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Abstract

In this paper, we present a new learning method for rule-based feed-forward and recurrent fuzzy systems. Recurrent
fuzzy systems have hidden fuzzy variables and can approximate the temporal relation embedded in dynamic processes
of unknown order. The learning method is universal i.e., it selects optimal width and position of Gaussian like
membership functions and it selects a minimal set of fuzzy rules as well as the structure of the rules. A genetic algorithm
(GA) is used to estimate the fuzzy systems which capture low complexity and minimal rule base. Optimization of the
“entropy’’ of a fuzzy rule base leads to a minimal number of rules, of membership functions and of subpremises to-
gether with an optimal input/output (I/O) behavior. Most of the resulting fuzzy systems are comparable to systems
designed by an expert but offers a better performance. The approach is compared to others by a standard benchmark (a
system identification process). Different results for feed-forward and first-order recurrent fuzzy systems with symmetric
and non-symmetric membership functions are presented. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction In most of the automatically learned fuzzy

systems, computational effort is spent in finding

The use of fuzzy systems for automation tasks is
highly increasing within the past decade. Fuzzy
logic controller or fuzzy rule-based systems
(FRBS) provide a formal method for the repre-
sentation and approximation of imprecisely
known relationships by encoding them in the an-
tecedent and consequent parts of rules. The FRBS
models the human decision making process by
means of the collection of rules.
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parameters e.g., fuzzy sets and linguistic terms that
give a desired behavior to the system. On one hand
these standard fuzzy systems are simple feed-for-
ward fuzzy systems (F-FRBS) with a one shot in-
put/output (I/O) structure and with no hidden
fuzzy variables. Nevertheless, it was shown [1-3]
that F-FRBS are universal approximators. A great
number of different optimization approaches for
F-FRBS are known. The book from Herrera and
Verdegay [4] provides a good collection of opti-
mization papers using genetic algorithms (GAs).
On the other hand recurrent fuzzy system (R-
FRBS) i.e., fuzzy systems with hidden variables
are introduced by Bersini and Gorrini in [5]. They
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also present a gradient-based optimization method
to tune the membership functions (MFs).
R-FRBSs are used to model a process of order
superior to one i.e.,

J’<t> :f(x(t_ 1),...,x(t—k)),

where x/y are input/output vectors.

In both types, F-FRBS and R-FRBS, the rules and
the fuzzy sets used in these rules play a crucial role
for the outcome of the system. So, choosing the
right rules and fuzzy sets becomes an important
issue. Furthermore, to choose the parameters the
human decision making process has also to be
considered. Therefore, additional attention has to
be given to the structure of the system. Most of
today’s fuzzy system learning algorithms consider
only one of the above aspects. Particularly, at-
tention is payed only to I/O behavior and not to
minimization of the fuzzy systems. That is, com-
putational effort is spent in estimating parameter
values that give a desired behavior to the system,
while no attention is payed to its structure. How-
ever, sometimes the parametric adjustment of the
selected structure may be too poor. It does not
represent the problem good enough or the be-
havior is satisfactory but the structure is too
complex and the dimension of the problem in-
creases unreasonably. Besides the large tuning
period and the significant amount of wasted re-
sources, a structure of unreasonable high com-
plexity could also lead to biasing effects such as the
well-known over-fitting. It is known [6-8] that a
more simple structure leads to a more robust sys-
tem.

First approaches of structural tuning were
based on classification methods applied to the I/O
space [9]. Some deterministic [10] and neural-based
approaches [11] have also been proposed. Castel-
lano et al. [10] represent the rule base as a tree and
propose a method for adding and deleting subtrees
based on the number of training samples that ac-
tivates each rule subpremise. Gorrini et al. [12] use
a gradient descent technique for tuning the shape
of the MFs and a number of local variables is used
for measuring the systems’ learning ability. New
MFs are added in the areas with the greatest in-
stability.

Except for the widely used gradient-based op-
timization methods which suffer from the local
minimum problem, GAs have been proved to be a
new powerful optimization method able to over-
come the local minimum problem. In 1989, Karr et
al. [13] introduced the use of GAs for fuzzy sys-
tems optimization. Since then, some genetic-based
approaches for structural and parametrical tuning
have been proposed with the aim to design and
optimize fuzzy system e.g., [14-16] or to minimize
the number of MFs per variable by e.g., [17-19]. A
comparative study where genetic parameters effect
the learning of FRBS presented in [20]. Glorennec
[14] suggests a GA based method for fuzzy systems
structural and parametrical tuning. The method
produce fuzzy systems with minimal number of
rules, but it does not focus on the reduction of
membership functions per variable. Wong and
Ling [17] try to eliminate MF’s whose middle value
exceeds the corresponding variable domain during
genetic process. A GA based on virus theory of
evolution is used in [21]. The rule structure is en-
coded in chromosomes, while validity bits are used
to cancel the less significant parts of the rule base.
All of the above methods of parameter optimiza-
tion and system identification are single step
methods. A repetitive method e.g., a method which
cycles between parameter optimization and struc-
ture optimization can be more reliable for struc-
ture identification because further simplification
on the resulting structure can be achieved.

A new approach to optimal fuzzy systems in
which the influence of the entropy of fuzzy rules is
introduced was proposed by Surmann et al.
[22,23]. In contrast to neural approaches minimal
entropy of the FRBS leads to rule bases with ap-
propriated overlapping MFs. The automatic op-
timization of the I/O behavior of a fuzzy system
leads to very width and much overlapping MFs
(e.g., >0.9) so that nearly all fuzzy rules are acti-
vated similar to neurons in a neural network. On
one hand, these fuzzy systems are relatively robust
because one failing fuzzy rule is overlapped by the
other rules. On the other hand these fuzzy systems
tends to the well known over-fitting, which de-
creases the approximation quality. The consider-
ation of the entropy during the optimization
represents the counterpart which prevents that the
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MFs get to width. A compromise between ro-
bustness and overfitting is achieved. The resulting
fuzzy system is much simpler and can be better
understood by the user. Less activated rules leads
together with a fast rule processing algorithm to a
significant saving of computational resources [23].
After the optimization, the MFs are labeled with
linguistic terms according to the order of the
middle points e.g., small, normal, big for three
MFs so that the linguistic rules are achieved. This
rules can be regarded, understand, reused and
maintained by users.

In the following, the notion of minimal entropy
for a FRBS is extended. Based upon this a repet-
itive step by step genetic method is proposed for
both structural and parametrical tuning at the
same time. A supervised learning method is pre-
sented. It is able to generate minimal FRBSs with
an optimal I/O behavior by using appropriate
parameter values. An extension to unsupervised
learning method is simply possible.

The paper is organized as follows. In Section 2,
a brief introduction to F-FRBSs, R-FRBSs and
GAs is presented together with the definition of
optimal FRBS. In Section 3, the genetic procedure
for finding the FRBSs is given. To illustrate the
good basic characteristics of the proposed method
the Box and Jenkins data is used as a standard
benchmark in Section 4. The paper finishes with a
conclusion in Section 5.

2. Basic terms of genetic algorithms and fuzzy rule-
based systems

2.1. Fuzzy rule-based systems

Fuzzy systems are based on Fuzzy Set Theory
[24]. A number of rules is used to model the way
that a system behaves. Fuzzy rules are constructed
in the well-known IF-THEN form. When crisp
values are given as input for an FRBS, they are
converted to degrees of membership in the various
linguistic values used by the system. This normal-
ization process of different universe of discourses
to [0, 1] allows to compare different input values
and to use linguistic concepts like “small”, “near”
or ‘“approximately”. The knowledge representa-

tion in terms of understandable linguistic rules
differs significantly from the black-box approach
used by other methods (e.g., neural networks).

Each set of crisp input values activates a num-
ber of rules to some degree. The degree to which
rules are activated is calculated by combining the
degrees of membership (subpremises) with the
fuzzy AND operator. This leads to the total acti-
vation of the rule. Supposing that the kth rule of
the system is:

k:1F X1 is ]l,k AND X2 is IZ,k AND .. Xy is ]n,k7
THEN y is O,

where x|, ...,x, and y represent input and output
variables and [, ..., 1,x, Oy their respective MFs.
Then, the extent to which a rule is activated is
calculated as:

% = iy, (1) AND gy, (x2) AND - ANDy; (x,).

where i, (x;) is the membership value of x; in the
I fuzzy set. The result of the AND combination is
used as a measure for the truth of the rule where
the AND operation is a T-Norm e.g., minimum.
When a rule is activated with a truth value oy, the
inferencing process states that the MF of the
output set is:

15 (v) = o AND g, (v),

which is the fuzzy result of the rule. Here, the
minimum operator min is used as an AND oper-
ator for both cases.

The total output fuzzy set is calculated by the
compositional rule of inference as:

e () = ! (v)ORUGL (y)OR - - - ORuGL (v),

where it is supposed that the system is described by
K-rules. In order to get a crisp number as output,
usually a defuzzification method is used. The cal-
culation of the fuzzy result function u%!(y) and
the final crisp value is the bottleneck during com-
putation. Therefore, a modified center of gravity
algorithm is used to calculate the area 4; and the
center of area M; of each MF before runtime [25]:
4= [O;(y)dy, M; = [y X pip,(y)dy. The output
value is computed as



652 H. Surmann, M. Maniadakis | Journal of Systems Architecture 47 (2001) 649662

Zz{io % X M;

crisp — . 1
Yerisp Z,{io“iXAi ()

Definition 1 (Fuzzy Rule-Based System). A fuzzy
rule-based system, FRBS=(LV,R,T,I,AGR-DE).
It is a 5-Tupel with a set LV of n linguistic input
variables and m output variables, a set R of k fuzzy
rules of T-Norm T, for the combination of rules
subpremises an Implication strategy [ verifying
1(a,0) =0 if a #0 (e.g., an R-implication or t-
norm), and an aggregation and a defuzzification
strategy AGR-DE. This can be a T-CO-Norm T*,
for the combination of rules output sets, and de-
fuzzyfication strategy DE (e.g., center of gravity,
maximum or FCOG) or the addition/division of

Eq. (1).

Theorem 1 (Universal approximator). Let FRBS
be the set of all FS and f:U CIR" — IR be a
continuous function defined on a compact U. For
each ¢ > 0 there exists an FS. € FRBS such that

sup{lf(¥) — FS.(¥)] [¥e U}<e

Wang [1] or Buckley [2] provide the proof. The
universal approximator theorem is a very good
theoretical results but unfortunately it is not con-
structive, i.e., it cannot be used to get an FRBS
with a predefined error limit e. Usually in real
world, application € is unknown and influence,
e.g., by sensor noise so that it does not make sense
to fix it. Later in this paper will give a hint how to
find appropriate error limits.

2.2. Recurrent fuzzy rule-based systems

Starting from recurrent neural networks, Gorrini
and Bersini introduced in 1994, R-FRBS together
with a gradient-based learning algorithm for
adapting the membership functions to model high
order dynamic processes [5,26]. Independently from
this approach, Surmann et al. [27] used R-FRBS to
model behaviors and the activation of the behaviors
of an autonomous mobile robot. Other recurrent
structures are achieved with recurrent fuzzy neural
networks [28,29]. This neural approaches cannot

find a minimal rule base and/or did not generate
understandable fuzzy rules.

A g-order R-FRBS is characterized by rules in
which one or more state variables s appear both in
premise and consequent parts, like:

k:IF S(t) 1S [Oyk AND X1 1S [l,k AND .. Xy is [n,k7
THEN S(f + 1) is OO,k AND y is Ol,k; (2)

where s(¢) represents the state of the system at time
t, x1,...,x, and y represent input and output
variables and oy, . .., L4, Oox,O1 their respective
MFs. R-FRBSs are used to model a process of
order superior to one i.e.,

y(t) :f(y(t_ 1)7y(t_ 2)7 .- 7y(t_ O-)vxl(t_ 1)
e Xyt = 1), x1(8=2) ..., x,(t — ).

Dynamic processes of order superior to one i.e.,
map their output not only to the current input but
also to previous inputs. The processes are more
difficult to approximate and to control than first-
order processes. One possibility is to know either
the exact order or an over estimation of it, and
then to settle the input of the fuzzy approximator
as a temporal window containing all inputs at all
required time steps. Since mostly the exact order is
unknown the recurrent structure is used where
some variables appear both in the input and out-
put parts. This variables are used as internal
variables and build a short-term-memory (Fig. 1).
If the same input X is presented to a recurrent R-
FRBS, the output y can be different depending on

Hysteresise] _state 2

state 1

> state variable | state variable I}
L feedback 1
<

fuzzy memory

Fig. 1. Example of the R-FRBS of Section 4. With the help of
the internal fuzzy state variables hysteresis loops can be real-
ized. The concept of fuzzy state variable may contain both:
crisp and fuzzy membership functions. A more complex
example can be found in [30].
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the current state s of the internal variables. Hys-
teresis loops can be modeled by the use of hidden
fuzzy variables (Fig. 1). The different curves are
selected according to the state of the hidden vari-
ables. For the controlling of behavior-based au-
tonomous mobile robots [27], the hidden fuzzy
variables are used to select the different behaviors
and to model their temporal activation. The in-
ternal fuzzy variables have their own temporal
dynamics given by the recurrent fuzzy rules. Note
that the fuzzy approach is a generalization of the
crisp one, so that crisp state variables can also be
modeled by fuzzy state (hidden) variables.

2.3. Costs and minimal FRBS

The challenge is to find an automatic learning
algorithm which learns and optimizes the structure
of the fuzzy rule base, the input, output and hid-
den variables as well as the MFs of the R-FRBS.
Therefore a definition of the complexity and with
it of the costs of a R-FRBS is necessary:

Definition 2 (Complexity Cost Function, E). An
FRBS with k£ fuzzy rules, n linguistic variables,
k = n subpremises and m = m; + --- + m, MFs is
less complex than one with
(1) £+ 1 fuzzy rules, k * n subpremises and m
MFs or
(2) k fuzzy rules, (k * n) + 1 subpremises and m
MFs or
(3) k fuzzy rules, k * n subpremises and m + 1
MFs.

The weighting of the above three terms depends
on the application. A mathematical expression of
the complexity function E is given later. On the
basis of the cost function E a two-step learning
procedure is described. First, an “opening step” is
any operation on a FRBS that increases the cost
function E. Second, a “‘closing step” is any oper-
ation on an FRBS that decreases the cost function
E. Any opening step results in a new fuzzy system
with more rules, MFs or subpremises. Whereas
any closing step results in a new fuzzy system with
less rules, MFs or subpremises. Finally, we are
interested in minimal fuzzy systems and we define
them by using the cost function E:

Definition 3 (Minimal Fuzzy-System). Let us ap-
proximate a real system f(X), using a fuzzy system
X(¥) and let € > 0 be a maximal accepted error
limit. A fuzzy system X with sup{|f(X) — X (¥)|
|¥ € U} <e is called minimal if there is no other
fuzzy system Y with sup{|f(¥) — Y(X)| X € U} <e
and E(Y) < E(X), where E is the complexity cost
function.

Alternatively to the absolute metric, the Eucli-

dian metric can be used: (/S (f(®) — Y())* <e).
The real system f(X) is represented by referential
vectors 7.

2.4. Genetic algorithms

Traditional optimization methods are based on
the fact that certain functions are differentiable.
Unfortunately, in many real world problems such
functions cannot be defined. But even if they can,
gradient search methods may not find global op-
timal solutions. A possible way to overcome such
problems is to use GAs. Generally, a GA consists
of a problem, a number of encoded solutions for
that problem, some genetic operators which pro-
duce new solutions and a fitness function which
says how good a particular solution for the prob-
lem is seen in Fig. 2.

Usually the fitness function describes the ag-
gregation of some desired properties for the solu-
tions and is not necessarily differentiable. Each
solution is encoded as a chromosome by binary or
real values. A population consists of a number of

Genetic Algorithm
begin (1)
t=1
Initialize Population(t)
Evaluate fitness Population(t)
While (Generations < Total Number) do
begin (2)
select Population(t + 1) out of Population(t)
Apply Crossover on Population(t + 1)
Apply Mutation on Population(t + 1)
Evaluate fitness Population(t + 1)
t=t+1
end (2)
end (1)

Fig. 2. The structure of standard GA.
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individuals represented by chromosomes. A pop-
ulation at a certain time step is a generation. Ge-
netic operators are applied to each generation to
produce the next generation. Common genetic
operators are selection, crossover and mutation.
During selection, individuals with high fitness
values within the current population are selected
to build the basis for the new generation. Cross-
over is a way of creating new solutions by ran-
domly selecting two chromosomes of previous
solutions from the gene pool and exchanging
portions of their strings. Mutation is performed
upon a selected chromosome by randomly
changing a part of its coded value. Mutation is
needed to ensure diversity in the population.

Definition 4 (Genetic  algorithm). Let By =
{41,...,4Au} € P(B) be a population from the set
of all possible populations P(B), created by the
binary string 4; = {0,1}". M is the size of the
population, OF : P(B) — R" the Fitness function,
I': P(B) — P(B) the Crossover function, ¢ : P(B)
— P(B) the Mutation function, @ : P(B) — P(B)
the Selection Strategy and ¢: Rt — {0,1} a Ter-

mination  function.  Then, this  7-Tupel
GA = (By,M,Q,I',®,0,t) is called Genetic
Algorithm.

3. Optimizing FRBSs

Up to now a lot of work has been done in
combining fuzzy systems and genetic algorithms
[6]. Fuzzy—genetic combinations can be classified
in two categories. On one hand fuzzy techniques
are used to improve GA behavior [18] and to
model GA components [31]. On the other GAs are
used to optimize the structure of the fuzzy system
and the I/O behavior [18]. In the following, at-
tention will be paid to the second category and
especially to achieving an optimal structure of a
fuzzy system by means of GAs.

3.1. Membership function shape and rule base
construction

Membership functions will be constructed from
probability density functions by u(x) = Ap(x). The

constant 1 is calculated using the constraint
supu = 1. Here the Gaussian probability distribu-
tion p(x) = @(x;m, ¢*) is chosen, because this dis-
tribution fits a lot of real world problems.
Therefore, the membership functions used in the
system are defined by

u(x) = aV2ro(x;m, o)

—exp<—(xz_a’2n)2>. (3)

The MFs are approximated by six straight lines
and they are limited by p(x)=0 forx¢
[m—296,m+290]. The line approximation
speeds up the evaluation process of the FRBS by a
factor two [25]. Start and end points of these six
lines are the roots of the second derivative of the
normalized Gaussian MF (m = 0,¢% = 1). Special
margin MFs (smallest and biggest) are defined at
the left and right border of a linguistic variable
(Fig. 3(b)):

1, x <0,
Heg (X) = {e(m)xz, x>0,

1, x =0,
:uright(x> = { e*(1/2)x27 ¥ < 0.

)

Non-symmetric Gaussian MFs consists of two
parts (left and right) with a common middle point
but different o1 and oygn for the left and right
side (Fig. 3(a)). They are used to achieve more
flexible systems.

3.2. Using genetic algorithms

When the optimization process is initialized, it
is desirable to produce a generation that has en-
ough parameters to gain flexibility. For that rea-
son, at the beginning of the optimization process
the structure of the fuzzy system is opened. This
means that for each multiply used MF in the rule
base, copies of the function for each rule to which
it participates are produced (ie., ¢;=k, i =
1,...,n+ m). Thus each rule has its own MFs and
each variable has k MFs. All copies are equal at
this point of the process, but they are allowed to
vary independently in the next steps. Now, the GA
has the possibility to eliminate the extra
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Fig. 3. Linearized model of Gaussian like MFs. Six lines are used to describe them (a). The smallest and biggest MF (ordered by the

middle points) are linearized by three lines (b).

parameters while running. Therefore, we have a
matrix structure with »n+m columns (input+
output variables) and k rows (number of rules).
Each row matches a fuzzy rule with constant
length and can be simply coded in the chromo-
somes.

The chromosomes of the GA are built by two or
three genes (parameter sets). Two genes are se-
lected if the MF is symmetric, three if it is non-
symmetric (middle gene, right sigma gene, left
sigma gene). The first gene consists of the middle
point of the MF, while the second one consists of
the respective sigmas or oyjgn; and o Each middle
point and sigma is converted from a real number
to a fixed binary number of / =8 or / = 16 bits
accuracy using the gray encoding scheme. Gray-
coding makes genetic operators more robust
against single bit changes: The value of the gray-
coded gene is only 1 higher or lower, if one bit of
the encoding is changed. On the contrary several
bits of a binary coded number may change if it
increases or decreases by 1, e.g., 4 bits if 7 increases
to 8. Let A3,A2,A1,A0 a four bit string. Then the
decoding into an integer is [20]:

e For the binary coding:

Result = A3 x 23 + A42x 22 + 41 x 2! + A0.
e For the gray coding:

B3 = (43 4 A2 + A1 + A0)modulo2,

B2 = (42 + Al 4+ A0)modulo2,

Bl = (41 + A0)modulo2,

B0 = AOmodulo?2,

Result = B3 x 23+ B2 x 22 4+ Bl x 2! + BO.

Every chromosome S contains all fuzzy set pa-
rameters m;; and o;;, where i = 1,...,n 4+ m is the

number of variables and j =1,...,¢q, is the num-
ber of respective MFs per variable.

During fitness evaluation the reverse process
(decoding) is done to get back the middle points and
sigmas as reals. With this real values the MFs of the
fuzzy variables are constructed and the fitness
function is evaluated. The length of a string is:
L=2x1x(n+m)x k for the symmetric and L =
3 x I x (n+ m) x k for the non-symmetric case. An
additional index field for each variable is English: to
hold the similarity information of the MFs.

3.2.1. Fitness function

The definition of a suitable fitness function is
basic for the genetic process. It expresses in a
formal way the desired properties of solutions.
Here we define a fitness function with two main
items. The first part considers the I/O behavior and
the second part the structure and complexity of the
resulting fuzzy system. The structural part of the
fitness function has three items.

OF = OF"° x (OFf x OF% x OF'"), (5)

where OF is the fitness function that the GA has to
maximize.

The only property for the I/O behavior of the
FRBS is the maximization of the reciprocal of the
mean square error (MSE).

Tout

OF,/° :pv/i >
i=1

J=1

(6)

(rij — 0,-,,-)27

where pv is the number of referential data pairs,
now 1s the dimension of the output vector, o;; is
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current computed output value of the FRBS and
r;; 1s the respective referential value (i =
I,...,pv, j=1,...,n0). For other application
fields this part of the fitness function should be
adopted to the application class.

For control processes the system response pa-
rameter e.g., rise time RT, over-shoot OV, steady-
state error SSE, settling time ST, etc. can be used.
For the well-known pole balancing problem [32] a
suitable I/O part of the fitness function is:

OFI/OZ(l-i-kl * fRT) X (1+k2 * fOV)
X (1+k « fssg) x (1 +ks * fs1), (7)

where
fRT — e*<RT/RTexpecled) , fOV — e*(ov/ovexpecled) ,

fSSE — ef(SSE/SSEexpected> fST — e*(ST/STexpec{ed)
5 .

The constants kq,...,k; are used to weight the
corresponding system parameter.

Three criteria for the structure of the FRBS are
also considered. The first criterion (OF?) for the
structure of a FRBS is the degree of fuzziness or
the entropy of a FRBS and was introduced in [23].
It is defined by the average number of activated
rules:

1 2
Ry =— % Rcurj» 8
= * 2 R (8)

where R, is the current number of activated rules
for the ith I/O pair and pv the number of those
pairs. If the number of activated rules is minimal
i.e., one, then an FRBS is maximally understand-
able by humans. FRBS with a high number of
activated rules behave like a neural network i.e., a
lot of rules (neurons) determine the output values.
To decrease the entropy of an FRBS and with it
the overlap of the MFs, a maximal number R, of
activated fuzzy rules has to be defined and the
fitness function is extended as:

Rmax < Racta

1

((Ract/Rmax)—1)b+1 7

1
OFE — ((RﬂCl/Rm’dX)71>a+((R¢/Rmux>*])b+] ’
else,

©)

where ¢ and b are predefined weighting factors.
The influence of the entropy part of the fitness

function for the benchmark of Section 4 is shown
in Figs. 4 and 5.

The second criterion (OF3) for the structure of
the FRBS is the number of MFs. For that MFs
with high degrees of overlap are counted. Such
nearly equal MF pairs are desirable, because they
can be easily unified to only one MF which re-
duced the cost function (Definition 2(3)) The cri-
terion for the highest possible number of similar
MFs is:

N
OFS = —2 _ |y+1 10
<(n+m)Rtotal>/+ ’ ( )

where s,, is the number of similar MFs (see be-
low), n + m is the total number of input and out-
put variables, R, is the total number of rules and
y € R is a predefined weighting factor for the
number of similar MFs. Fig. 6 shows an example
of a similar and non-similar MFs.

Let us suppose we have two MFs denoted by 4
and B which are described by seven points
(P:(x41, y4i), P:(xpi, y8:)) because a linearized model
of Gaussian MFs is used (Fig. 3(a)). The average
width is defined by

|xan — xa46] + [xB2 — X6
w= )

. (1)

Two MFs are similar if the distance of their sec-
ond, third, fifth and sixth points is small enough
compared to the average width of the MFs. This
similarity criterion is used for symmetric and non-
symmetric cases:

#activated
rules

a=b=0.0

0 100 200 300
vector index i

Fig. 4. Activated rules with and without entropy consideration.
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Fig. 5. Membership functions with and without entropy consideration. The entropy reduction deletes one MF and limits the width

distinctly.

Fig. 6. Example of similar (left) and non-similar (right) MFs.
The right MFs have non-symmetric widths.

n+m  qi qi
Sho — E E E Sl}j,k7 Wlth
i j <k

1, > |xij2 — .X,‘kz‘ and

c

> |x,-j3 - xik3‘ and

=

Sijk = % > |)C[j6 — x,‘ké‘ and (12)

% > |xij5 - xiks‘v

0, else,

where n + m is the number of variables and ¢; the
number of membership functions of the variable i.
The constant factors ¢ = 10, and d = 16 have been
selected by simulation experiences. The use of
linear approximated Gaussian like MFs is a little
more complicated and increases the number of
parameters but it speeds up the evaluation of the
fuzzy controller [25] (each controller is one indi-
vidual) which is more important to speed up the
total genetic process.

The third criterion (OFY#) for the structure of
the FRBS deals with never activated
(u(x) = 0 Vx € U) and always completely activated
(u(x) =1 V¥x € U) MFs. On one hand, a subpre-
mise of a rule can be eliminated if the belonging

MF is always completely activated for all of the
training pairs so that the cost function E decrease
(Definition 2(2)). On the other hand, MFs which
are never activated can be eliminated together with
all the rules that they participated to so that the
cost function E also decrease (Definition 2(1)). The
criterion for the highest possible number of always
zero and always one MFs with the predefined
weighting factors {,n € R is:

OFVZ = [t )
( (” + m)Rtotal C

V4
T 1 1
+ ( (l’l + m)Rlotal ) s ( 3)

where u,, is the number of always one MFs, z,, is
the number of always zero MFs. Always one MFs
are replaced by trapezes covering the total variable
domain, while zero MFs are replaced by impulses.
A collection of MFs with zero, one and similar
MFs is shown in Fig. 7.

3.2.2. Producing new generations
After estimating the fitness value of each chro-
mosome in the current population, genetic opera-

Similar MFs
Typical MF

Zero MF (impulse)
1.0

Unity MF (infinity)

Miese
N

0.0

Fig. 7. Different kinds of membership functions.
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tors are applied to produce the new generation.
Two new operators are introduced: Set zerolone is
used to produce MFs which are always one or
always zero. It randomly selects an MF for each 1/
O variable and changes its sigma value to infinity
(+00) in case of a always one MF or to zero in
case of a always zero MF. The other genetic op-
erator called set similar, selects randomly for each
I/O variable a membership function and makes it
equal to the MF that is most similar to it (Eq.
(12)).

A mate pool is built by selecting a predefined
percentage of the best individuals from the current
population (truncation selection). Each chromo-
some of the new population is produced by ran-
domly selecting its two parents from the mate
pool. The crossover operator is applied to them to
produce two children. Crossover is done for each
gene of the two chromosomes and not for the total
chromosome (Fig. 8). Mutation, set similar and set
zero/one operators are randomly applied to the
selected children as described above. The last two
operators are used only in case of FRBSs with
MSE less than the predefined upper limit.

3.2.3. Fuzzy rule based system minimization

To achieve a faster convergence only the re-
ciprocal of the MSE is used as an optimization
criterion in the first steps of the GA: OF = OF"/°
(Eq. (5)). When the GA produces FRBSs with
MSE less than a predefined threshold e, the opti-
mization criterion is changed to the global fitness
function OF of Eq. (5). The above is according to
the definition of minimal fuzzy systems of a pre-

Mean Gene Sigma Gene Mean Gene Sigma Gene

Fig. 8. Crossover is applied between genes of chromosomes.

defined error limit (e of Definition 3). To find an
appropriated threshold ey, a first run of the GA
is done with € = 0 that means the GA only tries to
optimize the I/O behavior without optimizing the
structure. In the next run of the GA an error limit
€thres = 1.1,...,1.5 X OF_, can be set.

After opening the structure of the rule base at
the beginning of the GA it now has to be closed
back. Rules with a zero MF (¢ = 0) are deleted,
one MFs (¢ = +00) are eliminated from the rules
and similar MFs (o; = 0; and m; =~ m;,i # j) are
unified by the genetic operators. The unification of
similar MFs results in a new MF with the average
of the given middle points as the new middle point
and the maximum of the given sigmas as the new
sigma. Simulations showed that 50-100 genera-
tions are enough for the GA to stabilize the FRBS
structure. After the FRBS structure is stable a
closing step is done. Then the whole process re-
peats with this new structure. Fig. 9 shows the
affect of a closing step to the structure of a rule
base.

If no more closure steps can be applied, the
most compact structure of the FRBS has been
found. Nearly optimal middle points and sigmas
for the MF have been estimated and the GA ter-
minates. It is well known that the estimation of an
exact global optimum is very time consuming with
GAs. For that reason an easy local optimization
method is used after the GA to “climb the”

Closing step

RI: If x1is Al AND x2is Bl THEN y is C1
R2: If x1 is A2 AND x2 is B2 THEN y is C2
R3: If x1 is A3 AND x2 is B3 THEN y is C3
R5: If x1 is A4 AND x2 is B4 THEN y is C4
R5: If x1 is AS AND x2 is BS THEN y is C5
R6: If x1 is A6 AND x2 is B6 THEN y is C6

A2: unity MF
Al, A3, A4: similar MF
B3, C6: zero MF

R1: If x1is A134 AND x2 is Bl THEN y is C1
R2: If x2 is B2 THEN y is C2
R4: If x1 is A134 AND x2 is B4 THEN y is C4
RS5: Ifx1is AS AND x2is BS THEN y is C5

Fig. 9. Example of a closing step. After the closing step two
rules and one subpremise are deleted. Three MFs are combined.
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remaining of the hill. It starts by selecting the first
encoded parameter value and a small increment or
decrement is applied to it. The process is con-
trolled by the fact that only small variations of the
parameters are allowed and that after a change the
total fitness of the fuzzy system is evaluated to
insure increasing fitness. If that change results in
an FRBS with a better performance, a new small
change is done in the same direction until those
changes do not increase the fitness function any
more. This procedure is done for all coded pa-
rameters. The process terminates if no better per-
formance can be gained. The idea behind the after
optimization is that the GA put the population in
the correct area where local hill climbing put it on
the top. After the optimization, the MFs of the
best fuzzy system are automatically labeled ac-
cording to the numerical order of the middle
points and the number of MFs e.g., small, normal,
big for three MFs. Therefore, the resulting rule
base is readable be the user.

4. Application — gas furnace data

The design algorithm will be illustrated by
means of a system identification example. A
number of simulations is performed on the data set
of Box and Jenkins’ gas furnace data which is a
common benchmark. A collection of representa-
tive results is given. The task is to build a rule base
model from the referential data set which identifies
the process. The data set consists of 296 pairs of 1/
O observations. The input is the gas flow rate into
the furnace and the output is the concentration of
CO, in the exhausted gas.

As well as in literature, two input variables
nny=2:x(t—1),y(t —1;) and output variable
»(t) are chosen. Here, x(¢ — 7;) denotes the input at
time ¢ — 7, and y(¢ — 1,) the output of the process
at t —1,. With 1, =4 and 1, = 1 the referential
data set contains p =296 — t; = 292 elements.
The above data set is used for training and as
validation set for testing.

For the initialization of the FRBS four MFs for
each variable are used together with a rule base of
16 rules. So, after the FRBS is opened a system of
16 rules and 16 MFs per variable is selected. Dif-

ferent strategies are applied with symmetric and
non-symmetric MFs for feed-forward and recur-
rent fuzzy systems. Thousand time steps are used
for the GA. A closure step takes place 60 genera-
tions after the error limit has been reached. After a
closure step a new genetic process is started to
continue the optimization. Fig. 10 shows the ref-
erential curve and an optimization result.

Representative results are shown in the Tables
1-4. The number of always one MFs is equal to
the number of eliminated subpremises, the number
of impulses is equal to the number of eliminated
rules and the final number of MFs is reduced by
number of similar MFs. On one hand symmetric
and non-symmetric MFs show a similar I/O be-
havior (feed-forward case), but non-symmetric
MFs reduce the overlap of the MFs which result to
a lower number of activated rules. On the other
hand R-FRBS with one hidden variable improved
the I/O behavior of fuzzy systems. Here, the non-
symmetric MFs show the best results. It is worth
to mention that none of the previous approaches
in literature focused on the elimination of rules or
MFs. Compared to the results from literature in
Table 5 with our proposed method it is possible to
achieve much simpler FRBSs and also the best I/O
behavior of all approaches. Considering the fuzzy
rule base structure in the fitness function minimize
the number of rules, MFs and subpremises. The
interesting point is that the approximation quality
increases while using structural information in the
fitness functions. The reason is that over-fitting is
avoided.

62 T ——
optimized —
r reference 1

CO_2/%

100 200 300
t/9s

Fig. 10. The gas furnace data curve of our optimized approach
and the reference from literature.
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Table 1

Results for gas furnace data obtained from FRBS structures with symmetric MFs
MSE €tres qi Uno k Rd) a, bV7 é’v n
Feed-forward symmetric
0.116 0.15 4-7-7 2 8 5.19 0.10, 0.10, 0.40, 0.20, 0.30
0.121 0.16 4-5-6 1 7 4.73 0.10, 0.20, 0.50, 0.20, 0.30
0.120 0.15 4-6-6 2 8 4.49 0.20, 0.20, 0.15, 0.15, 0.15

The columns shows the MSE Eq. (6), the predefined error limit €y, the number of MFs ¢; per variable i = 1,...,n + m how many
always one MFs exist u,, Eq. (13), the number of rules &, R, Eq. (8) the average number of activated rules and the weighting factors of
the fitness function (a,b Eq. (9), y Eq. (10), {,n Eq. (13)).

Table 2

Results for gas furnace data obtained from FRBS structures with non-symmetric MFs
MSE €tres qi Uno k R(/) a, b% Cv n
Feed-forward non-symmetric
0.117 0.15 8-8-6 0 8 3.34 0.1,0.2,0.2, 0,1, 0.2
0.119 0.16 6-7-5 0 8 3.31 0.2,0.3,0.3,0.2,0.1
0.121 0.16 7-7-7 2 8 3.62 0.1,0.2,0.3,0.4, 0.2

The columns shows the MSE Eq. (6), the predefined error limit €., the number of MFs ¢, per variable i = 1,...,n + m how many
always one MFs exist u,, Eq. (13), the number of rules k, R, Eq. (8) the average number of activated rules and the weighting factors of
the fitness function (a,b Eq. (9), y Eq. (10), {, Eq. (13)).

Table 3

Results for gas furnace data obtained from recurrent FRBS structures with symmetric MFs
MSE €tres qi Uno k R(/) a, b”/‘ Cﬂ n
Recurrent symmetric
0.100 0.15 7-6-6-8-8 2 10 3.82 0.10, 0.20, 0.01, 0.06, 0.06
0.115 0.16 7-7-4-6-6 5 10 4.23 0.15, 0.10, 0.05, 0.08, 0.09
0.118 0.16 4-6-3-6-5 3 7 4.40 0.10, 0.10, 0.10, 0.10, 0.20

The columns shows the MSE Eq. (6), the predefined error limit €., the number of MFs ¢, per variable i = 1,...,n + m how many
always one MFs exist u,, Eq. (13), the number of rules k, R, Eq. (8) the average number of activated rules and the weighting factors of
the fitness function (a,b Eq. (9), y Eq. (10), {,n Eq. (13)).

Table 4

Results for gas furnace data obtained from recurrent FRBS structures with non-symmetric MFs
MSE Etres qi Uno k R¢ a, b% 57 n
Recurrent non-symmetric
0.078 0.15 7-6-5-8-8 4 11 5.70 0.10, 0.15, 0.09, 0.09, 0.20
0.100 0.15 5-8-4-6-4 8 10 5.06 0.10, 0.20, 0.25, 0.10, 0.15
0.109 0.17 3-6-4-5-4 0 8 4.03 0.15, 0.15, 0.20, 0.10, 0.30

The columns shows the MSE Eq. (6), the predefined error limit €y, the number of MFs ¢; per variable i = 1,...,n + m how many
always one MFs exist u,, Eq. (13), the number of rules k, R, Eq. (8) the average number of activated rules and the weighting factors of
the fitness function (a,b Eq. (9), y Eq. (10), {,n Eq. (13)).

5. Conclusion knowledge representations. Both structural and
parametrical tuning of fuzzy systems are based of:
The paper presented a learning algorithm for (1) a complexity cost function and (2) a minimal

feed-forward and recurrent fuzzy rule based fuzzy system. In contrast to other known ap-
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Table 5

Results for the same problem from literature
MSE Init. Rules Author

rules

Literature. Symmetric FRBS
0.469 7x6 19 Tong [33]
0.355 5x5 6 Sugeno et al. [34]
0.320 9%x9 81 Pedryz [35]
0.328 5x5 25 Xu-Lu [36]
0.172 7 %17 38 Abreu et al. [9]
0.138 3x5 15 Surmann [3]

The columns show the MSE, the structure of the initial rule
base, the final number of rules and the author.

proaches where only parametrical tuning takes
place, here optimization of the entropy and the
complexity of the fuzzy rule base leads to a min-
imal number of rules, of MFs and of subpremises
together with an optimal I/O behavior. The MFs
are labeled with linguistic terms according to the
order of the middle points so that the linguistic
rules are achieved. This rules can be regarded,
understand, reused and maintained by users. The
proposed method learns also recurrent fuzzy sys-
tems with hidden fuzzy variables. The recurrent
fuzzy systems approximate the temporal relation
embedded in dynamic processes of unknown or-
der. In contrast to neural approaches the resulting
fuzzy system is comparable to systems designed by
an expert but with a better I/O behavior. The
most characteristic features of the proposed
method were illustrated by means of a numerical
example.

In future more attention should be given to
structural tuning because it highly impacts the
capabilities of a system. This has several reasons.
Simpler structures i.e., structures with less pa-
rameters but fulfilling the approximation require-
ments lead to systems that:

e can be tuned more easily (automatic or by
hand);

e are more understandable and maintainable by
users;

e can be better combined with other fuzzy rules,
e.g., with rules designed by users while no data
is available for an automatic design;

e are more robust;

e have a better approximation quality while
avoiding the over-fitting.
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