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Abstract—The computational systems supporting the cognitive
capacity of artificial agents are often structured hierarchically,
with sensory-motor details placed in the lower levels, and
abstracted conceptual items in the upper levels. Such an architec-
ture mimics the structural properties of the animal and human
nervous system.

To operate efficiently in varying circumstances, artificial agents
are necessary to consider both ego-centric (i.e. self-centered) and
allo-centric (i.e. other-centered) information, which are further
combined to address given tasks. The present work investigates
effective assemblies for simultaneously placing ego-centric and
allo-centric processes in the cognitive hierarchy, by evolving self-
organized neural network controllers. The systematic study of the
internal network mechanisms has showed that effective neural
assemblies are developed by placing allo-centric information in
the upper levels of the cognitive hierarchy, followed by ego-centric
abstracted representations in the middle and finally sensory-
motor details in the lower level. We present and discuss the
obtained results considering how they are related with known
assumptions about human brain functionality.

I. INTRODUCTION

The interaction of high-level cognition with the low level
perceptual and motor primitives is a timely research topic
involved in many aspects of intelligent systems’ functionality.
Such a hierarchical structuring is necessary to consider the
conceptual abstraction of cognitive items related with both
ego-centric and allo-centric information involved in the ac-
complishment of tasks.

Previous works investigating hierarchical cognition have
mainly focused on the relationship between primary motor
skills and complex behavioral sequences. For example, our
previous work exploring the synthesis of complex behaviors by
simple components revealed that not only the spatial connec-
tions between neurons but also the timescales of neural activity
(i.e. fast or slow processing) may act as important mechanisms
leading to a functional hierarchy [1]. Additionally, in a dif-
ferent experimental setup [2], [3], we have investigated the
conceptual abstraction of behavioral rules, and their represen-
tation in neural network dynamics. Our findings suggest that
separating high and low level processes in bottleneck neural
architectures supports the functionality of the overall system,
while rules can be effectively encoded as distinct attractors
in the upper network level. Moreover, in a slightly different
direction, research on multi-task learning neural networks, an
approach aiming at internal neural representations that are

shared by more than one tasks, has accomplished to effectively
shape primary skills which are further synthesized to develop
multiple complex behaviors [4], [5].

Besides the abstraction of self-referential information, in-
telligent systems are necessary to conceptualize environment
specific characteristics. Previous works have investigated the
encoding of allo-centric contextual information in the higher
part of the cognitive system, which is used to adapt motor
control in accomplishing varying versions of a given task. To
address this issue, two main approaches have been followed,
either by employing a set of small separate controllers each
one specialized to a particular context [6], [7], or using a
single global system that is parameterized on-line to address
the specialized characteristics of a given context, an approach
that has been greatly inspired by neuromodulation [8], [9].

Currently, the combination of ego-centric and allo-centric
information has focused on transforming sensory values from
one coordinate system to the other, making possible the
extraction of qualitatively different informational items [10].
However, how ego-centric and allo-centric processes interact
and what is the most appropriate arrangement when they are
placed in the cognitive hierarchy is not sufficiently explored.
This is the topic of the present work.

In particular, we investigate the joined abstraction of ego-
centric and allo-centric concepts in a single artificial neural
network. This is accomplished by considering a task that
involves two different behavioral rules (the ego-centric in-
formation), which are applied on three environments with
different structural characteristics (the allo-centric informa-
tion). Such an experiment is expected to provide insight on
possible mechanisms for effectively combining ego-centric and
allo-centric information in hierarchical systems. In short, our
findings show that ego-centric information is encoded closer
to the low level perceptual and motor primitives, while allo-
centric environment specific information is represented in the
uppers parts of the cognitive hierarchy.

The rest of the paper is organized as follows. In the
next section we describe the experimental setup used in our
study. Then we present the obtained results focusing on the
ego-centric and allo-centric mechanisms self-organized in the
neural network. Finally, in a detailed discussion we consider
how the obtained results compare to known assumptions about
human consciousness related to the interaction of ego-centric
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Fig. 1. A schematic representation of the response rules. The robot starts
always from the bottom of the T-maze. Light cues are shown as double circles.
Target locations are represented by ×, while reward corresponds to the gray
area.

and allo-centric processes.

II. EXPERIMENTAL SETUP

The current study is an extension of our previous works
[2], [3] addressing the manipulation of behavioral rules, in
a mobile-robot interpretation of the classical Wisconsin Card
Sorting (WCS) task [11]. The current work aims to investigate
the scaling of conceptualization, investigating how artificial
agents, apart from behavioral rules, categorize and conceptu-
alize alternative environments each one having distinct spatial
characteristics. Specifically, we test the combination of two
behavioral rules with three different environments, resulting
in six different operating circumstances.

A. Behavioral Rules

The investigated task is inspired by the rat version of WCS,
exploring rodents’ rule switching capacity [12]. We assume
that a mobile robotic agent is located at the bottom of a T-
maze environment (see Fig. 1). At the beginning of a trial,
a light cue appears at either the left or the right side of the
robot. Depending on the light side, the robot has to move to
the end of the corridor, making a 90o turning choice towards
the left or right. The side of the light is linked to the choice of
the robot according to two different cue-response rules. The
first is called Same-Side (SS) rule, implying that the robotic
agent should turn left if the light source appeared at its left
side, and it should turn right if the light source appeared at
its right side. The second rule is named (OS), implying that
robot should turn to the side opposite of the light.

The capacity of the agent to follow rules SS and OS is
evaluated by testing long sequences of response trials. For
example, assume that a human experimenter selects rule SS
as the correct rule for a given sequence of trials. Based on
the side of the light cue, the experimenter provides properly
positioned rewards to the side of the T-maze that the robot
should turn (see Fig. 1). Every time that the robot gives a
correct response, it reaches the target location driving to a
reward area that indicates it follows the right rule. In the case
that the agent does not receive reward, it should switch the
adopted rule.

B. Environment contexts

In order to minimize the effect of embodiment in the
abstraction and representation of rules we have investigated the
accomplishment of the delayed response task in three different
T-maze environments, each one having distinct characteristics

Maze 1 Maze 2 Maze 3

Fig. 2. A schematic representation of the three different types of T-maze
environments considered in the delayed response task.

(see Fig. 2). In the first T-maze, the corridor is short and
wide, in the second maze the corridor has medium length
and width, while in the third the corridor is long and narrow.
The experiments considered in the present study, focus on
CTRNN controllers that can accomplish rule following in all
three environments.

The above described experimental setup is expected to
minimize the effect of embodiment in the abstraction and
representation of high level cognitive processes. Additionally,
the combination of the two rules with the three maze types
is expected to enforce representing, at least partially, both
the environment-invariant characteristics of rules, as well as
the rule-invariant characteristics of the environments. In that
way, the current setup aims to explore effective schemes for
implementing and coordinating ego-centric (i.e. rule) and allo-
centric (i.e. environment) information.
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Fig. 3. Schematic representation of the bottleneck CTRNN used in the
current study.

C. The Neural Network Controller

We use a Continuous Time Recurrent Neural Network
(CTRNN) model [13] to investigate SS and OS rule following
in three different maze environments. All CTRNN neurons are
governed by the standard leaky integrator equations described
in previous studies [14], [15]. CTRNNs implicitly represent
high level knowledge to guide behavior, using internal neuro-
dynamics. Thus, the state of the controller is initialized only
once at the beginning of the first trial, and then neuronal
dynamics continues without resetting until the end of the
task. Following our previous work [2] showing that bottleneck
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Fig. 4. Phase plots of neural activity in the upper (U), bottleneck (B) and
lower (L) level of the CTRNN, when the agent follows the SS rule. Plots in
different columns correspond to different T-maze environments. For each plot,
the x-axis and y-axis correspond to the first and second principal component
respectively.

configurations are more effective in accomplishing rule follow-
ing tasks compared to fully connected CTRNNs, the current
work employs a bottleneck structured network. As shown in
Fig 3, we use two bottleneck neurons to separate CTRNN
levels accepting different types of sensory information. The
bottleneck neurons loosely segregate information processing in
each level, maintaining minimum interactions between them,
therefore facilitating the development of high and low level
cognitive skills in the corresponding parts of the CTRNN.

In order to investigate how embodied activities are linked
with the high-level representation of rules and environment
contexts, we employ a two wheeled simulated robotic agent
equipped with 8 uniformly distributed distance, light and
reward sensors. The connectivity of sensory information with
the different layers of the CTRNN is also shown in Fig 3. The
details of input-output connectivity are similar to [16] and they
are omitted here due to space limitations.

D. Evolutionary Procedure

We use a Genetic Algorithm (GA) to explore cognitive
dynamics enabling artificial agent to respond successfully for
all six combinations of rules and environments. In short, we
use a population of artificial chromosomes encoding CTRNN
controllers (their synaptic weights and neural biases). Each
candidate solution encoding a complete CTRNN is tested on
six different tasks, each one examining the ability of the agent
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Fig. 5. Phase plots of neural activity in the upper (U), bottleneck (B) and
lower (L) level of the CTRNN, when the agent follows the OS rule. Plots in
different columns correspond to different T-maze environments. For each plot,
the x-axis and y-axis correspond to the first and second principal component
respectively.

to respond successfully in one of the six different combinations
of rules and environments. The performance of the agent is
evaluated separately for each task, and the obtained measures
are subsequently aggregated in a global fitness value that
guides artificial evolution. Further details on the evolutionary
procedure are omitted here due to space limitations.

III. RESULTS

We have evolved CTRNN controllers running ten different
GA processes. Four of the evolutionary procedures converged
successfully configuring CTRNNs capable of adopting rules
SS and OS, responding successfully in all three environments.
Interestingly, the results obtained from the statistically in-
dependent evolutionary procedures exhibit common internal
dynamics, which are discussed below using as a working
example one representative solution.

We are interested to explore what kind of information is
encoded in each part of the CTRNN. To address this issue,
we conduct principal component analysis (PCA) and we take
the phase plots of the first two principal components of neural
activity in the upper, bottleneck and lower part of the CTRNN,
as shown in Figs 4 and 5. We observe that in the lower
level six distinct attractors are shaped, each one corresponding
to a particular rule-environment pair. In the bottleneck level,
the first principal component is mainly active, regulating the
interaction between the upper and lower level of the network.
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Fig. 6. The activity of the first principal component of the bottleneck neurons
in ten indicative trials when the agent follows the SS rule, turning either right
(R), or left (L). Plots in different columns correspond to different T-maze
environments.

In the upper level, the trajectories of neural activity are clearly
grouped in three pairs of shapes corresponding to the three
different types of T-mazes (i.e. the activity corresponding to
Maze1 has nearly the same shape for both the SS and OS
rules). Interestingly, the maze-shaped attractors in the upper
level are partially modulated by the particular rule adopted by
the agent. For example, the Maze2 attractors shown in Figs
4 and 5 in the second plot of the first line, are both circular
with different radii.

It is interesting to note the partial overlap between the phase
plots of a given neural network level, in Figs 4 and 5. These
overlaps facilitate transitions from one mental state to the
other, enabling the artificial agent to successfully perform in
all rule-environment combinations. This is because at the be-
ginning of a task, the agent is not aware of the correct response
rule, or the current environment type. Therefore, it is necessary
to test and assess alternative choices in order to discover the
operating framework for a given task (set by the experimenter).
The overlap of phase plots enables the agent to easily change
back and forth its environment and rule choice, as well as the
choice of turning left or right. In our previous works [2], [16],
we have systematically examined switching between higher
level states represented by partially overlapping attractors and
thus, in the current work we omit this topic due to space
limitations. In short, the inability of the agent to receive reward
in the case of a non-successful response causes instability to
the attractor represented state, making the CTRNN jump into
a new attractor, that corresponds to a new mental state.

Besides the encoding of the environment type in the upper
part of the CTRNN, we explore how the agent encodes the
adopted rule. Figs 4 and 5 does not show any clear evidence
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Fig. 7. The activity of the first principal component of the bottleneck neurons
in ten indicative trials when the agent follows the OS rule, turning either right
(R), or left (L). Plots in different columns correspond to different T-maze
environments.

on the internal representation of rules. To obtain insight on
this issue we focus on the early and late simulation steps of
trials which should be properly linked to facilitate tracking
of rules along consecutive robot responses. We explore the
bottleneck neurons, conducting PCA analysis of their activity.
The first principal component of neural activity when the agent
turns left or right, is shown in Figs 6 and 7 for the case of
the SS and OS rule respectively. In these plots, we observe
that the bottleneck activity starts and ends at relatively high
values when rule SS is followed, while it starts and ends at
low values when rule OS is adopted. This activation difference
is used for preserving rule information when passing from one
trial to the other, enabling the agent to follow a particular rule
for a long sequence of trials. It is noted that examining upper
and lower CTRNN activity with a similar PCA procedure
does not show any systematic differentiation between SS and
OS, suggesting that the active rule is mainly encoded in the
bottleneck neurons.

Finally we explore inferencing of the robot moving direction
in the response trials. This is an important issue because for all
rules and all environments, the agent has to undertake common
decisions, driving both left-wards and right-wards. Given, that
the high-level and bottleneck neurons are mainly involved in
environment-type and rule encoding respectively, we focus
on neural activity at the lower level which is practically
responsible for implementing the given response as a sequence
of motor commands. After performing principal component
analysis on the activity of the lower level, we observe that
the third principal component (PC3) encodes the direction of
robot’s response at the beginning of the trial. This is shown in
Figs 8 and 9, depicting PC3 unfolding for left and right robot
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Fig. 8. The activity of the third principal component (PC3) of the lower level
neurons in ten indicative trials when the agent follows the SS rule, turning
either right (R), or left (L). Plots in different columns correspond to different
T-maze environments.

responses. Clearly, in the first 40 simulation steps of trials,
PC3 values rise up when the robot decides to move right-
wards, while PC3 values reduce when the robot moves left-
wards. This observation applies for all six rule-environment
combinations, which means it is not affected by the adopted
rule, or the environment type. Interestingly, the first and second
principal component does not appear correlated with the rule,
the environment type, or any other high-level aspect of the
problem, and they seem to deal with the wall-avoidance issues
related with a particularly directed response. In particular, any
time the robot is approaching an object, an automatic turning
to the opposite direction is triggered to avoid bumping.

Overall, the obtained results show that the upper level
is involved in categorizing and conceptualizing environment
specific information, that is external to the artificial agent,
which implies it is processing allo-centric information. The
middle level is related with the rule-following strategy guiding
agent’s behavior, therefore maintaining an abstracted form
of ego-centric information. Finally, the lower level of the
cognitive hierarchy that is in direct contact with the sensors
and effectors of the agent considers the motor details of the
particular actions, implementing primary motor skills which
are properly activated to facilitate navigation.

We would like to note that the rather simple behavioral
nature of the investigated tasks is in contrast to the sufficiently
complex high-level issues addressed in our experiments. This
approach facilitates the study of the internal mechanisms self-
organized in the CTRNN, revealing the structural details of
the ego-centric and allo-centric conceptualization on-top of
primary motor skills. Besides the fact that the investigated
tasks involve rather simple behaviors, the qualitative charac-
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Fig. 9. The activity of the third principal component (PC3) of the lower level
neurons in ten indicative trials when the agent follows the OS rule, turning
either right (R), or left (L). Plots in different columns correspond to different
T-maze environments.

teristics of the observed results may sufficiently scale for more
complex perceptual and behavioral capacities, as it is discussed
in the following section (see how CTRNN dynamics compare
to allocentric-egocentric interface theory of consciousness).

IV. DISCUSSION

The present study aims to investigate the principles of ego-
centric and allo-centric hierarchical functioning in cognitive
systems, by evolving self-organized neural controllers for
artificial agents. In particular, we have explored the con-
ceptual abstraction of self-referential behavioral strategies as
well as the abstraction of environment specific contextual
information in the same CTRNN controller. Our findings
suggest that the cognitive hierarchy is structured in a way
that encodes information with more ego-centric characteristics
in the lower levels, which are abstracted in less detailed ego-
centric representations in the next levels, turning to allo-centric
information in the upper levels of the cognitive hierarchy.
In other words, there is an gradual transformation from ego-
centric to allo-centric information as we move to the higher
levels of cognition.

In the above described hierarchical structuring, the informa-
tion concerning environment context is encoded in the upper
level of the cognitive hierarchy (i.e. being far from low-level
motor details), besides the fact that the characteristics of the
environment are in direct link with the sensory-motor details
affecting the implementation of a particular response. More
specifically, in the current experiment, the agent capitalizes
on the wall avoidance dynamics implemented in the lower
levels of the hierarchy. The motion plan provides the general
direction to the robot (either left-wards, or right-wards), which
is combined with the innate wall avoidance dynamics in order



to implement the desired robot behavior. In other words, the
characteristics of the environment are not directly linked with
response representation. The categorization of environment
types may have a different usability in our experiments, that
seems to be related with the selection and the tracking of
rules. According to our results, the agent gives higher priority
in identifying allo-centric information, i.e. the current type
of the T-maze environment, and then explores the available
behavioral strategies to select the correct response rule. That is
the agent first clarifies the external context, and then considers
motion strategy and the particular implementation.

We would like to note that we have also conducted ex-
periments aiming to address the problem investigated in the
present study by adding one more layer in the CTRNN, with-
out however observing significant changes in the internally
self-organized neurodynamics. In particular, the encoding of
rules remains in the bottleneck neurons, with both other layers
on top being involved in the handling of environment specific
contextual information.

The internal mechanisms observed in the self-organized
CTRNN models are in agreement with the “Allocentric-
Egocentric Interface (AEI) Theory of Consciousness” [17]
arguing that as we move in gradually higher levels of cog-
nition, the representation of information is less and less cen-
tered around the self, integrating gradually more allo-centric
characteristics.

Moreover, it is argued that the cognitive processes in the
lowest and highest levels may be operated unconsciously,
while those serving as the interface of high and low level
cognition are the ones gathering the highest amounts of
consciousness. Investigating this assumption for our model,
we observe that the lower level of the CTRNN operates
reactively any time it approximates an object, turning to the
opposite direction. This means that the robot does not need
to direct attention on corridor navigation to avoid bumping
on the walls. Our results does not show any clear evidence
about handling the environment-type in a less conscious way,
however this could be a valid assumption for our CTRNN
controllers given that environment type is decided only once,
early in the experimental trial and then it is not changing for
the rest of the task.

Interestingly, in the obtained results, the rule representation
located in the middle of the cognitive hierarchy seems to
modulate the activity in both the lower and the upper layers
of the CTRNN (e.g. environment representations between Figs
4 and 5 are slightly different, while the rule clearly directs
robot’s moving direction shaped in the lower level of the
controller). According to AEI theory, this characteristic (i.e.
the modulation of other layers activity) corresponds to the
type of information that is most consciously manipulated by
the agent, and this is typically encoded in the middle of the
cognitive hierarchy. This working principle seems valid for
our results, explaining why rules are encoded in the middle
of the cognitive hierarchy. Specifically, the adopted rule must
be repetitively combined with the provided light cue in order
to develop the correct delayed response in each trial, which

means that the agent should regularly and actively use rule
information to accomplish all six tasks.

Overall, the mechanisms self-organized internally in the
CTRNNs provide support to the AEI hypothesis as a valid
explanation of hierarchical cognitive processes that combine
ego-centric and allo-centric information.

V. CONCLUSION

The proposed work aims to explore how the low level motor
details linked to the particular embodied instantiation of the
cognitive system interact with the conceptual abstraction of
behavioral strategies and the environment specific contextual
information. According to our results, the cognitive processes
form a hierarchy of mental representations with egocentric
representations placed below allo-centric representations. This
observation suggests that part of what it means to be lower or
higher in the cognitive hierarchy is to be closer to or further
from the sensory and motor periphery of the nervous system.
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