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The current paper addresses the design of complex distributed systems consisting of many
components by using Hierarchical Cooperative CoEvolution (HCCE), an optimization
mechanism that also follows a distributed organization. The proposed coevolutionary
scheme is capable of optimizing complex distributed systems, taking also into account
the specialized roles of substructures. Here, we present HCCE and we compare it with or-
dinary Unimodal evolution and Enforced SubPopulation coevolution. The current study
aims at highlighting the internal dynamics of HCCE that give rise to its effectiveness
in addressing difficult distributed design problems. The results obtained attest to the
validity and effectiveness of HCCE, showing that it outperforms both other schemes.

Keywords: Hierarchical Coevolution; Cooperative Coevolution; Optimization; Distrib-
uted Modelling.

1. Introduction

Evolutionary optimization methods are very effective in tackling complex design
problems, mainly due to their ability to overcome local optima '0:30:18  Despite their
effectiveness, ordinary evolutionary approaches are unable to consider the internal
structural properties of the underlying problems 73®. This is because they utilize
a unified representation to encode problem solutions to the genotype, and a single
fitness function to evolve the composite solution as a whole 387,

However, in many real-life applications, partial entities can be identified, which
together compose the overall picture of the problem >'7. These partial entities
should often follow different design objectives as it is indicated by their specialized
role in the composite system. In order to effectively address the structural char-
acteristics of the problems, an optimization mechanism that follows a distributed
organization would be particularly appropriate to support the design procedure”3°.
This is the approach followed by coevolutionary algorithms which involve two or
more concurrently performed evolutionary processes with interactive performance.
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Specifically, by using coevolution, separate populations are utilized to evolve partial
entities of the problem 3%%!. In order to formulate a composite problem solution,
individuals within different populations have to be selected, put together and oper-
ate in parallel >33, Each population can use its own evolutionary parameters (e.g.
encoding, genetic operators). Accordingly, increased search competencies are inher-
ently available in coevolutionary algorithms because they decompose the overall
problem domain in small and more easily explored parts.

In the current study, we concentrate on cooperative coevolution that is suitable
to address problems with explicit notions of modularity 3*. In previous studies, co-
evolutionary approaches have been used for optimizing distributed systems consist-
ing of a small number of components 39121435 However, these approaches are not
able to address very complex systems consisting of a large number of components,
or systems where the components are further decomposed to other components for-
mulating gradually more simple structures. Additionally, in the above mentioned
approaches, partial evolutionary processes are driven by the same fitness function
and therefore they can not sufficiently address the distinct roles of substructures in
the composite system.

We have recently introduced a Hierarchical Cooperative CoEvolutionary?2:23
scheme to overcome the problems mentioned above. Hierarchical Cooperative Co-
Evolution (HCCE) can sufficiently address problems described by multiple levels
of modularity, investigating the independent roles of partial components at various
levels, and additionally enforcing their coupled operation as a globally integrated
system 21:24:26,

The HCCE (see?® for a detailed description) evolves separate populations for
each component of the system, and additionally evolves populations encoding as-
semblies of components. These two different kinds of evolutionary processes are
hierarchically organized. The evolutionary processes at lower levels investigate the
structure of partial system components. They are driven by their own dynamics,
trying to meet the special design objectives of each component. At the same time,
the evolutionary process at the higher level, explores the integrated performance
of substructures trying to identify those component structures that can success-
fully cooperate. This higher level assembly-formulation process, tunes lower level
component design procedures favoring the structures with the best cooperative per-
formance. This is achieved by means of a newly introduced genetic operator named
“Replication” 2°. The architecture of multiple coevolutionary processes tuned by a
higher level evolution, can be repeated for as many levels as necessary, being capable
to explore the structure of complex distributed systems.

In the current paper we present in detail the internal mechanisms of the HCCE
scheme that give rise to its effectiveness in addressing difficult distributed design
problems. Additionally, HCCE is compared with Unimodal evolution and Enforced
SubPopulation (ESP) coevolution '3, showing a superior performance compared to
both other schemes. Furthermore, we evaluate the “Replication” genetic operator,
that has been introduced to support the successful convergence of the coevolutionary
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procedure, coordinating partial evolutionary processes.

The rest of the paper is organized as follows. In the next section, we present
the Hierarchical Cooperative CoEvolutionary (HCCE) scheme. Then, we present
the experimental procedure used for validating the robustness of HCCE. Addition-
ally, we present the results obtained by comparing HCCE with Unimodal evolution
and ESP. Finally, in the last section, we conclude the paper highlighting the most
important characteristics of HCCE.

2. Hierarchical Cooperative CoEvolution (HCCE)

In order to effectively build distributed systems, a mechanism that also follows a
distributed architecture would be particularly appropriate to serve the design proce-
dure. This is because the distributed design methodology can explicitly investigate
the specialties of system components, and at the same time address their coupled
performance in the composite system '®27. Along this line, coevolutionary algo-
rithms have been recently proposed facilitating exploration in problems consisting
of many decomposable substructures 3. They involve two or more populations with
interactive performance. Initial ideas of modelling coevolutionary processes were

128 “and further extended in 232

formulated by . Following the coevolutionary ap-
proach, each population evolves separately using its own evolutionary parameters,
providing increased search competencies. Distinct populations are usually referred
as species in the coevolutionary literature, and thus both terms will be employed
henceforth interchangeably.

Most of the coevolutionary approaches presented in the literature can be classi-
fied as competitive 631,36

on an antagonistic scenario, where the success of one species implies the failure of

, or cooperative 3440:19  Competitive approaches are based

the other. In contrast, cooperative approaches follow a synergistic scenario, where
individuals are rewarded when they successfully cooperate with individuals from
the other species. In the following we only consider cooperative coevolution.

The majority of cooperative coevolutionary methods underestimates the signif-
icance of collaborator choice. Usually, the individuals of a species cooperate with
the best individual from the other species or a randomly selected set of cooperators
(e.g. >1%34), This is also the case with Pareto coevolutionary approaches 7-11:12:16
which mainly aim at balancing between different criteria in multi-objective opti-
mization problems. The issue of collaborator selection is very important, especially
when investigating large systems consisting of many components.

In order to address the collaborator selection issue, a higher level optimization
process can be used that searches within species identifying the individuals with the
best coupled performance. This higher level search can be implemented by means

735 The process of simultaneous evolution of

of one more evolutionary process
partial components and assemblies of components, can be organized hierarchically,
formulating a multiple level scheme consisting of gradually more complex assemblies.

In the current work we present a Hierarchical Cooperative CoEvolutionary
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(HCCE) architecture capable of designing complex systems consisting of a large
number of components 2523, Besides the evolution of species corresponding to par-
tial components, the proposed HCCE scheme employs additional higher level evo-
lutionary processes, to select the proper individuals from each species that can
cooperatively formulate effective component assemblies 2°. These configurations are
used as a basis to guide the composite coevolutionary process since individuals are
more likely to be members of effective assemblies of cooperators.

The work described in ° presents a first attempt to hierarchically coevolved
species. However, compared to ?, our approach is capable of coevolving larger assem-
blies of cooperating species, while at the same time, emphasizes the independence
of substructures utilizing multiple and potentially separate criteria to guide partial
evolutionary processes. Other approaches on hierarchical problem solving investi-
gate the design of system components sharing the same set of objectives, and thus,
they can not address effectively distributed systems consisting of heterogeneous
substructures 7%39. Additionally, they don’t utilize specialized subpopulations that
have been proved to facilitate significantly the evolutionary process 4.

2.1. Hierarchical Organization

The Hierarchical Cooperative CoEvolutionary (HCCE) scheme employs two kinds
of species encoding the configurations of either a Primitive Structure (PS) or a
Coevolved Group (CG). PS species are utilized to explore the structure of system
components. A CG consists of a group of cooperating PSs all of them having the
same objectives. Thus, CGs specify configurations of partial solutions, encoding
assemblies of individuals. The evolution of CG modulates partly the evolutionary
process of its lower level PS species to enforce their cooperative performance. A CG
can also be a member of another more complex CG. Consequently, several CGs can
be organized hierarchically, with the higher levels enforcing the cooperation of the
lower ones.

The details of the HCCE are made clear by means of a specific example. Let
us assume the existence of a system consisting of two partial structures and two
links facilitating the flow of information (Fig 1(a)). We assume that the components
have different roles in the functionality of the overall system. Specifically, compo-
nent C1 and link L1 have to support the accomplishment of partial task 71, while
component C2, and link L2, have to support partial task T2. Two coevolutionary
groups CG1 and CG2 are used to coevolve these structures. Additionally, we as-
sume that all structures have to cooperate in order to accomplish a global system
functionality described by task T'3. The top level C'G3 enforces the cooperation
among the groups CG1, CG2 integrating their functionality. The HCCE scheme
that designs the components of the current example, is illustrated in Fig 1(b). Four
PS species are employed to evolve the components and their links, while three CG
species search for the best assemblies of cooperating individuals among PS species.

A snapshot of the exemplar HCCE process is illustrated in Fig 2. All individuals
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Fig. 1. The design of system substructures by cooperative coevolution. Part (a) represents graph-
ically the internal connectivity of the system. The components are illustrated with blocks, while
links are illustrated with double arrows. Part (b) represents the hierarchical coevolutionary scheme
used to evolve system substructures. CGs are illustrated with rounded boxes, while PSs are rep-
resented by free shapes.

in all species are assigned an identification number which is preserved during the
coevolutionary process. The identification number serves the definition of assem-
blies among different species. Each variable on the genome of a CG specifies the
identification number of a candidate partial solution at the lower level. The arrows
connecting individuals among species illustrate how the HCCE builds the proposed
compound solutions. For example individual with id = 7 of species CG3 specifies a
solution consisting of partial assemblies with id = 19 at CG1 and id = 3 at CG2.
Analyzing further the first assembly, it consists of the individual with id = 14 at
C1 species, and individual with ¢d = 21 at L1 species. In the same way, analyzing
the assembly of C'G2, it consists of the individual with id = 4 at species C2, and
individual with i¢d = 5 at species L2. It is clear that individuals at CG species
might select some components or assemblies of components multiple times, trying
to identify the most successful sets of collaborators.

In order to test the performance of a complete problem solution, populations
are sequentially accessed starting with the higher level. The genome values of CG
individuals at various levels are used as guides to select cooperators among PS
species. Then, PS individuals are decoded to specify the detailed structure of system
components and links, and the performance of the proposed overall solution is tested
on accomplishing the desired task.

2.2. Partial Failure Investigation

The HCCE scheme is capable of investigating the performance of the model in con-
ditions of partial failure. Specifically, the deactivation of a CG together with its
lower level PS species, simulates the elimination of system components. Addition-
ally, separate fitness functions can be specified indicating the performance of the
model when all substructures are present, and also indicating the performance when
some partial structures are eliminated.

Turning back to the example of Fig 1, a CG3 individual specifies the structure
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Fig. 2. An exemplar snapshot of the hierarchical coevolution of species. The arrows illustrate
definition of individual assemblies. See text for details.

of the composite model aiming at the accomplishment of global task 7'3. Then, in
order to simulate C2 failure, the components under C'G2 are deactivated, and the
remaining structures are tested on the accomplishment of partial task T'1. Next, we
simulate C'1 failure, deactivating the components under C'G1, and the remaining
CG2 components are tested on the accomplishment of partial task T2.

By considering system performance in diverse operating conditions, important
insight of the internal mechanisms of the system is provided to the designer. In
particular, the exploration of system performance after the removal of components,
can be very beneficial for inferring the roles of partial structures in the composite
model and the dynamics of their interaction. It is worth emphasizing that the ex-
ploration of system performance in conditions of partial failure is very important
for distributed systems consisting of autonomous components (e.g. agent-based sys-
tems) because it is capable of highlighting those functionalities of the system which
are most affected after the collapse of one or more components.

2.3. Fitness Assignment

Although the majority of existing cooperative coevolutionary methods assume that
all species share a common fitness function 3:19:41:13 the proposed scheme supports
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the employment of separate fitness functions for different species. This is important
for designing distributed systems because different objectives can be defined for the
evolution of partial components.

During testing, we evaluate the coupled performance of all components. How-
ever, the fitness function of component species evaluates subjectively the overall
performance, that is it evaluates the performance according to the objectives it is
designed for. Specifically, for each species s, a fitness function f; is used to drive its
evolution. Different CGs can be driven by different fitness functions. However, all
PS species under a CG share a common fs. A partial fitness function f;; evaluates
the ability of an individual to serve task ¢. The composite fitness value is given by:

fo=11fes (1)

The collaborator selection process at the higher levels of hierarchical coevolution
will potentially select a lower level individual to participate in many assemblies
(e.g. the case of individual 14 of PS species C1 of Fig 2). Let us assume that an
individual participates in K assemblies, which means that it will get K fitness
values f,; regarding the accomplishment of the ¢-th task. The overall suitability of
the individual on the task, is estimated by:

fox = mazp{f,} (2)

where fit with k& € {1...K'}, is the fitness value of the k-th solution formed with
the membership of the individual under discussion.

The fitness assignment process is further explained by means of the working
example illustrated in Fig 2. We remind the reader that according to the employed
scenario, the composite model should accomplish task 73, the partial model of
C1,L1 should accomplish task T'1 (failure of C2), and the partial model of C2,L2
should accomplish task T2 (failure of C'1). As a result, individuals of CG3 are eval-
uated for the accomplishment of task 73, individuals of CG1 and lower level PS
species are evaluated for the accomplishment of both tasks 73 and T'1, while indi-
viduals of CG2 and lower level PS species are evaluated for the accomplishment of
both tasks T'3 and T2. The assigned fitness values are illustrated in Fig 2, following
the formulation introduced in egs. (1) and (2). For the sake of brevity, we present
fitness assignment only on C'G2 and its lower level species. For the same reason we
also assume that Frogs s = Foge,rs, while in general they can be different.

The top level species CG3 is sequentially assessed and fitness values are esti-
mated regarding the accomplishment of T'3. Let us now examine the individual of
CG2 with id = 16, which participates in two cooperator assemblies of CG3. Its
ability to serve task T'3 will be evaluated with the maximum of the respective fit-
ness values. Additionally, CG2 individuals are assigned separate fitness values for
the task 7'2 that they also serve. Thus, the individual with id = 16 is assigned one
more partial fitness value. The same is also true for the individuals of lower level
species C'2, L2. For example, C'2 individual with id = 1, has multiple participation
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in the accomplishment of tasks 7’3 and 72 and its partial fitness values regarding
the two tasks are estimated by the maxima of the respective values.

We also note the fitness assignment of the individual with id = 4 of C2. Although
it receives a high score for its participation in task 712, it receives zero for its
participation in T'3, and consequently its aggregative score according to eq. (1) will
be zero. Additionally, there are individuals which receive high aggregative score,
even if none of the assemblies they participate in perform successfully in all tasks.
An example illustrating this regards the individual with id = 5 of species L2. One
of its cooperating assemblies receives a high score in T'1 and a low score in T2, while
the other receives a high score in T'2 but a low score in T'1. However, the individual
under consideration will be assigned two high scores, because, depending on the
assembly it participates in, it successfully serves both tasks. At the snapshot of the
HCCE scheme shown in Fig 2, individual 5 of species L2 does not participate in
overall effective assemblies, since none of them accomplishes both tasks. However, its
high aggregative score increases the probability of participating in better assemblies
in the next generation.

2.4. Replication Operator

A common problem for the coevolutionary approaches evolving assemblies of coop-
erators, is related to the multiple participation of some individuals in many different
collaborator assemblies, while at the same time others are offered no cooperation
at all 1235, A large number of multiple cooperations is generally a drawback for
the coevolutionary process, because different cooperator assemblies could demand
evolution of the same individual in different directions. Non-cooperating individu-
als can be utilized to decrease the multiplicity of cooperations for those individuals
which are heavily reused. We have introduced a new genetic operator termed Repli-
cation, addressing the issue of multiple cooperations 2. In short, for each unused
individual = of a species, replication identifies the fittest individual y with more
than maz. cooperations. The genome of y is then copied to x, and x is assigned
maz. — 1 cooperations of y, by updating properly the CG population at the higher
level. After replication, individuals z and y are allowed to evolve separately following
independent evolutionary directions. This is illustrated in Fig 3, for the case of one
CG and one PS species. Initially, individual 14 of the PS population participates in
five solution assemblies, while individual 29 is offered no collaboration at all. Repli-
cation copies the chromosome of 14 to 29, and redirects two of the collaboration
indicating pointers to 29. In the following evolutionary generations, individuals 14
and 29 follow separate evolutionary directions, facilitating the exploration of the
search space.

2.5. Fvolutionary Step

Evolutionary steps are performed separately but synchronously for each species of
the HCCE scheme. First, individuals are sorted according to their fitness values.
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Fig. 3. Schematic representation of the replication operator (maz. = 3).

Then, Replication is applied to reduce multiple cooperations. Next, a predefined
percentage of individuals are probabilistically crossed over. An individual selects its
mate from the whole population, based on their accumulative probabilities. Finally,
mutation is performed in a small percentage of the resulted population. This process
is repeated for a predefined number of evolutionary epochs, driving the species
exploring the structure of system components to the accomplishment of their own
design objectives, and additionally driving the higher level cooperator selection
processes to the formulation of successful composite structures.

3. Results

The effectiveness of the proposed coevolutionary scheme is assessed on the design of
a complex distributed system. This approach is in contrast to other works employing
mathematical functions as a test-bed for the study of evolutionary approaches. Par-
ticularly for the case of coevolutionary algorithms, mathematical functions based on
few independent variables are usually employed *!+33, decomposing the overall prob-
lem in few and very simple entities. However, this approach can not reveal the power
of each algorithm and its capability to address difficult problems. Additionally, pre-
vious works on hierarchically formulated problems investigated system components
sharing common design objectives 3%:®. Thus they can not tackle systems consisting
of heterogeneous substructures, as this is the case with HCCE.

In order to take a better insight of the coevolutionary procedure, the HCCE
scheme is tested on the design of a complex brain-inspired cognitive system. The
problem of developing brain-like computational structures fits adequately to coevo-
lutionary approaches, because different coevolved species can be used to perform
separate design decisions for the components representing brain areas, in order to
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Fig. 4. A schematic overview of the computational model. Cortical agents are illustrated with
blocks, while link agents are illustrated with a double arrow.

highlight their particular characteristics. An agent-based approach is followed to
represent partial brain modules, addressing explicitly their autonomous role in the
composite system 23. Furthermore, following recent trends that study lesions of brain
areas, the HCCE scheme supports systematic modelling of biological experiments,
evaluating the performance of the model in pre- and post- lesion conditions.

During the modelling process, environmental interaction is of utmost impor-
tance, since it is difficult to investigate cognitive system functionality without em-
bedding the model into a body to interact with its environment. Thus, a two wheeled
simulated mobile robot is utilized to support environmental interaction, while at the
same time the model enriches the behavioral repertory of the robot.

We note that the present series of experiments is an extension of our previous
work which demonstrated the development of the cognitive working memory model
22 Due to space limitations the problem will be described here in short, since
the emphasis of the current study is to explore the dynamics of the HCCE design
mechanism, rather than the biological reliability of the model.

3.1. Problem Statement

We study a partial brain model, which simulates posterior parietal cortex (PPC) -
prefrontal cortex (PFC) - primary motor cortex (M1) - spinal cord (SC) interactions,
emphasizing on working memory usage. The architecture of the model is demon-
strated in Fig 4. The distributed model consists of 12 neural agents having sepa-
rate self-organization dynamics. In particular 4 cortical components (represented by
blocks) and 8 link components (represented by double arrows) are employed. The
components have to develop different roles formulating a single, globally functional
artificial system. Overall, the problem investigated here involves the specification of
totaly 192 variables interacting in a highly non-linear way. Thus, the current prob-
lem can be used as an advanced test case for investigating the dynamics of HCCE,
and revealing its beneficial characteristics.
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Tasks: T1,T2,T3

Tasks: T2,T3

Fig. 5. A graphical illustration of the coevolutionary process.

Three tasks are designed to highlight the role of each agent in the model. The
first task T'1 accounts for developing working memory -like neural activity on PFC.
The success on T'1 task is evaluated by the fitness measure F. The second task To
aims at exploiting working memory in order to accomplish a delayed response task.
This is evaluated by fitness measure E5. The third task T3, addresses the operation
of the model in lesion conditions. Specifically, when simulated lesion is performed on
PFC structure, the behavioral repertoire of the artificial organism is reduced (the
accomplishment of the delayed response task is not possible any more), avoiding
however collapse of the composite system. In that case, the robot is still able to
drive but in a purposeless mode. This is evaluated by fitness measure Fs. Overall,
the experimental process discussed above aims at reproducing computationally a
biological scenario addressing pre- and post- lesion rat behavior in a T-maze . The
measures E1, Ey, E5 are described in detail in 22, and thus, they are omitted here.

3.2. Computational Modelling

We turn now to the design of the model by means of the HCCE. The coevolutionary
scheme is demonstrated in Fig 5. According to the lesion scenario described above,
each agent serves more than one tasks. This is illustrated in Fig 5, at the right
side of each CG. Thus, different fitness functions guide the evolution of different
components, enforcing the accomplishment of the respective tasks. In particular,
in each species, individuals are assigned a combination of evaluation indexes, for
the accomplishment of tasks where the composite model is performing, and the
accomplishment of tasks with performance of the lesioned model.

Following the formulation introduced in egs. (1), (2), the fitness function em-
ployed for the evolution of CG1 and its lower level species are:

fea1=feair2 - fear,rs
with flé'Gl,TZ = \/E% (3)
fé’Gl,TS =FE3

where k represents each membership of an individual in a proposed solution. The

aThe biological relevance of the model has been discussed in 22.



July 4, 2008 10:14 WSPC/INSTRUCTION FILE HCCE'TJAIT

12 M. Maniadakis and P. Trahanias

fitness function employed for the evolution of CG2 and its lower level species are:

feaa=fecaa,m - feaa,m
with ngz,n :Elz, (4)
f é’G2,T2 =VE,
where k is as above. The fitness function employed for the evolution of CG3 and its
lower level species are:
feas=fcaa 1, (5)
with fé‘GS,Tl =F
where k is as above. Finally the fitness function employed for the evolution of CG4
and its lower level species are:
fecea= fecgam- focare fecaTs,
with  fEgym=E1%,
k
f CcG4, T2~ Es,
f gG4,T3 =VE;

(6)

where k is as above. It is reminded that all PSs share the same fitness functions
with their higher level CG.

The coevolutionary process described above employed populations of 200 indi-
viduals for all PS species, 300 individuals for CG1, CG2, CG3, and 400 individ-
uals for CG4. During the evolutionary steps, Replication threshold mazxz. = 3 is
employed. Additionally, an elitist evolutionary strategy was followed in each evolu-
tionary step with the 7 best individuals of each species, copied unchanged in the
respective new generation, supporting the robustness of the evolutionary process.
After 170 evolutionary epochs the process converged successfully and the coopera-
tion of agent structures with completely different objectives, e.g. those under CG1
and those under CG3 is achieved (see eqs (3) and (5)).

3.3. HCCE Assessment

The problem of cognitive system design is used as a test case, investigating HCCE
internal dynamics. Because of the embodiment of the cognitive system in the robotic
platform and the observation of robot performance for a large number of simulation
steps, the coevolutionary process demands on average ten hours to run for 170
evolutionary epochs, and it is impractical to test a large number of different runs.
Therefore, we have performed six different runs of the hierarchical coevolutionary
scheme. The obtained results are illustrated in Fig 6, where each column corresponds
to a different run.

In the first run, the progress of the HCCE is initially slow, but after about 100
evolutionary epochs, the probabilistic search identifies a promising evolutionary di-
rection which is efficiently exploited to identify a successful set of solutions. In the
following two runs, we see that the coevolutionary process is rather unstable. Specif-
ically, the evolution of species C(G4 is not able to formulate successful assemblies of
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Fig. 6. Graphical illustration of the progress of six different HCCE coevolutionary runs. Each
column is related to the results observed on the respective run. The lines 1-4 demonstrate the
progress observed on the evolution of CG1, CG2, CG3, CG4, respectively. All plots demonstrate
the fitness value of the best candidate solution in a population, against evolutionary epochs.

cooperators that will be preserved in the consecutive epochs. This fact additionally
affects the progress of evolution in species CG2, CG3, which are trapped in sub-
optimal solutions. In the fourth run, the progress of the composite coevolutionary
scheme develops slowly, and simultaneously for all species. The coevolutionary pro-
cedure is terminated without reaching the success rate of the first run. Nevertheless,
we easily observe that the progress of evolution is not stabilized, which implies that
if the coevolutionary procedure could continue for more epochs, it should be able to
estimate a sufficiently good result. The progress of the fifth run is similar to the first.
The progress of the HCCE procedure is initially slow, when a promising assembly
of cooperators is identified. After a small unstable period in the advancement of the
coevolutionary procedure, an effective assembly is preserved, driving also the other
individuals in an area of successful solutions. Finally, the progress of the last run
is similar to the fourth. The evolution of each CG develops without rapid changes.
However, in the current case, the advancement is a bit faster than the fourth run,
and thus the composite procedure is able to converge in a set of solutions with a
nearly optimum fitness value.

3.4. Unimodal Evolutionary Design

In order to get a better appreciation of HCCE effectiveness, we have also approached
the problem at hand by using an ordinary evolutionary algorithm 43937, Specifically,
the structure of all cortical and link agents is encoded in a single chromosome. In the
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Fig. 7. Graphical illustration of the progress of Unimodal and ESP schemes. Each plot demon-
strates the fitness value of the best candidate solution in a generation, against evolutionary epochs.
(a) The results of six different runs of the ordinary evolutionary process. (b) The results of six
different runs of the ESP scheme.

current set of experiments a population of 400 individuals is evolved for 170 epochs.
The probability of applying crossover and mutation operators over the structure
of a cortical or a link agent is the same with the respective probabilities of the
coevolutionary scheme.

The fitness function employed to guide the evolutionary process is defined ac-
cording to eq (6), similar to the function fogs that evolves the top-level CG, facil-
itating also direct comparison of Unimodal and HCCE processes. Specifically, the
evolutionary process is driven by:

f=VE-E; By (7)
The results of 6 independent runs of the unimodal evolutionary process are
illustrated in Fig 7 (a) (compare with the last line of Fig 6). Evidently, none of
the ordinary evolutionary processes was successful. Additionally, even the best of
them, was not as good as the worst case of the coevolutionary scheme. These results
highlight the unsuitability of unimodal evolution to design distributed structures
with distinct roles of partial components, and the need for a specialized scheme able
to consider explicitly the individual characteristics of substructures. All these issues
are sufficiently addressed by the HCCE scheme.

3.5. Enforced SubPopulation (ESP) Design

Additionally, we have investigated the possibility of solving the same problem by
utilizing the Enforced SubPopulation (ESP) coevolutionary scheme. In the current
work, we have implemented the ESP algorithm described in '3, without however
activating the stagnation check that practically re-initializes populations when the
process gets stalled. Specifically, twelve different species are employed to specify the
structure of the twelve components of the model. All partial populations of the ESP
scheme are evolved according to the same fitness function describing the objectives
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Fig. 8. The average fitness of six runs of the HCCE procedure, utilizing different values of repli-
cation threshold maz..

of the overall system. Similar to the Unimodal evolutionary scheme, the fitness of
ESP solutions is estimated by:

f=+VE -E} Es (8)

Thus the progress of ESP is directly comparable with the progress of the HCCE
scheme.

Similar to HCCE, each population evolving the structure of a component of the
model consists of 200 individuals, while 2000 assemblies of components are randomly
created, trying to identify a successful solution to the overall problem. Thus, each
individual representing a candidate structure of a system component, participates
in about ten complete solution assemblies. All solutions are evaluated according to
eq. (8). The average fitness of individuals drives the evolution of each species.

We have performed 6 independent runs of the ESP scheme which are evolved for
170 epochs. The probability of applying crossover and mutation operators over the
structure of a cortical or a link agent is the same with the respective probabilities of
the HCCE scheme. The results of these processes are illustrated in Fig 7 (b). These
results are directly comparable with the last line of Fig 6. Evidently, none of the
ESP processes was successful. This is mainly due to the fact that ESP process is not
directed towards explicitly creating successful complex assemblies. We note that in
contrast to HCCE, the population of 2000 complete solution assemblies of ESP is not
evolved but it is randomly generated in each evolutionary epoch 3. In other words,
it is expected that due to the large number of complex assemblies being evaluated,
satisfactory distributed configurations will be randomly formulated. Unfortunately,
as it is indicated by the present results, this is not the case for large problems where
many components need to be coevolved.
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3.6. Replication Operator

Additionally we have investigated the effect of the“Replication” operator, on the
progress of coevolution. The effect of this operator is maximal when the value of
the replication threshold max. is low, and reduces gradually when max. increases.

Intuitively, mazx. balances the exploration versus exploitation dynamics of the
coevolutionary procedure. High values of the replication threshold keeps individu-
als of partial species largely un-effected, being used as test cases for the individuals
of the rest species. Thus, the dynamics of the coevolutionary procedure emphasize
more on the exploitation of current results. In contrast, low values of replication
threshold prevent individuals of partial species to participate in many cooperator
assemblies, enforcing their evolution towards independent directions as it is indi-
cated by mutation probability. In that case, the dynamics of the coevolutionary
procedure emphasize more on the exploration of the search space.

We have investigated HCCE performance for five values of max. threshold
({1,..,5}), conducting six independent runs for each value. The average of max-
imum of CG4 fitness over the six runs is illustrated in Fig 8. Obviously, for the
problem at hand, the successful convergence of the coevolutionary process is facili-
tated more by the exhaustive exploration of the search space. This is explained by
the increased complexity of the problem and the high non-linear interaction among
the partial elements of the solution.

3.7. Discussion

The results obtained in the current study attest to the validity and effectiveness of
the HCCE scheme. Specifically, it is shown that HCCE is capable of successfully
designing a system consisting of twelve complex partial components. Additionally,
it is shown that HCCE significantly outperforms ordinary Unimodal evolution and
the Enforced SubPopulation Coevolution. Comparing the computational demands
of the methods, in each generation, HCCE and Unimodal Evolution evaluate to-
taly 400 candidate problem solutions, while ESP evaluates 2000 solutions (this is
because the individuals encoding the structure of components have to participate
in many composite assemblies, in order to obtain an average estimate of their suit-
ability to the problem). Therefore, ESP needs considerably more processing time,
because it inherently performs more evaluations. Alas, despite the increased amount
of computational resources spent, the quality of the obtained results is rather poor
for ESP. Clearly, HCCE is more successful than the other evolutionary methods.
That is mainly for two reasons. First, HCCE is capable of explicitly addressing the
autonomous characteristics of each system component, and second it is equipped
with a systematic search mechanism identifying the component structures that can
more effectively cooperate.

In order to obtain a complete view on the use of hierarchical coevolution as
a general purpose optimization mechanism, HCCE can be further contrasted to a

broader set of optimization methods, such as those based on Pareto ranking!'?'6 or
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Table 1. A tabular presentation of the features provided by different evolutionary ap-

proaches.
Procedural Hierarchical Pareto Evolutionary
Feature Cooperative Evolution Multimodel
CoEvolution Partitioning
Global System Optimization Vv VA v
Single Component Optimization Vv
Partial Failure Exploration 4
Probabilistic Fitness Function v
Structural Identification Vv
Multiple Criteria Fitness Function Vv Va v
Multiple Criteria Diversity V

multimodel partitioning?27. The mentioned optimization methods are designed to
approach different types of problems, and thus it would be unfair for them to be
compared against HCCE on the problem investigated in the current study, focus-
ing on systems with distributed architectures. Therefore, we constraint our study
to a qualitative comparison of the aforementioned approaches, summarized in Ta-
ble 1. The HCCE methodology is mainly targeted in addressing the distributed
architecture of systems, while Pareto ranking aims at efficiently balancing popu-
lation diversity based on multiple objective criteria, and evolutionary multimodel
partitioning aims at structural system identification based on probabilistic fitness
functions.

Due to the complementarity of the aforementioned approaches, it would be ben-
eficial for HCCE to incorporate the advantageous features of the other methods
that it is currently lacking. Unfortunately, this is not a straight forward procedure.
In particular, with respect to Pareto optimality, it is not clear how fitness values
should be propagated along the coevolutionary hierarchy, or how effective Pareto
fronts should be formulated when partial populations have to satisfy multiple but
different (for each population) fitness criteria. At the same time it seems that Pareto
approaches are very time consuming when a large number of populations needs to
be coevolved, because many individual combinations (the product of Pareto fronts)
should be repeatedly tested.

A similar complexity problem would appear by integrating multimodel parti-
tioning to HCCE, because many alternative neural network structures need to be
explored and optimized for each system component, increasing dramatically the
number of global problem solutions that need to be investigated. However, the
probabilistic fitness measures used in multimodel partitioning can be rather easily
integrated to HCCE. In the current work we have developed a first exploratory im-
plementation, where all candidate solutions are tested on four random versions of the
tasks T'1,72,T3 (the four versions correspond to statistically independent random
initializations and different sequences of random sensory noise). As a probabilistic
measure of a candidate solution suitability on a task, we use the average score in



July 4, 2008 10:14 WSPC/INSTRUCTION FILE HCCE'TJAIT

18 M. Maniadakis and P. Trahanias

the four different versions of a given taskP. Following this approach for exploring
the space of possible solutions, the amount of necessary computational resources are
quadrupled compared to the original HCCE. The additional resources are exploited
by HCCE to improve its robustness and stability. As it is shown in Fig 9, five out of
six procedures have satisfactorily converged, resulting in successful neural network
configurations. However, the more stable evolutionary process implies the lack of big
exploratory steps (and the lack of big fitness jumps) preventing the identification
of optimal neural network configurations (i.e. the best fogq fitness score in Fig 9 is
less than the best fogq fitness score in Fig 7). In order to improve exploration we
can increase the mutation rate of the evolutionary procedure, solving (at least in
theory) this problem. Overall, the assimilation of multimodel partitioning features
from HCCE seems to be beneficial for the coevolutionary procedure. However, the
integration of the complete multimodel partitioning procedure on HCCE is an open
research topic that needs to be explored further.

In the current study we have also investigated the effectiveness of the Replication
operator. The obtained results demonstrated that the new operator supports the
successful convergence of the coevolutionary process because it conveys information
from the higher to the lower levels of the hierarchy, facilitating the coordination of
partial evolutionary processes. In particular, Replication provides CG populations
a means to modulate the evolution of lower level PS populations that encode the
structure of system components. Thus, Replication operator can be utilized in other

12,35

coevolutionary schemes that also evolve assemblies of individuals , in order to

support the integration of partial components.

4. Conclusions

In the current paper we present Hierarchical Cooperative CoEvolution (HCCE),
and we experimentally demonstrate that it is particularly appropriate for designing
complex distributed systems. More specifically, by utilizing separate fitness func-
tions, the proposed coevolutionary scheme addresses the specialized characteristics
of system components, being capable of assigning them distinct roles. This is a clear
advantage of cooperative coevolution compared to a unimodal evolutionary process
that calls for a single fitness function, preventing the consideration of partial perfor-
mance of substructures. Furthermore, the HCCE design mechanism facilitates the
integration of autonomous components in a unified system, by means of evaluating
the cooperative performance of substructures. The combination of partial auton-
omy and cooperative performance in a single design method, is very important for
designing complex distributed systems, and thus HCCE can effectively address the
distributed nature of computational systems. In summary, our study showed that
HCCE is capable of:

bSimilar to conditional probabilities, candidate solutions for each component are tested given that
the rest components have a particular parameterization (see HCCE description in section 2).
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Fig.9. The results of six coevolutionary process with probabilistic fitness functions (compare with
Fig 7). Each column is related to the results observed on one run. The lines 1-4 demonstrate the
progress observed on the evolution of CG1, CG2, CG3, CG4, respectively. All plots demonstrate
the fitness value of the best candidate solution in a population, against evolutionary epochs.

simultaneously coevolving a large number of partial components,
enforcing the integration of components in a unified structure,
considering the special role of each component in the unified system,

investigating the performance of the overall system in conditions of partial
failure.

It is worth emphasizing that despite the hierarchical organization of the coevo-
lutionary process, the computational model is not necessary to operate in a hier-
archical mode. This is because HCCE architecture does not directly correspond to
the connectivity of system components that can be either hierarchical or completely
parallel. Hence, the HCCE-based design method does not imply any constraints on
the architecture of the distributed system.

In the future, we are planning to apply the HCCE-based design methodology
in a range of different problems such as the design of cooperating robot teams,
and the design of complex distributed mechanical systems consisting of different
substructures. Additionally we will investigate possible directions for advancing the
HCCE scheme. Research directions that seem to invite productive work concern
the enrichment of the hierarchical scheme with Pareto optimality characteristics
and multimodel partitioning structural optimization, as well as the design of new
genetic operators specialized to improve the coevolutionary process.



July 4, 2008 10:14 WSPC/INSTRUCTION FILE HCCE'TJAIT

20

M. Maniadakis and P. Trahanias

Acknowledgments

The work presented in this paper has been partly supported by the European Com-
mission funded project MATHESIS, under contract IST-027574.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R.M. Axelrod. The evolution of cooperation. New York: Basic Books, 1984.

G. Beligiannis, L. Skarlas, and S. Likothanassis. A generic applied evolutionary hybrid
technique. IEEE Signal Processing Magazine, pages 28-388, 2004.

J. Casillas, O. Cordén, F. Herrera, and J.J. Merelo. Cooperative coevolution for learn-
ing fuzzy rule-based systems. In P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and
M. Schoenauer, editors, Proceedings of the Fifth Conference on Artificial Evolution
(AE-2001), pages 311-322. Springer Verlag, 2001.

Y. Chen, B. Yang, and J. Dong. Nonlinear system modelling via optimal design of
neural trees. International Journal of Neural Systems, 14(2):1-13, 2004.

R. Coller. Agent factory: A framework for the engineering of agent-oriented applica-
tions. Phd. Dissertation, University College Dublin, 2003.

P. Darwen and X. Yao. Coevolution in iterated prisoner’s dilemma with intermediate
levels of cooperation: application to missile defence. International Journal of Compu-
tational Intelligence and Applications, 2(1):83-107, 2002.

E.D. De Jong. Representation development from pareto-coevolution. In Proc. Genetic
and Evolutionary Computation Confernce, (GECCO-2003), 2003.

A. Defaweux, T. Lenaerts, and J. vanHermet. Transition models as an incremental
approach for problem solving in evolutionary algorithms. In Proc. GECCO, 2005.
M.R. Delgado, Von F.J. Zuben, and F.A.C. Gomide. Coevolutionary genetic fuzzy
systems: a hierarchical collaborative approach. Fuzzy Sets and Systems, 141(1):89—
106, 2004.

A E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing Let-
ters, 82:1-6, 2002.

S.G. Ficici and J.B. Pollack. Pareto optimality in coevolutionary learning. In Proc. of
6th European Conference on Artificial Life (ECAL-2001), pages 316-325, 2001.

N. Garcia-Pedrajas, D. Ortiz-Boyer, and C. Hervas-Martinez. Cooperative coevolution
of generalized multi-layer perceptrons. Neurocomputing, 56:257-283, 2004.

F. Gomez. Robust non-linear control through neuroevolution. PhD Thesis, AI-TR-
03-303, Department of Computer Sciences, University of Texas at Austin., 2003.
F.J. Gomez and R. Miikkulainen. Solving non-markovian control tasks with neuro-
evolution. In Proc. Sizteenth International Joint Conference on Artificial Intelligence
- (IJCAI-1999), pages 1356-1361, 1999.

D. Hillis. Co-evolving parasites improve simulated evolution as an optimization pro-
cedure. In Proc. Artificial Life II, pages 313-324, 1992.

A.W. Iorio and X. Li. A cooperative coevolutionary multiobjective algorithm using
non-dominated sorting. In Proc. Genetic and Evolutionary Computation Confernce,
(GECCO-2004), pages 537-548, 2004.

N.R. Jennings. On agent based software engineering. Artificial Intelligence, 117:277—
296, 2000.

R. Kicinger, T. Arciszewski, and K. De Jong. Evolutionary computation and structural
design: A survey of the state-of-the-art. Computers € Structures, 83:1943—-1978, 2005.
K. Krawiec and B. Bhanu. Coevolution and linear genetic programming for visual
learning. In Proc. Genetic and Evolutionary Computation Confernce, (GECCO-2003),
pages 332-343, 2003.



July 4, 2008 10:14 WSPC/INSTRUCTION FILE HCCE'TJAIT

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Hierarchical Cooperative CoEvolution: Presentation and Assessment Study 21

M. Maniadakis. Design and integration of agent-based partial brain models for robotic
systems by means of hierarchical cooperative coevolution. PhD Thesis, Department of
Computer Sciences, University of Crete, 2006.

M. Maniadakis, E. Hourdakis, and P. Trahanias. Modeling overlapping execu-
tion/observation brain pathways. In Proc. Int. Joint Conference on Neural Networks,
(IJCNN-07), pages 1255-1260, 2007.

M. Maniadakis and P. Trahanias. Distributed brain modelling by means of hierarchi-
cal collaborative coevolution. In Proc. IEEE Congress on Evolutionary Computation,
(CEC-2005), pages 2699-2706, 2005.

M. Maniadakis and P. Trahanias. Modelling brain emergent behaviors through coevo-
lution of neural agents. Neural Networks Journal, 19(5):705-720, 2006.

M. Maniadakis and P. Trahanias. Assessing hierarchical cooperative coevolution. In
Proc. IEEE Int. Conference on Tools with Artificial Intelligence (ICTAI-07), pages
391-398, 2007.

M. Maniadakis and P. Trahanias. Agent-based brain modelling by means of hierarchi-
cal cooperative coevolution. accepted for publication, ALife Journal, 2008.

M. Maniadakis and P. Trahanias. Hierarchical coevolution of cooperating agents acting
in the brain-arena. accepted for publication, Adaptive Behavior Journal, 2008.

G. Manioudakis, E. Demiris, and S. Likothanassis. A self-organized neural network
based on the multi-model partitioning theory. Neurocomputing, 37:1-29, 2001.

S.J. Maynard. Evolution and the theory of games. Cambridge University Press, 1982.
P.B. Nair and A.J. Keane. Coevolutionary architecture for distributed optimization
of complex coupled systems. ATAA Journal, 40(7):1434-1443, 2002.

V. Oduguwa, A. Tiwari, and R. Roy. Evolutionary computing in manufacturing in-
dustry: an overview of recent applications. Applied Soft Computing, 5:281-299, 2005.
B. Olsson. Co-evolutionary search in asymmetric spaces. Information Science,
133:103-125, 2001.

J. Paredis. Artificial coevolution, explorations in artificial life. Miller Freeman Inc.,
Al Expert Presents, 1995.

E. Popovici and K. De Jong. Understanding cooperative coevolutionary dynamics via
simple fitness landscapes. In Proc. Genetic and Evolutionary Computation Confernce,
GECCO-2005, 2005.

M. Potter and K. De Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8:1-29, 2000.

J. Reisinger, K.O. Stanley, and R. Miikkulainen. Evolving reusable neural mod-
ules. In Proc. of Genetic and Evolutionary Computation Conference, (GECCO-2004).
Springer Verlag, 2004.

C.D. Rosin and R.K. Belew. New methods for competitive coevolution. Fvolutionary
Computation, 5:1-29, 1997.

H. Surmann and M. Maniadakis. Learning feed-forward and recurrent fuzzy systems:
a genetic approach. Journal of Systems Architecture, 47(7):649-662, 2001.

D. Thierens. Scalability problems of simple genetic algorithms. Evolutionary Compu-
tation, 7(4):331-352, 1999.

R.A. Watson and J.B. Pollack. A computational model of symbiotic composition in
evolutionary transitions. Biosystems, 69(2-3):187-209, 2002.

R.P. Wiegand. An analysis of cooperative coevolutionary algorithms. Phd. Disserta-
tion, Department of Computer Science, George Mason University, USA, 2003.

R.P. Wiegand, C.W. Liles, and A.K. De Jong. An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In Proc. of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pages 1235-1242. Morgan Kauf-



July 4, 2008 10:14 WSPC/INSTRUCTION FILE HCCE'TJAIT

22 M. Maniadakis and P. Trahanias

mann, 2001.



