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Abstract

The current work addresses the problem of designing
and integrating brain-inspired artificial cognitive sys-
tems. Specifically, we introduce a new computational
framework for modelling partial brain areas following
a coevolutionary agent-based approach. Properly for-
mulated neural agents are employed to represent brain
areas. A cooperative coevolutionary method, with the
inherent ability to co-adapt substructures, supports the
design of the models, and additionally provides a consis-
tent methodology to achieve their integration. The im-
plemented models are successfully embedded in a sim-
ulated robotic platform which supports environmental
interaction. The proposed approach is utilized to de-
sign two distinct models: one for primary motor cortex
able to drive the robot in a purposeless wall avoidance
mode, and one for hippocampus which supports self-
localization. These models are further integrated by
adding at the same time prefrontal structures, in order
to drive the robot in a purposeful mode, accomplishing
a DMS task in a cross (+) maze.

Introduction
The long-term vision of developing artificial organisms
with mammal-like cognitive abilities, has recently given
impetus in the design of brain-inspired systems. The
brain of mammals consists of interconnected modules
with different functionalities, implying that models with
distributed architecture should be designed. In this con-
text, a modular design approach is followed by (Krich-
mar and Edelman, 2003) and (Kozma et al., 2005), to
develop distributed brain-like computational models.

The construction of large scale models is difficult to ac-
complish by developing from scratch complicated struc-
tures consisting of hundreds of modules. An alternative
approach could be based on implementing separate mod-
els of partial brain areas which are further integrated in
gradually more complex ones. Along this line, existing
approaches suffer in terms of scalability, because they
lack a systematic procedure to support the incremental
integration of substructures. In contrast, they follow a
manual design approach and thus they can not be used
as a long-term modelling framework.

We have recently proposed a new method to design
distributed partial brain models (Maniadakis and Tra-
hanias, 2005b). Specifically, the model consists of a col-
lection of neural agents, each one representing a brain
area. The performance of agents is specified by means of
their interaction with other agents, and also by the inter-
action of the composite model with the external world,

simulating epigenetic learning. The self-organization dy-
namics of epigenetic learning are designed by an evolu-
tionary process which simulates phylogenesis (Rolls and
Stringer, 2000). Following the phylogenetic/epigenetic
approach, the objective adopted during the evolution of
agents, is to furnish them with abilities to develop similar
performance to the respective brain areas, after a certain
amount of environmental interaction. Instead of using a
unimodal evolutionary process, we employ a Hierarchical
Cooperative CoEvolutionary (HCCE) approach which
is able to highlight the specialties of brain areas rep-
resented by distinct agents (Maniadakis and Trahanias,
2005a). By means of this distributed design method,
composite models consisting of independent still cooper-
ating modules can be easily formulated.

The present study illustrates the ability of the pro-
posed computational framework to facilitate incremen-
tal modelling. This is achieved by combining the ben-
efits of the distributed model with the benefits of the
distributed design methodology. At first, the agent-
based representation of brain areas enforces the auton-
omy of substructures, supporting problem decomposi-
tion in small tractable and progressively solved tasks.
Additionally, the HCCE-based design method, with the
inherent ability to combine distributed substructures,
provides a mechanism of consistent integration of par-
tial models. Thus, existing structures can be re-utilized
in order to develop gradually more complex ones.

The rest of the paper is organized as follows. In the
next section, we present the neural agent structures used
to represent CNS areas, and the hierarchical coopera-
tive coevolutionary scheme which supports the design of
agents. Then, we present the results of the proposed
approach on the design of a partial brain computational
model of Hippocampal - Prefrontal - Primary Motor cor-
tical interaction. Finally, conclusions and suggestions for
future work are drawn in the last section.

Method

The design of brain-inspired structures is based on the
argument that the behavior of animals is a result of phy-
logenetic evolution, and epigenetic environmental expe-
rience (Geary and Huffman, 2002). Phylogenetic evolu-
tion is facilitated by the HCCE design approach, while
epigenetic learning is facilitated by the self-organization
dynamics of the computational model. Both of them are
described below.
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Figure 1: Schematic representation of the computational
model. Part (a) illustrates a link agent which supports
information flow from cortical agent A to B. Part (b)
illustrates synapse definition in cortical agent B.

Computational Model
Two different neural agents, provide a computational
framework which supports modelling: (i) a cortical agent
to represent brain areas, and (ii) a link agent to support
information flow across cortical modules.
Link Agent. The structure of the link agent is properly
designed to support connectivity among cortical mod-
ules. Using link agents, any two cortical modules can be
connected, simulating the connectivity of brain areas.

Each link agent is specified by the projecting axons
between two cortical agents (Fig 1(a)). Its formation
is based on the representation of cortical modules by
planes with excitatory and inhibitory neurons (see be-
low). Only excitatory neurons are used as outputs of
the efferent cortical agent. The axons of projecting neu-
rons are defined by their (x, y) coordinates on the receiv-
ing plane. Cortical planes have a predefined dimension
and thus projecting axons are deactivated if they exceed
the borders of the plane. This is illustrated graphically
in Fig 1(a), where only the active projections are rep-
resented with an × on their termination. As a result,
the proposed link structure facilitates the connectivity
of sending and receiving cortical agents supporting their
combined performance.
Cortical Agent. Each cortical agent is represented by
a rectangular plane. A cortical agent consists of a pre-
defined population of excitatory and inhibitory neurons,
which all follow the Wilson-Cowan model with sigmoid
activation. Both sets of neurons, are uniformly distrib-
uted, defining an excitatory and an inhibitory grid on the
cortical plane. On the same plane there are also located
the axon terminals from the projected cortical agents.

All neurons receive input information either from i)
projecting axons, or ii) excitatory neighbouring neurons,
or iii) inhibitory neighbouring neurons. The connectivity
of neurons follows the general rule of locality. Synapse
formation is based on circular neighbourhood measures.
A separate radius for each of the three synapse types,
defines the connectivity of neurons. This is illustrated
graphically in Fig 1(b), which further explains the ex-
ample of Fig 1(a). Neighbourhood radius for i) axons

is illustrated by a solid line, for ii) excitatory neurons
by a dashed line, and for iii) inhibitory neurons by a
dotted line. Sample neighbourhoods for excitatory neu-
rons are illustrated with grey, while neighbourhoods for
inhibitory neurons are illustrated with black.

The performance of cortical agents is adjusted by en-
vironmental interaction, similar to epigenetic1 learning
(Cotterill, 2001). To enforce experience-based subjective
learning, each set of synapses is assigned a Hebbian-like
learning rule defining the self-organization dynamics of
the agent. This is in contrast to the most common alter-
native of genetically-encoded synaptic strengths which
prevents experience based learning. We have imple-
mented a pool of 10 Hebbian-like rules that can be ap-
propriately combined to produce a wide range of func-
tionalities (Maniadakis and Trahanias, 2005b).

Hierarchical Cooperative CoEvolution

Similar to a phylogenetic process, the structure of agents
can be specified by means of an evolutionary method
(Rolls and Stringer, 2000). However, using a unimodal
evolutionary approach, it is not possible to explore ef-
fectively partial components, which represent brain sub-
structures. To alleviate that, coevolutionary algorithms
have been recently proposed that facilitate exploration,
in problems consisting of many decomposable compo-
nents (Potter and De Jong, 2000). Specifically, coevo-
lutionary approaches involve many interactive popula-
tions to design separately each component of the solu-
tion. These populations are evolved simultaneously, but
in isolation to one another. Partial populations are usu-
ally referred as species in the coevolutionary literature,
and thus this term will be employed henceforth.

The design of brain-inspired structures fits adequately
to coevolutionary approaches, because separate coe-
volved species can be used to perform design decisions for
each substructure representing a brain area. As a result,
coevolution is able to highlight the special features of
each brain area, and additionally the cooperation within
computational modules.

We have presented a new evolutionary scheme to im-
prove the performance of cooperative coevolutionary al-
gorithms, employed in the context of designing brain-
inspired structures (Maniadakis and Trahanias, 2005b;
Maniadakis and Trahanias, 2005a). We employ two dif-
ferent kinds of species to support the coevolutionary
process encoding the configurations of either a Primi-
tive agent Structure (PS) or a Coevolved agent Group
(CG). PS species specify partial elements of the model,
encoding the exact structure of either cortical or link
agents. A CG consists of groups of PSs with common
objectives. Thus, CGs specify configurations of partial
solutions by encoding individual assemblies of cortical
and link agents. The evolution of CG modulates partly
the evolutionary process of its lower level PS species to
enforce their cooperative performance. A CG can also
be a member of another CG. Consequently several CGs

1Epigenesis here, includes all learning processes during
lifetime.
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Figure 2: Hierarchical cooperative coevolutionary de-
sign. Part (a) represents schematically a hypothetical
connectivity of agents. Part (b) represents the hierar-
chical coevolutionary scheme utilized to evolve partial
structures.
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Figure 3: An overview of the hierarchical coevolution-
ary scheme, with CG species tuning the evolutionary
processes of PS species.

can be organized hierarchically, with the higher levels
enforcing the cooperation of the lower ones.

The HCCE-based design method for brain modelling
is demonstrated by means of an example (Fig 2). We
assume the existence of two cortical agents connected
by three link agents representing their afferent and ef-
ferent projections (Fig 2(a)). One hypothetical HCCE
process employed to specify agent structure is illustrated
in (Fig 2(b)). CGs are illustrated with oval boxes, while
PSs are represented by ovals.

All individuals in all species are assigned an identifica-
tion number which is preserved during the coevolution-
ary process. The identification number is employed to
form individual assemblies within different species. Each
variable in the genome of a CG is joined with one lower
level CG or PS species. The value of that variable can
be any identification number of the individuals from the
species it is joined with. PSs encode the structure of
either cortical or link agents. The details of the encod-
ing have been presented in (Maniadakis and Trahanias,
2005b), and thus they are omitted here due to space
limitations. A snapshot of the exemplar HCCE process
described above is illustrated in (Fig 3). Identification
numbers are represented with an oval. CGs enforce co-
operation of PS structures by selecting the appropriate

cooperable individuals among species.
In order to test the performance of a complete problem

solution, populations are sequentially accessed starting
by the higher level. The values of CG individuals at
various levels are used as guides to select cooperators
among PS species. Then, PS individuals are decoded to
specify the structure of cortical and link agents, and the
performance of the proposed overall solution is tested on
the desired task.

Furthermore, the proposed HCCE scheme allows the
employment of separate fitness measures for different
species. This matches adequately to the distributed
agent-based modelling of brain areas, because different
objectives can be defined for each partial structure, pre-
serving their autonomy. For each species s, a fitness
function fs is designed to drive its evolution. All PS
species under a CG share a common fs. Specifically a
partial fitness function fs,t evaluates the ability of an in-
dividual to serve task t, while the overall fitness function
is estimated by:

fs =
∏

t

fs,t (1)

Furthermore, the cooperator selection process at the
higher levels of hierarchical coevolution will probably
select an individual to participate in many assemblies.
(e.g. the case of individual 28 of PS species L1, of Fig 3).
Let us assume that an individual participates in K as-
semblies which means that it will get K fitness values
fs,t. Then, the ability of the individual to support the
accomplishment of the t-th task is estimated by:

fs,t = maxk{fk
s,t} (2)

where fk
s,t is the fitness value of the k-th solution formed

with the membership of the individual under discussion.
The above equations describe fitness assignment in

each species of the hierarchical coevolutionary process.
Just after testing the assemblies of cooperators and the
assignment of their fitness values, an evolutionary step is
performed independently on each species, to formulate
the new generation of its individuals. This process is re-
peated for a predefined number of evolutionary epochs,
driving each species to the accomplishment of each own
objectives and additionally enforcing their composite co-
operative performance.

Results
The effectiveness of the proposed approach is illustrated
on the design of a partial brain computational model,
which simulates Parietal - Prefrontal - Premotor - Pri-
mary Motor - Hippocampal interactions, emphasizing on
working memory (WM) usage.

The connectivity of brain areas (Fig 4) has been ex-
tracted from the detailed diagram presented in (Cotter-
ill, 2001). Several biological experiments highlight the
behavioral organization of these brain areas. Especially
for rats, they are usually based on Delayed Matching
to Sample (DMS) tasks which require to retain memory
relative to a sample cue for a brief period, in order to
decide upon future behavioral response (e.g. Ragozzino
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Figure 4: A schematic overview of the composite com-
putational model. Cortical agents are illustrated with
blocks, while link agents are illustrated with a double
arrow.
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Figure 5: Graphical representation of the process used
to design M1-SC model.

and Kesner, 2001). Hippocampal substructures process
spatial information to identify the current location of the
animal. On the other side, Primary Motor cortex (M1)
encodes primitive motor commands which are expressed
to actions by means of Spinal Cord (SC). Prefrontal cor-
tex (PFC) is reciprocally connected to Posterior Parietal
cortex (PPC) encoding working memory. Hippocampal
activity is projected on prefrontal (PFC) and premotor
(PM) structures which combine localization and work-
ing memory information formulating plans of purposeful
motion. PM activation is then passed to M1 which mod-
ulates its performance accordingly in order to execute
higher level orders.

We note that the present series of experiments is an
extension of our previous work which demonstrated the
development of distinct models of hippocampus and pri-
mary motor cortex (Maniadakis and Trahanias, 2005b).
Due to space limitations, the parts which are similar to
our previous work will be described here in short, namely
in the paragraphs labelled “step 1” and “step 2”, in the
rest of the current section. The hippocampal and pri-
mary motor cortex models are integrated in the present
study, adding also computational structures represent-
ing prefrontal activity, in order to design a composite
model with enhanced performance. Paragraph labelled
“step 3” presents in detail current experiments regarding
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Figure 6: Solid line illustrates robot performance on wall
avoidance navigation. The big circle illustrates the range
of the light source, while the 8 doted circles illustrate the
areas where place-cell development is considered.

incremental integration.
Both partial and composite models are embedded on a

simulated mobile robot to furnish it with cognitive abil-
ities and prove the validity of results. We employ a two
wheeled robotic platform equipped with 8 uniformly dis-
tributed distance and light sensors.
Step 1. The first experiment, accounts for the develop-
ment of M1-SC computational model which should ac-
complish primitive motion abilities without purposeful
planning. For mobile robots, a task with the above char-
acteristics is wall avoidance navigation. Since M1-SC are
the brain modules which serve basic motor commands, it
is assumed that they are relevant for the accomplishment
of wall avoidance task, T1.

M1-SC interactions are modelled by means of a co-
evolutionary process illustrated in Fig 5. The success of
wall avoidance task is evaluated by the fitness measure
EM1,SC , described in detail in (Maniadakis and Traha-
nias, 2005b), directing forward robot motion without
bumps on the walls. Following the formulation intro-
duced in eqs.(1),(2), the fitness function which guides
the coevolutionary process is:

fCG1 = fCG1,T1 with fk
CG1,T1 = EM1,SC

where k represents each membership of an individual
in a proposed solution. A sample result of robot wall
avoidance motion is illustrated in Fig 6.
Step 2. Our study on hippocampus is focused on the
entorinal cortex (EC), dentate gyrus (DG), and Amon’s
horn structures CA3, CA1. Place-cell activation has
been detected in all these structures. The Hippocam-
pal model is evolved by the hierarchical coevolutionary
scheme illustrated in Fig 7. The process is joined with
the ten best individuals of CG1 (which are not evolved
in the present step), in order to enforce the synchroniza-
tion of the robot’s wheel speed with the change rate of
hippocampal neurons.

The second task T2 aims at successful localization by
means of place cell activation in hippocampal structures.
In order to test the development of place cells, we define
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Figure 8: The development of place-cells in CA1 module,
with respect to the locations defined in Fig 6.

P = 8 areas in the environment (see Fig 6), where the ac-
tivation of hippocampal excitatory neurons is observed.
The successful development of place cell activity in cor-
tical agents evolved by CGi, i ∈ {2...6} are evaluated by
the measures Ej , j ∈ {EC, DG, CA3, CA1} which seek
for place-cells with increased separability among differ-
ent locations. These measures are described in detail in
(Maniadakis and Trahanias, 2005b). Following the for-
mulation introduced in eqs.(1),(2), the fitness functions
which guide the hierarchical coevolutionary process are:

fCG2 = fCG2,T2 with fk
CG2,T2 = EEC ,

fCG3 = fCG3,T2 with fk
CG3,T2 = EDG,

fCG4 = fCG4,T2 with fk
CG4,T2 = ECA3,

fCG5 = fCG5,T2 with fk
CG5,T2 = ECA1,

fCG6 = fCG6,T2 with fk
CG6,T2 =EEC·EDG·ECA3·ECA1

where k is as above. The results of place cell development
at CA1 are illustrated in Fig 8.
Step 3. When the first two processes are completed, a
third coevolutionary scheme commences to design pre-
motor, prefrontal and parietal structures integrating the
performance of the two partial models in a composite
one (Fig 9). The scheme under CG6 is not evolved. The
ten best individuals of CG6 species are used as indica-
tive hippocampal - primary motor pairs, to form a basis
for the construction of the global model.

The successful interaction of substructures is demon-
strated by means of a Delayed Matching to Sample
(DMS) task, T3. Similar to biological experiments with
rats, we test the performance of the model in a cross (+)
maze, highlighting the development and manipulation of
working memory (WM), together with the utilization of
a place consideration strategy to solve the task.
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Figure 9: The coevolutionary process utilized to inte-
grate partial models.

During the sample phase, the robot starts from po-
sition s1 facing the center of the maze. Then it moves
along the corridor where it is appropriately driven to
turn in the left or right side of maze, by utilizing a Γ-
shaped wall (see cases 1,4 of Fig 10). Similar to the bio-
logical prototype, WM is encoded by the interactions of
PPC, PFC which has to store what was the side of robot
turning. Two different states a, b are defined associated
with the two possible rotations. For each state, separate
activation averages, pl, are computed, with l identify-
ing excitatory neurons. The formation of WM related
to the side of sample turning is evaluated by considering
activation in PFC, PPC structures:

Ej
wm= (

va

ma
+

vb

mb
) ·min{

l∑

pa
l >pb

l

(
pa

l − pb
l

)
,

l∑

pb
l >pa

l

(
pb

l − pa
l

)}

where j ∈ {PPC,PFC}, and ma, va, mb, vb are the
mean and variance of average activation at states a, b.
The first term enforces consistent activation, while the
second supports the development of distinct activation
patterns for each state a, b. Thus, EPPC

wm and EPFC
wm

evaluate the development of distinct memories relative
to the locations a and b, in PPC and PFC.

In contrast to the sample phase, during testing the
robot is able to start either from s1 or s2. The cross
maze is transformed in a T-maze utilizing an extra wall
(see cases 2,3,5,6 of Fig 10), and the robot is allowed
to act freely performing a left or right turn. In order
to have a correct response, the robot should turn to the
same side with the sample turning. We note that in
order to reach a, the robot has to turn right starting
from point s1, while it has to turn left starting from s2.
As a result, the task demands the manipulation of both
localization information developed in Hippocampus, and
working memory stored in prefrontal-parietal structures.

The success on DMS task is evaluated by means of
two subtasks related to the two starting positions s1, s2.
Each subtask tests the responses of the robot related to
two different sample phases, in order to evaluate proper
target reaching of a or b. The first subtask concerns
sample-test pairs 1-2 and 4-5 of Fig 10, while the second
subtask concerns pairs 1-3 and 4-6 of the same figure.
Two distinct evaluation measures are estimated, Ej

dr,



1 s1

a

2

s2

a

3 s1

a

4 s1

b

5

s2

b

6 s1

b

Figure 10: The performance of the robot during DMS
task.

j ∈ {s1, s2}, one for each subtask:

Ej
dr =(1 + 2 (1−Da))3 ·(1 + 2 (1−Db))

3 ·
(

1−4
B

M

)2

where Da, Db ∈ [0, 1] are the distances between targets
a, b and the robot, and B is the total number of ro-
bot bumps. The first two terms enforce reaching of a, b,
while the last term facilitates goal approximation with-
out crashing on the walls. Thus, Es1

dr and Es2
dr evaluate

the success on DMS task when robot starts from s1 and
s2, respectively.

Following eqs.(1),(2), the fitness functions which guide
the hierarchical process illustrated in Fig 9, are:

fCG7 = fCG7,T3s1 · fCG7,T3s2 with,
fk

CG7,T3s1 = EPPC
wm Es1

dr , fk
CG7,T3s2 = EPPC

wm Es2
dr

fCG8 = fCG8,T3s1 · fCG8,T3s2 with,
fk

CG8,T3s1 = EPFC
wm Es1

dr , fk
CG8,T3s2 = EPFC

wm Es2
dr

fCG9 = fCG9,T3s1 · fCG9,T3s2 with,
fk

CG9,T3s1 = Es1
dr , fk

CG9,T3s2 = Es2
dr

fCG10 = fCG9,T3s1 · fCG10,T3s2 with,
fk

CG10,T3s1 = Es1
dr , fk

CG10,T3s2 = Es2
dr

where k represents each membership of an individual in
a proposed solution. Partial fitness functions of fCG7,
fCG8 aim at the development of working memory pat-
terns (i.e. EPPC

wm , EPFC
wm ) and the expression of the

proper delayed responses from both starting positions
(i.e. Es1

dr , Es2
dr). In contrast, partial fitness functions of

fCG9, fCG10 focus only on manipulating working mem-
ory in order to accomplish the DMS task (i.e. Es1

dr , Es2
dr).

A sample result of robot performance in the DMS task,
is illustrated in Fig 10. Solid lines (cases 1,4) illustrate
sample robot motion, while the respective two dotted
lines (cases 2,3 and 5,6) illustrate robot response from
two different starting positions. It is obvious that local-
ization and working memory information are successfully
considered to solve the task. Additionally, lower motor
structures (M1, SC) adapt their performance according
to the higher level orders, changing their functionality
from wall avoidance to goal reaching. Therefore, in the
third step, a new complex model is developed by re-
utilizing existing substructures.

Overall, the presented results illustrate the efficiency
of the proposed computational framework in both the
design and integration of brain inspired structures.

Conclusions
In the present work, we introduce a computational
framework for the design and integration of partial brain
models. The proposed method is based on the employ-
ment of neural agent modules to represent brain ar-
eas. The agent-based approach is in accordance to the
distributed nature of mammalian CNS, and addition-
ally supports the decomposition of the problem in small
tractable and progressively solved tasks. Furthermore
the HCCE-based design methodology facilitates both the
design of partial models and their further integration in
gradually more complex ones.

We believe that by exploiting the proposed approach,
a powerful method to design brain-inspired structures
can emerge. Further work is currently underway, to in-
vestigate the suitability of our approach in large scale
modelling tasks.
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