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Abstract-The control of the hand in primate species is 
characterized by a high dimensionality, imposed by the large 
number of joints and fingers that exist on it. In this study we 
present how its manipulation can be simplified, through a 
constraint methodology that is inspired from recent 
neurobiological findings. We further develop a computational 
model, consisting of several brain areas related to hand motion, 
using a co-evolutionary architecture. Due to its neurobiological 
basis the methodology gives rise to a number of emergent 
properties that have been shown to occur in primate species 
during reach-to-grasp tasks.  
 

I. INTRODUCTION 
n biologically inspired robotic motion control, reaching-
to-grasp tasks are considered quite interesting, due to the 

diverge roles of the collaborating brain regions that are 
involved in their execution, as well  as the high 
dimensionality that is imposed by the large number of joints 
in the articulator. Since the variety of tasks that we perform 
using our hands, is characterized by different levels of detail, 
controlling such complex apparatus in an exhaustive 
manner, i.e. explicitly move each joint individually, seems 
rather redundant. Recent studies in neurobiology indicate 
that our brain has evolved to resolve the ambiguity of each 
task, and initiate different levels of control for the hand, 
which are in turn processed on diverse brain regions. Apart 
from the traditional motor related neurons in the primary 
motor cortex, these studies indicate the contribution of 
supplementary brain areas, such as the Somatosensory (SI, 
SII) and Spinal Cord (Sp), to motor control. More 
importantly, they indicate the manipulation of the hand as 
being the product of different resolution levels, each 
partially contributing to the final control. 

Most of the interrelated research has focused on directly 
solving the problem, using Hebbian learning rules on 
architectures of Neural Networks, and relying on the pre-
tuning of the dividing linkages to resolve the complexity of 
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the problem. The complication of the hand was either 
confronted implicitly by custom Neural Networks, or 
explicitly through constraint models that were designed for 
specific tasks. Here we present a biologically inspired 
computational model that is based on experimental studies 
indicating the hand being controlled on different resolution 
levels during action execution. These simplifications are 
imposed by several brain areas in the form of kinetic 
coordination patterns, on a peripheral, i.e. global force 
control level, as well as local, i.e. fine-tuning, perspective. 
Our approach contrasts previous endeavors in the field, since 
it deals with the problem implicitly through the defining 
roles of the brain. The strength of our model is evident in 
numerous control strategies that are evolved during various 
experiments, which present a strong resemblance with the 
ones employed by nature. 

Among the most noticeable computational models in the 
field, is the FARS architecture [1] which replicated the roles 
of several brain areas, by pre-tuning cell activations to 
perform reaching tasks, without assuming any specific hand-
model. Oztop and Arbib [2] later endowed that architecture 
with the computational counterparts of the pre-motor (PM) 
and primary motor cortex (M1) to study imitation of 
grasping. The large degree of variability of the joints was 
confronted through an empirical constraint model that would 
simplify the control of the articulator, using task-related 
parameters such as the distance of the fingers to the object, 
or the disparity axis between the hand and the object. More 
recently other projects employed Hebbian Neural Networks 
to create a model that could benefit from self-observation [3] 
or from watching a human [4] in order to develop an 
adequate controller for grasping. Most of these studies 
employ the concept of mirror neurons [5], which indicates 
overlapping activations in the F5m area of the pre-motor 
cortex during execution and observation of primates. Due to 
the mirror neuron hypothesis, the main functioning of the 
control task in these models was either focused directly on 
the F5m region, or neighboring areas, leaving any remaining 
parts to carry out sensory processing tasks. More recently, 
brain imaging methods such as C-deoxyglucose, that provide 
a greater resolution on the internal activations of the motor 
control related brain regions, indicate that these overlapping 
execution/observation activations occur over a wider 
spectrum [6] of cortical areas. These findings indicate the 
importance of additional brain regions that collaborate and 
contribute to the control of the hand, among which the 
Somatosensory cortex. Further neurobiological studies [7] 
have reported that the processing of the hand control occurs 
in diverge levels and resolutions, and is distributed among 
several areas in the brain. Another characteristic of hand 
control is that even though grasping tasks are commonly 
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complex in nature, most of their motion can be described by 
a small number of standard postures. Masson [8], using 
Principal Component Analysis on pre-marked joint 
positions, illustrated that the complete motion of a power 
grab can be reproduced adequately using only a few standard 
postures (named eigenpostures).  

It is rather obvious that a constraint model for the 
simplification of the hand is necessary, but it should be 
coupled with the ability to initiate solitary finger motion 
(single-digit control). In Macaque monkeys it has been 
shown that the reduced ability to individuate the motion of 
single fingers, has resulted in performing an abridged variety 
of grasps [9].  

Thus, a key issue that rises is to impose such constraints 
on the synergies of the hand in a way that will complement 
the problem to be solved rather than bound it. In addition, 
the constraint model that will be used should be general 
enough to cover the great variety of tasks that are performed 
using the hand. A good example of constraints is the Hand-
state hypothesis [2] a simplification model for the hand, that 
was based on the virtual fingers theory [10]. The main 
intuition behind this is that fingers consist as physical 
entities and are characterized by their contact surfaces. Hand 
state was then brought as an extension to this concept, and 
suggested that the grip controller should process task 
specific parameters, instead of explicitly controlling all joint 
parts of the hand. Even though this approach seems 
promising when dealing with the high complexity imposed 
by the joints, their method is based on empirical 
observations derived from the specific task they were 
studying. In addition, their constraint model is decoupled 
from the computational model, leaving any processing solely 
on the outputs of the underlying Neural Networks, while the 
hand model is fed externally the control parameters.  
 

II. BIOLOGICALLY INSPIRED GRASPING 
Our approach to grasping is based solely on 

neurobiological experiments, pointing what types of 
simplifications are employed by primate species in order to 
control their palm and fingers. More importantly, we do not 
make any compromises on the structure of the hand, but 
rather focus on defining roles for various brain regions in 
order to control different combinations of joints at different 
resolution levels. This is mainly derived from evidence, 
showing that such constraints do exist in primate species, 
and are imposed through the functioning of particular brain 
regions. More specifically, recent evidence indicate that the 
30-DoF of joints existent in the hand are controlled both in a 
general level, i.e. a global force, common to all joints, 
navigates the fingers to complete the assignment intended, 
and in a local level, where fine-tuning initiatives are taken to 
increase the performance on a particular task [7]. In addition, 
it has been shown that the pre-shaping of the posture occurs 
long before the fingers come in contact with the object, still 
while the hand reaches towards the objective position, where 

fingers gradually pre-shape to approximate the object 
contour [11]. Variance of the grasp tasks is then attained by 
acting forces explicitly on specific fingers, after touching the 
object. These coordination patterns (a.k.a. synergies in 
biological nomenclature) have been shown to hold more 
than 90% of the discrepancy in grasping tasks [8], while the 
remaining 10% is distributed equally on individual motion, 
custom to the specifics of the action being performed. The 
same study also reports, that a small number of these 
coordination patterns is adequate for reproducing the 
complete grasp motion, which also seem to be organized 
along a gradient from lower to higher finger movement 
individuation. Therefore the higher principal components 
reported in the analysis of [8], encapsulate the coordination 
patterns that pre-shape the hand to an approximation of the 
object contour, while the remaining perform fine 
adjustments on the hand shape. 

III. A MODEL FOR GRASPING 
As mentioned during the introduction, our approach does 

not impose any sort of constraints to the articulator itself, but 
rather on the way it is controlled. Our proposed model 
therefore, in accordance to biology, is concerned with 
managing the force that is applied on the joints of the fingers 
of our robot, on two different resolution levels, at a global 
level, to perform an initial shaping of the hand, and on local 
level, in order to fine-tune the posture, as illustrated by Fig. 
1. More specifically each junction between fingers in our 
model is controlled by four force inputs, two that control 
each joint individually and two that control all joints, by a 
global force. The two neurons that refer to each joint are 
assigned the roles of controlling the flexor and extensor 
muscles as suggested by neurobiological studies (the flexor 
is responsible for the positive force applied between two 
body part junctions, while the extensor refers to the negative 
one. The sum of the flexor and extensor corresponds to the 
final force that is applied to the joint). The two remaining 
neurons impose a general force level that is applicable on all 
body parts. The degree to which each neuron affects the final 
motion of the corresponding joint is also set as an open 
parameter, scaling the final outcome, between global and 
local force levels. Ideally this parameter should be fine-
tuned to make a compromise between the two levels of 
resolution, in accordance to the requirements of the task in 
hand. Therefore, for tasks that require explicit control of 
individual joints the global assigning parameter should be 
set to a low value, in order to emit the effect of the general 
force during motion, and maximize individual finger 
movement. The remaining parts of the hand, corresponding 
to the main arm joints (elbow and shoulder), are assigned 
only one pair of neurons and are not affected by the global 
force parameter. 
In our simulations, the hand is controlled by a computational 
model that replicates the operation of several cortical regions 
known to be active during hand control. In these 
experiments we have replicated the role of the F4 and F5 



 
 

 

 
Fig. 1. The two control levels for the hand. Global force applies to all joints 
in the fingers, while local is specific to one joint. The degree of influence 

scales appropriately each level of control, and sends the final force 
command to the controller of the robot’s hand. 

 
areas of the pre-motor cortex, and the primary motor cortex 
(M1). Each brain area is assigned a different role (using a 
fitness function), in accordance to its biological counterpart. 
The complete representation of the computational model is 
illustrated in Fig. 2. The inputs to our system consist of the 
recurrent sensory signals emitted by the touch sensors in the 
fingers of our simulated robot, as well as the distance of the 
index finger from the object, which we calculated 
empirically, based on the distance of the object from the 
hand (using the software of the simulator). We note here that 
the model does not process any shape specific parameters, 
such as the diameter of each item to be grasped, but instead 
approximates the appropriate posture based on an ad-hoc 
interaction with each object, through the perceived sensory 
indications from the fingers. 

In our brain implementation, the F5 pre-motor cortex is 
evolved based on the performance that the fingers have in 
respect to the task. In addition, the F4 region is evolved to 
optimize the performance of the joints that refer to the upper 
parts of the hand (two joints for the shoulder, one joint for 
the elbow). 

Up till now, there was a strong ambiguity on the explicit 
role of the primary motor cortex to motor control. Most 
computational related studies have defined this area as a 
predecessor of the spinal cord, assigned the task to activate 
the motor neurons (e.g. [2, 12]). Our computational 
counterpart for the primary motor cortex is based on 
neurobiological evidence [7] that denote its functionality as 
globally controlling all the parameters in accordance to the 
overall performance of the robot in the task.  
  All underlying processing occurs in the computational 
model, which encapsulates the brain of our robot, while the 
outputs are filtered externally using the following equation:  
 
 
 

     1  
 
where   refers to the ith joint of the hand,  is the local 
force level that controls the effect of the confined control 
inputs ,  to the task, while is the extent to which 
the global force level inputs, , , influence motion, 
and are common to all joints. An important aspect of eq. 1 is 
that it does not define any relation between the global  
and local  force levels. Even though the computational 
model could be assigning both of these variables 
individually, we believe it is a good practice to define a 
relation between them, in order to optimize the processing 
requirements of the task. In its most general form, this 
relation would have the following form: 
 

  2  
 

The most obvious definition for f would be to embody a 
percentage type function. Therefore, assuming that the 
outputs of the neurons range from 0 to 1 (sigmoid units), f 
would be: 
 

1   3  
 

Based on eq. 3, the local force level  in eq. 1  is 
acquired by subtracting 1 from the global force level (e.g. if 

 is set by the computational model to be 0.3, the local 
force level (  will automatically be set to 0.7). 
More elaborate tasks however could benefit from f using an 
inverse log function, therefore obliging complexity to 
remain low during the initial levels of control where the 
details of the task are usually unknown, and increasing 
gradually with time. A common function that encapsulates 
such gradual increase is the inverse log function: 
 

  4  
 

An example where eq. 4 could provide a better output for 
the model is in a combined reaching and grasping task, 
where the grip is not in contact with the object during most 
of the time. Therefore, the usage of an inverse log function 
could prove beneficial to the model, as it will bias the 
scaling between the two resolutions to remain low during the 
initial steps of the task. 

It is evident from the above, that the only constraints that 
are imposed to the model are of kinematic nature, i.e. kinetic 
coordination patterns, and not on the articulator itself. The 
strength of such model is that it facilitates both detailed and 
general motion control, relying on the underlying cognitive 
model to resolve the degree to which higher, and thus more 
complex (and detailed), or lower resolution is required. In 
addition, the constraint methodology works in cooperation 
with the computational model, by allowing modifications on 
the scaling parameter between the two control levels, instead 
of acting on a top level, filtering the control inputs. Later in 



 
 

 

this paper, we demonstrate how our model is able to resolve 
the level of difficulty of each task, and innately assign a 
global force level scale factor that matches its ambiguity. 
 

IV. CO-EVOLUTIONARY MODEL 
It is evident from the description above, that our proposed 

methodology for grasping does not make any assumptions 
on the underlying cognitive model that should be used. This 
grants the methodology with generality, as it is possible to 
be combined with any implementation of a computational 
model. In a previous work [13], we demonstrated how a co-
evolutionary framework [14] is able to tune the 
interconnectivity of several Neural Networks to perform 
reaching tasks. In this study, we extend this model to include 
our grasping prototype in the architecture, and evaluate the 
overall performance in grasping related experiments. 
In addition to our previous work, we also specify each 
Neural Network in our model with a defining role to the 
control process. The intuition behind our co-evolutionary 
modelling approach is that several co-evolving populations 
of Neural Networks are used to optimize a diverse range of 
brain regions which are assigned different fitness functions, 
while the architecture as a whole is attempting to accomplish 
a specific task. Each Neural Network in the architecture 
corresponds to a specific brain area, and is evolved based on 
a fitness function that encapsulates the computational 
specifics of its biological equivalent. For more details on the 
implementation of the co-evolutionary brain modelling 
approach, the interest reader is referred to [14]. 

V. EXPERIMENTS 
We employed the Webots simulation platform, a 

commercial 3D physics package that included an accurate 
replication of the Fujitsu Hoap2 robot. To perform the 
experiments, we extended the simulator, to three fingers, 
thumb-middle-index, each consisting of two 2DoF joints, for 
each of the lower and upper finger parts, attached to a wrist 
of 3DoF. The control of the articulator depended on the 
outputs of the co-evolutionary architecture, consisting of 
five interconnected levels of Neural Networks, with 
membrane potential neurons. Each level was explicitly 
assigned a fitness function that corresponded to its biological 
counterpart, and awarded the evolved individuals that 
performed adequately on trial tasks. The final network 
included 21 sigmoid outputs that acted as input to the 
constraint model. The complete representation of our system 
is shown in Fig. 2. 

The level corresponding to the F4 area of the pre-motor 
cortex was assigned the role of evaluating the performance 
of reaching tasks. The fitness function that was used to 
evaluate the region is the following: 
 

4
1

  5  

where  is the distance between the thumb and the object. 
Therefore, the 4  function evaluated the degree to 
which a specific motor initiative resulted in the palm 
advancing towards the object. This assumption is in 
accordance to neurobiological studies that indicate F4 to be 
associated with motor controls that result in reaching of the 
whole hand towards the object.  

The area that encapsulated the F5 pre-motor cortex 
inputted only the sensory information that was recurrently 
fed from the Somatosensory cortex (i.e. the touch sensors in 
the fingers of our robot). Based on the definition of a power 
grab, the fitness function of the pre-motor region was set to 
benefit the individuals in the population that achieved 
maximum contact with the object for the most time. 
 

5 ,     6  

 
where t equals the time-steps for each task, F the number of 
body parts in the hand (two parts for each of the three 
fingers) and  a Boolean variable indicating whether the 
specific part was in contact with the object during the t step. 
Therefore eq. 6 sums the contact made by all fingers, over 
all the time steps of each task. 

The second task evaluated the ability of the controller to 
perform a precision grip. For this reason we modified the 
fitness function to penalize any contact made by the lower 
parts of the fingers, while benefit individuals that resulted in 
contact of the object with the upper parts. The fitness 
function used in this case is shown below: 
 

5 ,     7  

  
where the first term corresponds to the sum of time steps that 
all the upper parts, of all the fingers ( ) where in contact 
with the object, while the second sums time steps in contact 
with all the lower finger parts ( ). Ideally this fitness 
function should result in the robot moving only the upper 
parts of its fingers, keeping the lower ones immobile. 

We point out, that the last two fitness functions (in eqs. 
6,7), which are assigned to F5, are independent of the 
specifics of the object to be grasped, i.e. no information on 
the contour of the object is forward to the computational 
model. Instead, we use the degree to which the controller 
performed appropriately a grasp, which is depicted in the 
number of time steps specific fingers were in contact with 
the object. This is in accordance to neurobiological studies 
which indicate that a large degree of the shaping of the hand 
occurs during the initial levels of control, without processing 
the visual information of the object, but instead combining 
stored information regarding the task, and feedback
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