
ditional higher level evolutionary process. Thus, the incre-
mental integration of gradually more partial brain models
on top of existing ones constitutes the main direction of our
future work. We believe that by exploiting the proposed
approach, a powerful method to design large scale reliable
brain models can emerge.

Finally, it is noted that the proposed coevolutionary ap-
proach can be also utilized in contexts different than brain
modelling, such as the design of cooperating robot teams,
or the research on economic and social behaviors. Thus, it
can be potentially employed as a general purpose method
for the design of distributed complex systems.
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