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Hierarchical Co-evolution of Cooperating Agents 

Acting in the Brain-Arena

Michail Maniadakis, Panos Trahanias
Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), 
Heraklion, Crete, Greece and Department of Computer Science, University of Crete, Heraklion, 
Crete, Greece

Recently, many brain-inspired models have been used in attempts to support the cognitive abilities of

artificial organisms. In this article, we introduce a computational framework to facilitate these efforts,
emphasizing the cooperative performance of brain substructures. Specifically, we introduce an agent-

based representation of brain areas, together with a hierarchical cooperative co-evolutionary design

mechanism. The proposed methodology is capable of designing biologically inspired cognitive sys-
tems, considering both the specialties of brain areas and their cooperative performance. The effectiveness

of the proposed approach is demonstrated by designing a brain-inspired model of working memory

usage. The co-evolutionary scheme enforces the cooperation of agents representing the involved
brain areas, facilitating the accomplishment of two different tasks by the same model. Furthermore, we

investigate the performance of the model in lesion conditions, highlighting the distinct roles of agents

representing brain areas. The implemented model is embedded in a simulated robotic platform to sup-
port its cognitive and behavioral capabilities.

Keywords co-evolution · cooperative co-evolution · working memory · delayed response · cognitive

robotics · cortical model

1 Introduction

The long-term vision of developing artificial organ-
isms (robots) with mammal-like mental abilities can
be facilitated by the development of brain-inspired
cognitive computational systems. The brain is described
as a group of cooperating specialists, which achieve
the overall cognitive function by splitting the task into
smaller elements (Reilly, 2001). These specialists
(brain areas) need to cooperate in order to guide the
organism for accomplishing tasks. Thus, the problem
of implementing efficient brain-like cognitive systems

can be stated in terms of designing a distributed archi-
tecture consisting of specialized, yet cooperating com-
ponents.

Along this line, the modern software engineering
approach for designing complex distributed systems
(i.e., agent technology) can be employed to support
the design procedure. This is because the agent tech-
nology matches adequately the distributed nature of
the biological prototype. Specifically, each brain area
can be represented by a separate agent, having a dis-
tinct role in the performance of the composite cognitive
system. By adopting this approach, we gain considera-
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ble design advantages because we are able to decom-
pose the problem into smaller and easily solved tasks,
highlighting at the same time the cooperation among
partial brain areas. Despite the fact that many years
ago Minsky (1986) described the brain as a set of
cooperating agents, this view has only been used to
design abstract cognitive systems, without addressing
the connectivity of specific brain areas. To the best of
our knowledge (see also Singh, 2003), this approach
has not been adopted before in fields such as computa-
tional cognitive neuroscience aiming at implementing
brain-like artificial systems.

In the current work, we follow an agent-based
approach to support complex brain-modeling efforts.
In contrast to the majority of agent technology appli-
cations where agents interact by means of the external
environment, following the above-mentioned approach,
the interaction of agents occurs internally to the cogni-
tive system. Only the composite computational struc-
ture comes in contact with the external environment,
mediated by the body of the artificial organism. In
other words, the brain of the robot defines the operat-
ing environment of agents. Thus, a “brain-arena” is
virtually specified, where many active agents co-exist,
each one cooperating with, and modulating, the per-
formance of the others. The successful coupling of
agents and their effective cooperation is evaluated in
terms of the final performance of the artificial organ-
ism.

The interactive non-linear dynamics among the
components of the brain makes the design of the
agent-based system a difficult task (Jennings, 2000).
Various methodologies addressing agent design have
been proposed in the literature. In this context, evolution-
ary techniques have been recently employed (Landau &
Picault, 2001; Lee, 2003). However, by utilizing an
ordinary evolutionary scheme that employs a single,
compound representation to map problem solution to
genotype, the structural nature of the problem is usu-
ally underestimated, or overlooked. Additionally, the
operators of the evolutionary process typically have a
uniform range of application, without considering the
particular characteristics of the structure of the prob-
lem. In combination, the use of compound representa-
tions and uniform operators of variation makes it
unlikely for partial solutions to persist, as no mecha-
nism for protecting them is present. It also makes it
unlikely for different combinations of partial solutions
to be explored (De Jong, 2003; Thierens, 1999). Par-

tial specifications of the genotype representing the
components of the solution should be considered
explicitly by the evolutionary process, in order to
facilitate the exploration of cooperative dynamics
among agents.

This issue is effectively addressed by co-evolu-
tionary algorithms, utilizing separate populations to
evolve each component of the solution (Potter & De
Jong, 2000). Specifically, the evolution of partial pop-
ulations supports separate exploration of each agent
characteristic, while the composite co-evolutionary
scheme investigates the dynamics of agent interaction
in order to enforce their cooperative functioning. Thus,
co-evolutionary algorithms are particularly appropri-
ate for the design of systems consisting of cooperating
agents.

We have recently introduced a computational
framework to design brain-like cognitive systems fol-
lowing a co-evolutionary agent-based approach (Mani-
adakis, 2006; Maniadakis & Trahanias, 2005b, 2005c,
2006b). The organization of agent structures follows a
biologically inspired block diagram outlining the con-
nectivity of cortical areas, and the task-specific informa-
tion they convey to each other. The co-evolutionary
design mechanism assigns each agent a role similar to
a respective brain area, emphasizing their biologically
inspired characteristics in both an individual and a
cooperative level. Additionally, co-evolution investi-
gates the dynamics of partial component interaction,
highlighting how each agent shapes communication
and cooperation internally in the system. Thus, the co-
evolutionary methodology supports the design of agents
that act and cooperate successfully in the “brain-arena,”
accomplishing the desired performance of the overall
system.

In the current work, we introduce a hierarchical
extension of this approach, which exploits the inher-
ent ability of co-evolutionary methods to integrate
partial structures. Particularly, a hierarchical coopera-
tive co-evolutionary (HCCE) scheme is utilized to co-
evolve a large number of partial populations organ-
ized in gradually more complex groups. The HCCE is
able to consider the cooperative performance of sub-
structures in different operating conditions, and addi-
tionally enforce the reproduction of biological findings
related to the adoption of diverse behavioral strate-
gies.

Specifically, partial evolutionary processes per-
forming at the lower levels of the HCCE hierarchy are
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driven by their own dynamics, aiming at replicating
the performance of a particular brain area. An evolu-
tionary process at the next higher level tunes lower
level processes adapting one another, in order to achieve
effective coupled performance of partial structures. The
architecture of multiple co-evolutionary processes
tuned by a higher level evolution can be repeated for
as many levels as necessary, forming a tree-like hier-
archy. Overall, a large number of components can be
co-evolved, assembling successfully a complex dis-
tributed system.

Following recent trends aiming at the study of
computational models in lesion conditions (Aharonov,
Segev, Meilijson, & Ruppin, 2003; Goel, Pullara, &
Grafman, 2001; Polk, Simen, Lewis, & Freedman,
2002), the agent-based co-evolutionary framework facil-
itates systematic modeling of biological lesion experi-
ments. Specifically, lesion conditions are simulated by
simply deactivating appropriate agent structures. Thus,
the pre- and post-lesion performance of the model can
be considered during the co-evolutionary design proc-
ess. Furthermore, appropriate fitness functions are
specified, indicating the performance of the model
when all partial structures are present, and also indi-
cating its performance when some structures are deac-
tivated. Following this approach, biological lesion
results can be replicated by the co-evolutionary design
process, enforcing the similarity of the model to the
brain prototype.

The effectiveness of the proposed computational
framework is demonstrated by means of a specific
modeling study that addresses the training of rodents
accomplishing delayed response (DR) tasks in a T-
maze, adopting either a delayed matching to sample
(DMS) or a delayed non-matching to sample (DNMS)
strategy. Separate agent structures are utilized to rep-
resent brain areas involved in working memory (WM)
encoding and reward signal consideration, facilitating
the training process. The composite system is embed-
ded in a simulated robot, which is trained to perform
in either DMS or DNMS modes. Furthermore, simu-
lated lesion is performed in higher level motor struc-
tures resulting in reduced ability of the robot to move
in a purposeful mode.

The rest of the article is organized as follows. In
Section 2, we present the agent structures employed
for the representation of partial brain areas. Then, we
discuss the HCCE scheme, which is utilized to design
brain-inspired systems consisting of autonomous, still

cooperating agents. Experimental results regarding
the proposed computational framework are presented
in Section 3. In particular, we describe the design of a
distributed computational model mimicking aspects of
brain functionality, and additionally we evaluate HCCE
effectiveness, comparing it with enforced subpopula-
tion co-evolution (Gomez, 2003; Gomez & Miikku-
lainen, 1999), and with unimodal evolution. Then, a
detailed discussion highlights the basic features of the
proposed methodology. Finally, conclusions and sug-
gestions for further work are drawn in Section 6.

2 Computational Model

The agent-oriented view is adopted in many computa-
tional systems, because it is able to represent the
decentralized characteristics of real-life problems, the
multiple loci of control, and the multiple perspectives
of the problem with respect to partial structures (Jen-
nings, 2001). For a biologically inspired system con-
sisting of agents representing brain areas, the design of
partial structures should ideally be based on the natural
principles of the central nervous system. Along this
line, we implement two different neural network based
agents, which are utilized as primitive building blocks
for the design of the composite cognitive system. Spe-
cifically, we implement: (i) a computational cortical
agent to represent brain areas, and (ii) a link agent to
support information flow across cortical modules. The
computational structures employed in the present
study constitute an enhanced version of the agents pre-
sented in Maniadakis and Trahanias (2006b). The new
agents follow a more flexible formulation, which
emphasizes their reusability, offering advanced mode-
ling abilities of central nervous system performance.

2.1 Link Agent

The structure of the link agent is appropriately designed
to support connectivity among cortical modules. Using
the link agent, any two cortical modules can be con-
nected, formulating any desired networked structure.
As a result, link structures can be properly employed
to design artificial systems simulating the connectivity
of brain areas.

Each link agent is specified by the projecting
axons between two cortical agents (Figure 1a). Its
formation is based on the representation of cortical
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agents by planes with excitatory and inhibitory neu-
rons (see below). Only excitatory neurons are used as
outputs of the projecting cortical agent. The axons are
defined by their (x, y) coordinates on the receiving
plane. Cortical planes have a predefined dimension
and thus projecting axons are deactivated if they
exceed the borders of the plane. This is illustrated
graphically in Figure 1a, where only the active pro-
jections are represented with an “ × “ on their termina-
tion. The proposed link structure facilitates the
connectivity of sending and receiving cortical agents
supporting the flow of information within the compos-
ite system.

2.2 Cortical Agent

Each cortical agent is represented by a rectangular
plane. A cortical agent consists of a predefined popu-
lation of excitatory and inhibitory neurons. Both sets
of neurons are uniformly distributed. Thus, an excita-
tory and an inhibitory grid are defined on the cortical
plane. Both types of neurons follow the Wilson–Cowan
model with sigmoid activation, similar to Tkaczyk
(2001) and Maniadakis and Trahanias (2006b). Let x
represent the firing rate of a neuron. It is updated based
on the incoming signals, following the equation:

µ∆x = –x + S(WAA + WEE – WII) (1)

where µ presents the membrane time constant, WA are
the synaptic weights of the afferent axon signals, and
WE and WI are the synaptic weights of neighboring
excitatory and inhibitory neurons, respectively. S(y) =
1/[1 + e–α(y – β)] is the non-linear sigmoid function,
where β and α denote the threshold and the slope,
respectively.

On the same plane, the axon terminals from the
projecting cortical agents are also located (Figure 1b).
Three synapse types specify the connectivity of corti-
cal agents. All neurons receive input information from
(i) projecting axons, or (ii) excitatory neighboring
neurons, or (iii) inhibitory neighboring neurons. The
connectivity of neurons follows the general rule of
locality (Redish, Elga, & Touretzky, 1996), and thus
synapse formation is based on circular neighborhood
measures. A separate radius for each of the three syn-
apse types defines the connectivity of neurons. This is
illustrated graphically in Figure 1b, which further
explains the case of Figure 1a. All excitatory neurons
share common neighborhood measures. The same is
also true for all inhibitory neurons.

The performance of cortical agents is adjusted by
the experiences of the artificial organism, obtained
through environmental interaction, similar to epigenetic1

learning (Cotterill, 2001). To enforce experience-
based subjective learning of robots, each set of syn-
apses is assigned a Hebbian-like biologically plausible
learning rule, similar to Floreano and Urzelai (2000).
We have implemented a pool of 10 Hebbian-like rules
that can be appropriately combined to produce a wide
range of functionalities. Learning rules are the same as
those presented in Maniadakis and Trahanias (2006b),
and thus they are omitted here. Agent plasticity allows
synaptic adjustments at run-time based on environ-
mental experience. The most common, but harder to
evolve, alternative for genetically encoded synaptic
strengths results in a rather unmanageable problem
complexity, and at the same time prevents experience-
based adjustment.

2.3 Reinforcement Learning

Reinforcement learning models (particularly those
based on temporal difference learning) have been very
popular in robotic applications in recent years. Despite
the effectiveness of reinforcement learning approaches,
the biological reliability of this learning scheme has
been criticized (Pennartz, 1997; Sporns & Alexander,

Figure 1 Schematic representation of the computation-
al model. (a) A link agent that supports information flow
from cortical agent A to B. (b) The synapse definition in
cortical agent B, for one inhibitory (black lines) and one
excitatory (gray lines) neuron. Neighborhood radius for
afferent axons is illustrated by a circular solid line, for
neighboring excitatory neurons by a dashed line, and for
neighboring inhibitory neurons by a dotted line.
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2002). These researchers suggested that Hebbian learn-
ing mechanisms are able to facilitate training proc-
esses based on reinforcement signals. As a result, the
Hebbian self-organized dynamics of cortical agents
can be exploited to support learning of the artificial
organism.

In the current work, we investigate how reinforce-
ment learning capabilities can emerge in the system
by properly combining a set of different Hebbian-
like learning rules. The idea is based on treating the
reward as an ordinary signal, which can be properly
given as input in a pre- and a post-synaptic neuron to
coordinate their activations. The self-organized learn-
ing rule, which adjusts the weight of the synapse con-
necting the neurons, is then responsible for either
strengthening or weakening their connection. As a
result, the external reinforcement signal is able to take
advantage of the internal plasticity dynamics of the
agent, in order to modulate its performance accord-
ingly. Similar computational models exhibiting rein-
forcement learning characteristics have been also
utilized by others (e.g., Blynel & Floreano, 2002).

3 Hierarchical Cooperative 
Co-evolution

Similar to a phylogenetic process, the specification of
parameter values for the agents of a brain-like system
is accomplished by using an evolutionary procedure.
A preliminary work utilizing ordinary evolutionary
computing for the design of simple models corre-
sponding to brain structures appeared in Rolls and
Stringer (2000). However, using unimodal evolution,
it is not possible to explore effectively partial solu-
tions, which correspond to brain substructures (Potter
& De Jong, 2000). Co-evolutionary algorithms have
been recently proposed that facilitate exploration in
problems consisting of many decomposable subcom-
ponents. They involve two or more co-evolved popu-
lations with interactive performance.

Most of the co-evolutionary approaches presented
in the literature can be classified as competitive (Ols-
son, 2001; Rosin & Belew, 1997) or cooperative
(Casillas, Cordón, Herrera, & Merelo, 2001; Potter &
De Jong, 2000). Competitive approaches are based on
an antagonistic scenario, where the success of one
population implies the failure of the other. In contrast,
cooperative approaches follow a synergistic scenario,

where individuals are favored when they successfully
cooperate with individuals from the other populations.
We note that distinct populations are usually referred
to as species in the co-evolutionary literature, and thus
this term will be employed henceforth.

The design of biologically inspired cognitive sys-
tems fits very well with cooperative co-evolutionary
approaches, because separate co-evolved species can
be used to perform design decisions for each partial
model of a brain area. Specifically, the co-evolution-
ary design mechanism enforces the co-adaptation of
partial components on one another, facilitating their
cooperation. Thus, in the following we only consider
cooperative co-evolution.

Recently, we have presented a new evolutionary
scheme to improve the performance of cooperative
co-evolutionary algorithms (Maniadakis, 2006; Mani-
adakis & Trahanias, 2006b). The main novelty of the
proposed scheme lies in that it explicitly addresses the
cooperator selection issue. The present work extends
this scheme to a hierarchical multilevel architecture
(see also Maniadakis & Trahanias, 2007). Our method
combines the hierarchical evolutionary approach (Del-
gado, Zuben, & Gomide, 2004), with the maintenance
of successful cooperator assemblies (Moriarty &
Miikkulainen, 1997), to develop a powerful co-evolu-
tionary scheme capable of co-evolving a large number
of species. We need to note that Pareto evolutionary
criteria have been recently used in co-evolutionary
approaches as a means to support their effectiveness
(De Jong, 2003, 2004; Ficici & Pollack, 2001; Garcia-
Pedrajas, Ortiz-Boyer, & Hervas-Martinez, 2004; Iorio
& Li, 2004). However, the integration of Pareto issues
to hierarchical co-evolutionary schemes is not straight-
forward. This is because it is not clear how fitness
values should be propagated along the co-evolution-
ary hierarchy, or how effective Pareto fronts should be
formulated when partial populations have to satisfy
multiple but different (for each population) fitness cri-
teria. At the same time, it seems that Pareto approaches
are very time-consuming when a large number of
populations need to be co-evolved, because many
individual combinations (the product of Pareto fronts)
should be repeatedly tested. Overall, we would like to
note that the issue of Pareto optimality in hierarchical
co-evolutionary schemes is out of the scope of the
present work.

Two different types of species (populations) are
utilized to support the co-evolutionary process, encod-
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ing the configurations of either a primitive agent
structure (PS) or a co-evolved agent group (CG). Par-
ticularly, PS species specify partial elements of the
model, encoding the exact structure of either cortical
or link agents. A CG consists of groups of PSs with
common objectives. Thus, CGs specify configurations
of partial solutions by encoding individual assemblies
of cortical and link agents. The evolution of CG mod-
ulates partly the evolutionary process of its lower
level PS species, enforcing their cooperative perform-
ance. A CG can also be a member of another CG.
Consequently, several CGs can be organized hierar-
chically in a tree-like architecture, with the higher lev-
els enforcing the cooperation of the lower ones.

The HCCE-based design mechanism of brain-
inspired systems is demonstrated by means of an
example (Figure 2). We assume the existence of two
cortical agents connected by three link agents represent-
ing their afferent and efferent projections (Figure 2a).
This assumption is typical for mammalian central nerv-
ous system organization (e.g., separate brain areas
serve visual or motor competencies, which further
cooperate exchanging information, in order to accom-
plish advanced real-life behaviors). One hypothetical
HCCE process employed to specify agent structures is
illustrated in Figure 2b.

Similar to Delgado et al. (2004) and Maniadakis
and Trahanias (2006b) all individuals in all species are
assigned an identification number, which is preserved
during the co-evolutionary process. The identification
number is employed to form individual assemblies
among different species. Specifically, each variable in
the genome of a CG is joined with one lower level CG

or PS species. The value of that variable can be any
identification number of the individuals from the spe-
cies it is joined with. PSs encode the structure of
either cortical or link agents. The details of the encod-
ing are very similar to those presented in Maniadakis
and Trahanias (2006b), and thus they are omitted here.
CGs enforce cooperation of PS structures by selecting
the most appropriate individuals to cooperate among
species. Additionally, a new genetic operator, called
replication (Maniadakis & Trahanias, 2006b), exploits
the most successful individuals in each partial species,
being used as a basis for further exploration.

In order to test the performance of a complete
problem solution, the population at the highest level is
sequentially accessed. The values of CG individuals at
various levels are used as guides to select cooperators
among PS species. Then, PS individuals are decoded
to specify the structure of cortical and link agents, and
the performance of the proposed overall solution is
tested on the desired task. The formulation of com-
plete problem solutions is demonstrated in Figure 3,
presenting a snapshot of the exemplar HCCE process
discussed above.

The proposed hierarchical scheme supports the
simulation of lesion conditions (Maniadakis & Traha-
nias, 2005b, 2005c), which is typical for biological
experiments related to the performance of mammalian
central nervous system. Specifically, the deactivation
of a CG, together with the PS structures correspond-
ing to its lower level species, simulates lesion of the
respective brain areas. As a result, all necessary lesion
conditions can be explored, during the HCCE-based
design procedure, highlighting the role of partial
structures in the composite model.

Furthermore, even if the majority of existing coop-
erative co-evolutionary methods assume that all spe-
cies share a common fitness function (Casillas et al.,
2001; Krawiec & Bhanu, 2003; Wiegand, Liles, & De
Jong, 2001), our method allows the employment of sep-
arate fitness measures for different species. This matches
adequately the distributed agent-based modeling of
brain areas, because different objectives can be defined
for each partial structure preserving their autonomy.
The same feature additionally supports the modeling
of biological lesion data, because properly formulated
fitness functions can be utilized to specify the desired
pre- and post-lesion performance of the model.

For each species s, a fitness function fs is designed
to drive its evolution. All PS species under a CG share

Figure 2 Hierarchical cooperative co-evolutionary de-
sign of agents. (a) Schematic representation of a hypo-
thetical connectivity of agents. (b) Representation of the
hierarchical co-evolutionary scheme utilized to evolve
partial structures. CGs are illustrated with oval boxes,
while PSs are represented by free shapes.
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a common fs. The fitness function is formulated to
evaluate the performance of the model in different
conditions, which corresponds to the pre- and post-
lesion state of the model. Specifically, a partial fitness
function fs, t evaluates the ability of an individual to
serve task t, while the overall fitness function is esti-
mated by

(2)

Furthermore, the cooperator selection process at
the higher levels of hierarchical co-evolution will
probably select an individual to participate in many
assemblies (e.g., the case of individual 28 of PS spe-
cies L1, in Figure 3). Let us assume that an individual
participates in K assemblies, which means that it will
have K fitness values fs, t regarding its ability to serve
task t. Then, similarly to most existing co-evolution-
ary approaches, the individual will be assigned the
maximum of the fitness values achieved by all the
solutions formed with its membership:

(3)

where f  is the fitness value of the kth solution
formed with the membership of the individual under
discussion. This value represents the ability of the
individual to support the accomplishment of the t-th
task.

The above equations describe the fitness assign-
ment in each species of the hierarchical co-evolution-
ary process. Just after the testing of cooperator
assemblies and the assignment of their fitness values,
an evolutionary step is performed independently on
each species, formulating the new generation of its
individuals. First, individuals of the species are sorted
according to their fitness values. Then, a replication
operator reduces the very large number of coopera-
tions for individuals. Next, a predefined percentage of
individuals are probabilistically crossed over. An indi-
vidual selects its mate from the whole population,
based on their accumulative probabilities. Finally,
mutation is performed in a small percentage of the
resulting population. This process is repeated for a
predefined number of evolutionary epochs, driving
each species to the accomplishment of its own objec-
tives and additionally enforcing agents to accomplish
successful cooperative performance.

Figure 3 An overview of the hierarchical co-evolutionary scheme, with CG species tuning the evolutionary processes
of PS species. Identification numbers are represented with an oval.

fs fs t.,
t

∏=

fs t, maxk fs t,
k{ },=

s t,
k
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4 Results

The effectiveness of the proposed approach is illus-
trated by designing a brain-inspired cognitive system
that models primary motor–premotor–prefrontal–pari-
etal cortex interaction, emphasizing on Working Mem-
ory (WM) usage.

Existing computational models of WM demon-
strate the persistence of neural activity patterns by
means of recurrent circuits (Compte, Brunei, Goldman-
Rakic, & Wang, 2000; Iida & Tanaka, 2002). How-
ever, these models are not operative, in the sense that
they are not linked to other structures to affect their
performance. Computational models aiming at the
accomplishment of WM guided tasks have been also
proposed in the literature (Moody, Wise, Pellegrino,
& Zipser, 1998), which, however, employ a single
artificial neural network structure, without addressing
the performance of partial brain areas.

The present model highlights the roles of the cor-
tical areas involved in the training of animals by
means of external reinforcement stimuli, in order to
accomplish Delayed Response (DR) tasks. The model
is embedded in a simulated robot furnishing it with
cognitive abilities, and additionally proving the devel-
opment of WM-like activation in the system. We
employ a two-wheeled simulated robotic platform
equipped with eight distance, light, and reward sen-
sors, uniformly distributed in a circular manner
around the robot, to support environmental interac-
tion.

4.1 Brain Areas and Training Strategies

Several biological experiments have revealed the
behavioral organization of the areas involved in WM,
as illustrated in Figure 4. These studies are usually
based on DR tasks, which need to retain memory
related to a sample cue for a brief period, in order to
decide upon future behavioral response (e.g., Ragozzino
& Kesner, 2001). The primary motor cortex (M1)
encodes primitive motor commands, which are expressed
to actions by means of the spinal cord (SC). The pre-
frontal cortex (PFC) is reciprocally connected to the
posterior parietal cortex (PPC) encoding WM (Compte
et al., 2000). Prefrontal activity is projected on the pre-
motor cortex (PM) to formulate the orders that modulate
M1 performance according to the higher level plans,
developing purposeful motion (Fuster, 2000). Overall,
separate brain structures have to coordinate their activ-
ities, in order to manipulate successfully WM.

Following a reinforcement-based training proc-
ess, animals are able to learn a variety of motion strat-
egies (e.g., DMS or DNMS), depending on the rewards
provided. Prefrontal and premotor areas receive infor-
mation relevant to external environmental reinforce-
ment, modulating the plans of future motion in the
desired way (Murray, Bussey, & Wise, 2000). More-
over, several experiments highlight the performance
of the brain in lesion conditions. Specifically, lesion at
higher level structures affects the learning of the organ-
ism (Murray et al., 2000), resulting in significantly
reduced levels of purposeful motion and planning abil-
ity (Granon, Vidal, Thinus-Blanc, Changeux, & Poucet,
1994; Ragozzino & Kesner, 2001).

Figure 4 A schematic overview of the composite model. Cortical agents are illustrated with blocks, while link agents
are illustrated with double arrows.

 at RIKEN BSI INFORMATION CENTER on January 8, 2009 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


Maniadakis & Trahanias Hierarchical Co-evolution of Cooperating Agents 229

The experimental process followed in the present
computational study aims at replicating (i) the training
process of animals for the accomplishment of DR
tasks in a T-maze, and (ii) the biological findings
related to the effects of lesion at higher level motor
structures. Specifically, the composite computational
model should be trainable by an external factor,
adopting either a DMS or a DNMS strategy. This is
similar to the pre-lesion performance of animals
(Ragozzino & Kesner, 2001). The accomplishment of
these DR tasks is supported by the development of
WM-like activation in PPC–PFC, which are the brain
areas most closely linked to WM (Compte et al.,
2000). Furthermore, when lesion occurs on the higher
level structures, the robot should be able to drive but
only in a purposeless mode, simulating reduced plan-
ning ability of animals (Granon et al., 1994; Pon-
tecorvo, Sahgal, & Steckler, 1996). Overall, three
tasks are designed to demonstrate the effectiveness of
the computational procedure, highlighting the distinct
role of the agents in the model, and additionally their
successful cooperation in the composite system.
These are described in the following sections. The
first two tasks are related to teaching the robot to per-
form the right DR, adopting either a DMS or a DNMS
strategy (Pontecorvo et al., 1996).

4.1.1 DMS Strategy Let us consider first how the
robot is trained to adopt the DMS strategy. The proc-
ess is separated into several trials. Each trial includes
two sample–response pairs, testing the memorization
of two different sample cues by the robot, and the
selection of the appropriate DR. In the sample phase
of the first pair, the robot starts at the top of the T-
maze and is driven to the left, while in the sample
phase of the second pair, it is driven to the right. This
is achieved by utilizing one extra properly placed wall
that enforces robot turning to a pre-specified direction
(see “sample motion” column in Figures 6 and 7).
During the response phase of each trial, the intermedi-
ate wall is removed and the robot is free to make its
own turning choice (see “response motion” column in
Figures 6 and 7).

In order to make a correct DR, the robot should
first develop WM-like activity, encoding the side of
turning during the sample phase. Similar to the bio-
logical prototype, WM is encoded by PPC–PFC inter-
actions. Two different states “a” and “b” are defined,

associated with the two possible turning directions.
For each state, separate activation averages, pl, are
computed, with l identifying excitatory neurons. The
formation of WM related to the side of sample turning
is evaluated by considering activation in PFC–PPC
structures:

(4)

Here, j ∈ {PPC, PFC}, and ma, va, mb, and vb are the
means and variances of average activation at states
“a” and “b.” The first term enforces consistent activa-
tion, while the second supports the development of
separate activation patterns for each state “a” and “b.”
Thus, E  and E  evaluate the development of dis-
tinct memories relative to the locations “a” and “b” in
PPC and PFC.

After encoding the distinct sample cues in WM,
the robot should learn to manipulate it properly, in
order to accomplish the DR tasks. In particular, just
after the sample phase, the robot is artificially trans-
ferred to the initial starting position for the response
phase. The robot drives freely to the end of the corri-
dor making its own left and right turn choices. An
external human factor specifies a reward area in the
left or right side of the T-maze, depending on the initial
sample cue. If the robot drives to this area, it receives a
reinforcement signal, simulating the positive reward of
animals with food or water. In the DMS training proc-
ess, the response is considered correct if the robot turns
to the same side with the sample turning. Thus, the
robot has to consider the presence or non-presence of
the reinforcement signal in order to realize what is the
correct strategy it should adopt in the future trials.

The success of DMS training is tested for T trials.
We note that for each trial two different responses are
considered, each related to either the left or the right
sample motion. The success of the training process is
evaluated computationally by the total positive rein-
forcement that the robot has received. This is described
computationally by

(5)
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where M are the number of simulation steps of the
response phases for each of the T trials, r is the maxi-
mum instant activation of the reward sensors in one
simulation step, and B is the total number of robot
bumps. The first term seeks for maximum reward
stimuli when the correct response of the robot is
considered the left side, while the second seeks for
maximum reward when the correct response is the
right side. The last term minimizes the number of
robot bumps on the walls. The higher the reward the
robot received, the more successful the training proc-
ess. In other words, high values of the Etr measure
indicate successful cooperation among partial mod-
ules related to WM encoding, learning, and motion
expression.

4.1.2 DNMS Strategy Having described the proce-
dure of training the robot to adopt the DMS strategy,
we turn to the DNMS task. Specifically, the computa-
tional structure is re-initialized, and we test if the
same cognitive system is able to adopt successfully
the DNMS response strategy, given a different set of
reward stimuli.

The experimental process is again separated in T
trials. The process is very similar to that described for
DMS. Each trial includes two sample–response pairs,
but this time the reward stimulus is located to the side
that is opposite to the sample turning (i.e., if the extra
wall forces the robot to turn left, then, during the
response phase, the reward is located to the right, and
vice versa). The robot should again memorize the side
of sample turning in different activation patterns of
WM, and then consider the location of the reinforce-
ment signals in order to adopt the correct sample–
response mapping. The measures evaluating the suc-
cess of the DNMS training process and the adoption
of the correct response strategy by the robot are the
same as those described in Equations 4 and 5.

Overall, we use two sets of evaluation measures
{E , Etr, dms} and {E , Etr, dnms} related to
WM encoding and correct delayed response, for either
the DMS or the DNMS task. Similar to the training
process of animals, the human designer enforces the
robot to develop the correct strategy, by properly
locating the reward signals. For both tasks, several tri-
als (each consisting of two sample–response pairs) are
performed, and the robot should progressively realize
what is the correct strategy. In the first trials, the robot

does not know if the testing procedure is related to the
DMS task or the DNMS task, and it performs a random
turning responses. In order to discover what is the cor-
rect strategy, the composite cognitive system has to
consider (i) what was the sample motion encoded in
WM, compared to the expressed DR, and (ii) if it has
received reward stimuli or not. After some explorative
trials, the robot should be able to successfully conclude
which response strategy it should adopt.

4.1.3 Lesion Effect: Wall Avoidance Strategy The
third task is relevant to the lesion of higher level
motor structures, implying that the robot can no
longer be taught (Murray et al., 2000). This task
accounts for primitive motion abilities without pur-
poseful planning. For mobile robots, a task with the
above characteristics is wall avoidance navigation.
The successful accomplishment of the task is evalu-
ated by the function:

(6)

Here, we assume that the robot is tested for M steps, sl
and sr are the instant speeds of the left and right
wheels, respectively, p is the maximum instant activa-
tion of distance sensors, and B is the total number of
robot bumps. The first term seeks for forward move-
ment far from the walls, the second supports straight
movement without unreasonable spinning, and the last
term minimizes the number of robot bumps on the walls.

4.2 Modeling

The WM model is implemented following the agent-
based co-evolutionary computational framework, dem-
onstrating the ability of the latter to design complex
systems consisting of autonomous yet cooperative
modules.

4.2.1 Computational Representation In order to
implement the desired model illustrated in Figure 4,
the cortical and link agents described above are uti-
lized to represent the involved brain areas. Particu-
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larly, 18 components are used (five cortical agents and
13 link agents), while the detailed structure of the
model is specified by 332 parameters in total. Then, an
HCCE-based design process is employed to make a
parametric specification of the model as described
below.

4.2.2 Co-evolutionary Design Procedure The HCCE
scheme that assembles the distributed model is shown
in Figure 5. According to the experimental scenario
followed in the present study, each agent needs to
serve more than one task. The tasks served by each
group of agents are illustrated in the same figure, at
the right side of each CG. Specifically, the structures
under CG1, CG2, and CG3 are mostly related to the
DR training process for the accomplishment of either
the DMS or the DNMS response strategy. The struc-
tures under CG4 need also to serve these tasks, but
additionally, in the case of lesion at higher level struc-
tures, they should also be able to drive the robot in a
wall avoidance mode. Finally, the top level CG5
enforces cooperation within partial configurations,
aiming to support the accomplishment of all three
tasks.

The testing phase for the individuals of the co-evo-
lutionary scheme proceeds as follows. The individuals
of the top-level species are sequentially accessed. Each
individual of CG5 guides cooperator selection among
its lower level CG and PS species. Individuals of PS

species are decoded to detailed agent structures. First,
we test the ability of the composite model to adopt the
DMS strategy, and its components are evaluated with
respect to their support for this task. Then, the model is
re-initialized, and tested on learning to adopt the
DNMS strategy. Next, a simulated lesion is performed,
by deactivating the agents under CG2 and CG3. The
remaining structures are tested on wall avoidance nav-
igation, representing purposeless robot motion. The
fitness functions that guide the evolution of species are
designed according to the target tasks of each CG.
Individuals are assigned a combination of evaluation
indices for the accomplishment of tasks where the
composite model is performing, and the accomplish-
ment of tasks with performance of the eliminated
model. Note that all PSs share the same fitness func-
tions with their higher level CG.

According to the employed scenario, the agent
structures grouped under CG1 serve the success on the
tasks DMS and DNMS. Thus, the fitness function
employed for the evolution of CG1 and its lower level
species is based on measures evaluating the success of
the respective tasks. Following the formulation intro-
duced in Equations 2 and 3:

fCG1 = fCG1, t1 fCG1, t2 with

f  = E (1 + Etr, dms),   

f  = E (1 + Etr, dnms) (7)

Figure 5 A schematic overview of the HCCE process employed to design the composite computational model. CGs
are illustrated with oval boxes, while PSs are represented by free shapes.

CG1,? t1
k

wm dms,
PPC

CG2,? t2
k

wm dnms,
PFC

 at RIKEN BSI INFORMATION CENTER on January 8, 2009 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


232 Adaptive Behavior 16(4)

where k represents each membership of an individual
in a proposed solution. We note that the evaluation
measures employed for the evolution of CG1 are for-
mulated in a subjective manner, examining those
aspects of the tasks that are relevant to PPC. Particu-
larly, the partial fitness functions of fCG1 aim at the
development of WM patterns (i.e., E , E )
and their proper formulation to be easily manipulated
for expressing correct DRs (i.e., Etr, dms, Etr, dnms).

The agents grouped under CG2 also serve the suc-
cess on tasks DMS and DNMS. Thus, according to the
formulation of Equations 2 and 3, the fitness function
employed for the evolution of CG2 is

fCG2 = fCG2, t1 fCG2, t2 with

f  = E  (1 + Etr, dms), 

 f  = E  (1 + Etr, dnms) (8)

where k represents each membership of an individ-
ual in a proposed solution. We note again the subjec-
tive evaluation of the tasks, which now aims at the
development of WM patterns at PFC (i.e., E ,
E ), and their successful manipulation (i.e.,
Etr, dms, Etr, dnms).

The agents grouped under CG3 also serve the suc-
cess on DMS and DNMS tasks. However, this time,
only the manipulation of WM is considered, as the
premotor area is not involved in WM development.
Thus, the fitness function employed for the evolution
of CG3 is:

fCG3 = fCG3, t1 fCG3, t2 with

f  = Etr, dms, f  = Etr, dnms, (9)

where k represents each membership of an individual
in a proposed solution.

Furthermore, according to the lesion scenario, the
agent structures grouped under CG4 also serve the
success on the tasks DMS, DNMS, and wall avoid-
ance. Thus, the fitness function employed for the evo-
lution of CG4 and its lower level species is based on
the measures evaluating the success of the respective
tasks. Following the formulation introduced in Equa-
tions 2 and 3:

fCG4 = fCG4, t1 fCG4, t2 fCG4, t3 with

f  = Etr, dms, f  = Etr, dnms,

f  = Ewa, (10)

where k is as above.
Finally, the top level CG enforces the integration

of partial configurations in a composite model, aiming
at the successful cooperation of substructures in order
to facilitate the accomplishment of all three tasks. The
fitness function employed for the evolution of CG5
supports successful DMS training, successful DNMS
training, and wall avoidance. It is defined accordingly,
following the formulation introduced in Equations 2
and 3, by:

fCG5 = fCG5, t1 fCG5, t2 fCG5, t3 with

f  = E E (1 + Etr, dms),

f  = E E (1 + Etr, dnms),

f  = Ewa, (11)

where k is as above.
The hierarchical co-evolutionary process described

above employed populations of 200 individuals for all
PS species, 300 individuals for CG1, CG2, CG3, and
CG4, and 400 individuals for CG5. Additionally, an
elitist evolutionary strategy was followed in each evo-
lutionary step, with the 10 best individuals of each
species copied unchanged in the respective new gen-
eration, supporting the robustness of the evolutionary
process.

4.2.3 Obtained Model: Comments The HCCE sche-
me discussed above has been evolved for 200 epochs.
The process converged successfully, formulating a
complex model where components with different
objectives (e.g., those under CG1 and those under CG4)
cooperate successfully. In accordance with the design
scenario of our study, the very same model undergoes
two different training procedures, adopting either the
DMS or the DNMS response strategy. Robot perform-
ances during both training procedures are illustrated in
Figures 6 and 7. In both cases, the response of the robot
in the first explorative trial is incorrect. However, in
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the second trial the WM activation pattern in PFC suc-
cessfully matches the side of robot turning and the
desired response rule, gaining positive reinforcements.
Thus, after clarifying what is the correct response strat-
egy, it is also adopted for all the remaining trials.

Additionally, we investigated which strategy is
followed by the robot when no reinforcement signals

are provided in the environment. We found that nei-
ther the DMS nor the DNMS strategy has been fol-
lowed. Still, in the majority of trials, during the
response phase the robot shows a tendency to make
right side turnings (only three out of 10 turnings were
to the left side). This fact shows that reinforcement
signals are important for effectively modulating the

Figure 6 The process of training the robot to adopt the DMS strategy. Each trial (separated by a horizontal line) in-
volves two sample–response pairs. For each pair, the first two columns demonstrate sample robot motion (the starting
position is at the top of the corridor), and the WM activation pattern developed in PFC. The third and fourth columns
demonstrate robot response and the preserved WM pattern in PFC, respectively. The fifth column comments on the
success of the response.
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performance of the robot. The computational system
is designed with the capability of adopting either one
behavior or the other, but this does not occur unless
reinforcement signals specify this choice. This is sim-
ilar to recurrent neural networks with parametric bias
(RNNPBs) employing a single artificial neural network
to store/recall a set of behaviors indicated by different

bias values (Ito, Noda, Hoshino, & Tani, 2006). In a
comparable way, for our model external reinforce-
ment signals bias the selection of the adopted strategy
and the behavior expressed by the robot. However, in
contrast to the evolutionary design followed in our
study, RNNPBs employ back propagation through time
to accomplish parametric specification of the network.

Figure 7 The process of training the robot to adopt the DNMS strategy. Each trial (separated by a horizontal line) in-
volves two sample–response pairs. For each pair, the first two columns demonstrate sample robot motion (the starting
position is at the top of the corridor), and the WM activation pattern developed in PFC. The third and fourth columns
demonstrate robot response and the preserved WM pattern in PFC, respectively. The fifth column comments on the
success of the response.
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Trying to gain more insight into the internal
dynamics of the model, we found that the adopted
strategy is encoded in a temporal pattern of PFC syn-
apse adaptation. In particular, Figure 8 demonstrates
the weight change of three different PFC synapses
during training for adopting DMS and DNMS strate-
gies. Evidently, in the first trial, where the model still
explores the desired strategy, there is no clear weight
pattern formulated. Afterwards, external reinforce-
ment signals determine what is the desired strategy,
and then distinct temporal weight patterns are formu-
lated for each strategy. We note that in each trial, the
robot is able to consider the presence or non-presence
of the reward stimulus for about 30 simulation steps.
Thus, PFC synaptic weights can be properly adapted
to the correct motion strategy. In contrast to the above,
PPC and PM synapses keep the same values during
accomplishing both tasks. Thus, PFC is the only mod-
ule with dynamic adjustment of synaptic weights,
which implies that PFC is responsible for choosing
between the DMS or DNMS strategies. This is
explained by the fact that PFC is provided access to
both the patterns of memorized information and the
external reward signals. As a result, it is responsible

for combining different types of information, formu-
lating sample–response rules that correctly describe
the adopted strategy.

Additionally, Figure 9 demonstrates intermediate
snapshots of PPC, PFC, and PM activations during the
last (fifth) DMS trial. The same is also demonstrated in
Figure 10 for the last DNMS trial. In the initial steps of
the sample phase, the robot navigates to the corridor
without knowing the side of enforced turning, which
therefore means that there is no clear WM pattern for-
mulated yet. Just after the robot turns to the left or right
side, the information that should be memorized is clar-
ified, and distinct WM activation patterns are created.
These patterns are also preserved during the response
phase, driving the robot according to the response rule
of the selected DMS or DNMS strategy. Additionally,
as expected (because of the employed fitness functions)
distinct activation patterns are developed in PPC. Inter-
estingly enough, the PM module also develops distinct
activation patterns. Even if PM patterns are less dis-
tinctive, they remain strongly correlated to PFC activa-
tion and robot response. This is because in order to
have WM (located in PFC) driving the robot in two dif-
ferent directions, information has to pass through PM.

Figure 8 The adjustment of synaptic weights at PFC. Each plot corresponds to a different synapse. The solid line
demonstrates weight values during five trials of the DMS task, while the dashed line demonstrates the corresponding
weight values during five trials of the DNMS task.
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In the case of lesion, the components that are
responsible for learning are deactivated, and thus the
robot can no longer be taught. However, the system is
not completely collapsed, but remains functional at a
certain reduced level of performance. In particular, the
robot is still able to move, but making nearly random
turn choices at the end of the corridor, guided by the
wall avoidance strategy (Figure 11).

We have also performed experiments trying to
design the composite model without employing post-
lesion relevant fitness functions. These design proce-
dures have been significantly less likely to be success-
ful, because during navigation, the robot very often
bumps on the walls. Furthermore, we have investigated
the performance of these models under simulated lesion
conditions. We found that in the post-lesion case, the
model was completely collapsed, and the robot was not
able to move at all. In other words, when no post-lesion
relevant fitness function is employed, the model seems
to work in a holistic mode where all modules try to
solve the same task without adopting specialized roles.

We have also searched for a possible adaptation
of M1 dynamics when the model shifts from pre- to
post-lesion operation. Such adaptation is also known
to occur in real brains, and it is expected to occur in
our model, as a result of the available self-organiza-
tion dynamics of the employed cortical agents. We
found that M1 internal synapses, which direct infor-
mation from excitatory neurons to inhibitory neurons,
have significantly higher values in the pre-lesion case,
compared to post-lesion case. For example, Figure 12
demonstrates the weight value of one such synapse
for pre- and post-lesion operations. This adaptation is
necessary because M1 accepts significantly different
amounts of information in pre- and post-lesion cases,
and therefore it has to self-organize in order to be ade-
quately functional in both. Specifically, in the pre-lesion
case where all components of the model are active, there
is a larger number of axon projections to M1, which is
significantly reduced after lesion. The enhancement of
excitatory-to-inhibitory synapses in the pre-lesion
case assists activation of inhibitory neurons, which in

Figure 9 The activation of cortical agents representing PPC, PFC, and PM, during robot performance according to the
DMS strategy. The corresponding location of the robot in the environment is demonstrated with a small circle. Each line
(a)–(b) or (c)–(d) corresponds to a different sample–response pair. (a) and (c) demonstrate neural activation in the
memorization phase, while (b) and (d) demonstrate neural activation in the response phase.
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turn reduces the activity of excitatory neurons. Thus,
when the whole model is active, increased inhibitory
activation reduces the overall M1 activation to mean-
ingful levels, avoiding overflow effects.

The adaptation of M1 internal dynamics dis-
cussed above clearly distinguishes our approach from
hierarchical reinforcement learning (HRL) methods.
This is because typically in HRL the components of
the model operate in different time-scales, with the
low-level components emitting static primitive actions,
while higher-level components try to solve more com-
plex tasks by sequentially invoking lower-level ones

(Barto & Mahadevan, 2003; Makar, Mahadevan, &
Ghavamzadeh, 2001)1. This pure synthesis of com-
plex behaviors by sequential recall of simpler actions
is in contrast to our work where higher-level behav-
iors modulate the dynamics of lower-level components,
being adequately functional in the new operating con-
ditions, accomplishing the emergence of more com-
plex behavioral patterns.

Overall, the brain-inspired computational model
implemented following the agent-based co-evolution-
ary framework replicates successfully pre- and post-
lesion rat performance in DR tasks. This is achieved
by means of the powerful HCCE design mechanism,
which supports the implementation of distributed bio-
logically inspired cognitive systems, considering both
the individual and cooperative characteristics of sub-
structures. Additionally, partial structures exploit their
internal self-organization dynamics adapting to one
another, in order to facilitate successful operation of
the composite system.

Figure 10 The activation of cortical agents representing PPC, PFC, and PM, during robot performance according to
the DNMS strategy. The corresponding location of the robot in the environment is demonstrated with a small circle.
Each line (a)–(b) or (c)–(d) corresponds to a different sample–response pair. (a) and (c) demonstrate neural activation in
memorization phase, while (b) and (d) demonstrate neural activation in the response phase.

Figure 11 Sample results of robot performance driven
by M1–SC. The robot moves in a wall avoidance mode,
without following a purposeful motion strategy.

 at RIKEN BSI INFORMATION CENTER on January 8, 2009 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


238 Adaptive Behavior 16(4)

4.3 Comparing HCCE, Enforced 
Subpopulation, and Unimodal Evolution

In the set of experiments described below, we utilize
as a test-bed the problem discussed above, in order to
investigate the suitability of HCCE in designing dis-
tributed brain-like models. Additionally, we compare
HCCE with two other evolutionary schemes: enforced
subpopulation (ESP; Gomez, 2003), and ordinary uni-
modal evolution.

4.3.1 Hierarchical Cooperative Co-evolution We
have performed five independent runs of the co-evo-
lutionary procedure discussed in Section 4.2, evaluat-
ing the speed and robustness of the HCCE scheme.
The results obtained are illustrated in Figure 13, where
each column corresponds to a different run.

In the first run, the progress of CG2 evolution is
not stabilized, being unable to formulate distinct WM
activation patterns. The progress converges to a sub-
optimal, still satisfactory solution (in terms of behav-
ioral performance). The next run was one of the most
successful. After the formulation of WM patterns in
PPC and PFC, they are effectively exploited by the learn-
ing process, which is capable of accomplishing the

desired DMS or DNMS strategy. The third run was
unsuccessful, as the WM-like activation pattern is for-
mulated in the PPC (CG1) component but not in PFC
(CG2). Additionally, the reinforcement learning was
not successful, as the strategy followed was “always
turn to the right.” The next run was also very success-
ful. It progressively formulated WM patterns, and
additionally exploited them to adopt either the DMS
or the DNMS strategy during learning. The last run
was suboptimal, mainly because the navigation skills
of the robot have not been designed effectively. The
robot bumped on the walls quite often, both in the pre-
and post-lesion operation modes.

In an attempt to formulate general comments on
the progress of the HCCE scheme, we can state that
the robot navigation skills are very important for the
success of the experiment. This is because if the robot
is not able to navigate successfully in the T-maze, it
has no chance to obtain any reinforcement. Addition-
ally, the development of WM patterns is very critical
for the success of the composite scheme, because if
they are not sufficiently developed, the simulated
robot cannot remember the sample cue in order to
express the appropriate DR. Furthermore, WM pat-
terns are also very important for the success of the
reinforcement learning process as the memorized

Figure 12 The adjustment of an excitatory-to-inhibitory synapse in M1, during (a) pre-lesion operation and (b) post-le-
sion operation of the model. The solid line in (a) corresponds to the weight adjustment during DMS, while the dashed
line corresponds to the weight adjustment during DNMS. In both tasks, the weight is adjusted to its maximum value.
However, (b) shows no enhancement of this synapse during post-lesion operation of the model.
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information has to be combined with the location of
the reward signal in order to infer the desired response
strategy.

4.3.2 Enforced Subpopulation Additionally, we have
investigated whether a different co-evolutionary scheme
is capable of solving the same problem, specifying
successfully the structure of cortical and link agents.
In particular, we have approached the problem dis-
cussed above by utilizing the ESP co-evolutionary
scheme. In the current work, we have implemented
the ESP algorithm described in Gomez (2003), with-
out however activating the stagnation check that prac-
tically re-initializes populations when the process
becomes stalled.

All populations of the ESP scheme are evolved
according to a common set of objectives, utilizing the
same fitness function (Gomez, 2003). Hence, the results
of accomplishing the three tasks (DMS training, DNMS

training, and wall avoidance) by either the composite
or the eliminated configurations of the model are com-
bined to a single measure. Similar to the function fCG5

that evolves the top-level CG of the HCCE scheme
(see Equation 11), the fitness of ESP-assembled solu-
tions is measured by

f = [E  E (1 + Etr, dms)]

× [E E (1 + Etr, dnms)]Ewa. (12)

This objective implies that the progress of ESP evolu-
tion is directly comparable with the progress of the
HCCE scheme. We used 18 different species to spec-
ify the structure of the 18 components of the model.
Similar to HCCE, each species consists of 200 indi-
viduals. All species are evolved according to the crite-
ria described by Equation 12. Additionally, 2,000
assemblies of components are randomly generated
in each evolutionary epoch (Gomez, 2003), trying

Figure 13 Graphical illustration of the progress of five different HCCE procedures. Each column is related to the re-
sults observed on the respective run. Each plot illustrates the maximum fitness value in a generation, against evolution-
ary epochs.

wm dms,
PPC

wm dms,
PFC

wm dnms,
PPC

wm dnms,
PFC

 at RIKEN BSI INFORMATION CENTER on January 8, 2009 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


240 Adaptive Behavior 16(4)

to identify successful solutions of the overall prob-
lem.

We have performed five independent runs of the
ESP scheme, which are evolved for 200 epochs. The
probability of applying crossover and mutation opera-
tors over the structure of a cortical or a link agent is
the same as the respective probabilities of the HCCE
scheme. The results of these processes are illustrated
in Figure 14, and are directly comparable with the last
line of Figure 13. Evidently, none of the ESP proc-
esses was successful. This is mainly because the ESP
process is not directed towards creating gradually
more complex assemblies. In contrast, it is expected
that because of the large number of complex assem-
blies being evaluated, satisfactory distributed configu-
rations will be randomly formulated. Unfortunately,
as indicated by the present results, this is not the case
when many components need to be co-evolved.

4.3.3 Unimodal Evolution Finally, we have also
approached the same problem by utilizing a unimodal
evolutionary scheme. In particular, a single, large
chromosome has been employed to encode the struc-
ture of all cortical and link agents of the model. Fol-
lowing the unimodal approach, it is not possible to
evolve system components autonomously, and thus the
parts of the genotype corresponding to candidate struc-
tures of systems components participate in only one

composite solution. Additionally, a single fitness func-
tion applies to all components. Still, their separate role
in the model can be revealed by testing the perform-
ance of candidate solutions in accomplishing the three
different tasks.

The objective function that guides the evolution-
ary process is defined according to the fitness function
of the top-level CG of the HCCE scheme. Hence, sim-
ilar to fCG5 (see Equation 11), the fitness function is
given by

f = [E E (1 + Etr, dms)]

× [E E (1 + Etr, dnms)]Ewa, (13)

which implies that the progress of unimodal evolution
is directly comparable with the progress of the HCCE
scheme. In the current set of experiments, a popula-
tion of 400 individuals has been evolved for 200 steps.
The probability of applying crossover and mutation
operators over the structure of a cortical or a link
agent is the same as the respective probabilities of the
co-evolutionary scheme.

We performed five independent runs of the uni-
modal evolutionary process. The results of each proc-
ess are illustrated in Figure 15. These results are
directly comparable with the last line of Figure 13.
Evidently, none of the ordinary evolutionary processes
was successful. This is because ordinary evolution

Figure 14 The results of five different runs of the ESP procedure. Each plot demonstrates the fitness value of the best
candidate solution in a generation, against evolutionary epochs (compare with the last line of Figure 13).
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Figure 15 Graphical illustration of the progress of five different unimodal evolutionary procedures. Each plot demon-
strates the maximum fitness value of individuals in a generation, against evolutionary epochs (compare with the last line
of Figure 13).
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employs a single population with individuals encod-
ing compact solutions, and additionally employs a sin-
gle fitness function, which is not able to highlight the
role of each component to the system. These results
highlight the unsuitability of unimodal evolution to
design distributed structures consisting of autonomous
components. Additionally, they highlight the need for
a specialized scheme able to consider explicitly the
individual characteristics of substructures.

4.3.4 Comments In the present set of experiments,
we have utilized three different evolutionary methods
(HCCE, ESP, and ordinary unimodal evolution) to
address the design of the brain-like computational
model. The results obtained are illustrated in Fig-
ures 13, 14, and 15. By comparing these figures, we
can easily observe that HCCE significantly outper-
forms both ESP and unimodal processes, when address-
ing problems where the special characteristics of
substructures have to be explored. This is because the
proposed co-evolutionary scheme is able to evolve large
distributed systems, enforcing the cooperation among
components having separate roles. Furthermore, a pre-
vious study on HCCE internal dynamics (Maniadakis,
2006) has shown that the replication operator signifi-
cantly facilitates the successful convergence of the
composite co-evolutionary process, because it con-
veys information from the higher to the lower levels
of the hierarchy, in order to modulate and coordinate
partial evolutionary processes.

Because of the embodiment of the cognitive sys-
tem in the simulated robotic platform and the observa-
tion of robot performance on several tasks (each one
testing a large number of simulation steps), all evolu-
tionary processes demanded several hours to run for
200 evolutionary epochs. The experiments have been
performed on a PC with an Intel Pentium 4 processor
at 3.00 GHz, and 512 MB RAM. Each HCCE run
evolved for approximately 16 h, ESP runs evolved for
approximately 75 h, while unimodal evolution also
evolved for approximately 16 h. The distribution of
processing time for each methodology is explained by
the number of composite solution assemblies evalu-
ated by HCCE, ESP, and unimodal schemes in each
evolutionary epoch. Specifically, the HCCE scheme
evaluates 400 assemblies, ESP evaluates 2,000 assem-
blies, and unimodal evolution evaluates 400 assemblies.
Thus, it is reasonable that ESP needs considerably more

processing time, because it inherently performs more
evaluations (the individuals encoding component
structures have to participate in many composite
assemblies, in order to obtain an average estimate of
their quality). Alas, despite the increased amount of
computational resources spent, the quality of the
obtained results is rather poor for ESP.

Overall, from the aforementioned set of experi-
ments, we conclude that HCCE is more effective than
both ESP and ordinary unimodal evolution for design-
ing distributed systems consisting of many complex
and autonomous components. Moreover, it has been
illustrated that HCCE utilizes efficiently the available
computational resources, being at least as fast as the
unimodal evolution and much faster when compared
with ESP.

5 Discussion

The computational framework presented in this article
introduces a new engineering perspective in designing
brain-inspired cognitive systems, bearing a twofold
contribution. First, it follows a novel distributed mod-
eling approach, with each brain area represented by an
agent structure. Thus, brain areas are considered as
autonomous entities, which co-exist in a common func-
tional environment. The interactive dynamics among
the composite computational cognitive system, the
body of the artifact, and the external physical environ-
ment specify the “brain-arena,” where the agents need
to interact, communicate, and cooperate with each
other. This is a new view that introduces agent tech-
nology into the field of computational cognitive neu-
roscience, supporting the design of complex brain-like
systems.

Second, a distributed optimization approach is
employed to design the components of the model,
facilitating their cooperation. Specifically, we utilize
an HCCE scheme that is able to design complex dis-
tributed systems consisting of many partial components.
The co-evolutionary scheme designs autonomous agents
by using separate fitness functions for their evolution.
As a result, distinct roles can be assigned to agents,
mimicking effectively brain areas. This is a clear
advantage of cooperative co-evolution compared to
unimodal evolution, which calls for a single fitness
function, preventing the consideration of partial per-
formance of substructures. Furthermore, the HCCE
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design mechanism facilitates the integration of auton-
omous agents in a unified system, by means of evaluat-
ing their cooperative performance. Thus, the proposed
co-evolutionary scheme can be utilized as a consistent
design mechanism to facilitate the development of
complex brain models. However, it is worth empha-
sizing that it is not necessary for the composite com-
putational model to operate in a hierarchical mode.
This is because the organization of hierarchical co-
evolution is not reflected on the connectivity of agent
structures. The performance of partial components can
be either hierarchical or completely parallel. Hence, the
HCCE-based design approach does not imply any
further constraints. It is introduced only to support
the process of designing complex distributed sys-
tems.

Overall, the current work aims at providing a con-
sistent, unified framework that supports large-scale
brain modeling efforts. In particular, because of the
distributed nature of both the model and the design
mechanism, the proposed framework is capable of (i)
independently exploring the components of a model,
(ii) integrating partial models (representing groups of
brain areas; Maniadakis & Trahanias, 2005a), and (iii)
whenever necessary, redesigning some of the compo-
nents in order to formulate gradually more advanced
structures (Maniadakis & Trahanias, 2006a). These
particular features make the proposed computational
framework very effective in terms of implementing
complex artificial systems sharing similar working
principles with biological brains. The proposed
approach has been recently utilized to design a much
larger brain-inspired cognitive system for a humanoid
robot, modeling overlapping observation/execution
brain pathways (Maniadakis, Hourdakis, & Trahanias,
2007).

Our approach is in contrast to the majority of
existing brain modeling efforts focusing on specific
brain areas, without, however, taking into account how
the implemented structures could be members of large-
scale models (e.g., Ajemian, Bullock, & Grossberg,
2000; Compte et al., 2000; Durstewitz, Seamans, &
Sejnowski, 2000; Todorov, 2000). Unfortunately, these
approaches make different and often contradictory
assumptions, operating at different levels of descrip-
tion. As a result, existing models seem to form a heter-
ogeneous collection, where computational differences
among them make their integration to a global system
very difficult (Wermter & Sun, 2000).

There is also another category of models employ-
ing assemblies of artificial neural networks to repre-
sent a set brain areas (Kozma, Wong, Demirer, &
Freeman, 2005; Krichmar, Seth, Nitz, Fleischer, &
Edelman, 2005; Sporns & Alexander, 2002). However,
these approaches suffer in terms of scalability, because
they are not supported by a (semi-)automated design
procedure that facilitates the re-usability of substruc-
tures (e.g., by means of evolution; Harter, 2005). Thus,
they cannot be easily employed as a general purpose
approach capable to support long-term brain modeling
efforts.

For comparative purposes, in the current study we
have also employed ESP co-evolution and ordinary
unimodal evolution for engineering brain-inspired
models; however, none of these was successful. It has
been experimentally demonstrated that HCCE is the
only effective method (of the three tested) to evolve
systems consisting of many components, investigating
the functionality of the composite structure in a range
of different operating conditions. Previous studies on
the characteristics of co-evolutionary design mecha-
nism have also demonstrated the suitability of the
underlying scheme (Maniadakis, 2006). It is worth
emphasizing that the HCCE scheme can be utilized
as a general purpose mechanism for designing dis-
tributed systems consisting of many cooperating
components. In fact, it can be effectively applied in
contexts very different from that discussed in the
present study, such as the design of complex modular
mechanical structures or the design of teams of coop-
erating robots.

6 Conclusions

In this article, we have proposed a novel computational
framework for designing distributed brain-inspired cog-
nitive systems, following a co-evolutionary agent-
based approach. Particularly, neural network agents are
employed to represent brain areas following a similar
connectivity to the biological central nervous system.
An HCCE scheme is utilized to support design speci-
fication of agent structures. The proposed co-evolu-
tionary method is suitable for the design of complex
distributed systems, because it offers increased search
abilities of partial components, and is able to empha-
size both their autonomous characteristics and their
cooperative performance.

 at RIKEN BSI INFORMATION CENTER on January 8, 2009 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


Maniadakis & Trahanias Hierarchical Co-evolution of Cooperating Agents 243

The work presented here constitutes a first
attempt towards a rigorous method for the design of
biologically inspired artificial cognitive systems, based
on cooperative co-evolution. The results obtained attest
to its validity and effectiveness in modeling partial
brain areas and replicating biological behaviors. Fur-
ther work is necessary, and currently underway, to
investigate the suitability of our approach for large-
scale modeling tasks and the endowment of advanced
cognitive abilities to simulated and real robots.

Particularly, in the future we aim to implement
brain-like systems embedded in robotic systems, con-
sidering (i) the accomplishment of many tasks by the
same computational model, following many different
training processes, and (ii) the computational replica-
tion of many biological lesion effects after simulated
lesions to the components representing cortical areas.
The more biological data the model is able to repli-
cate, the more similar to cortical areas agents will
become, facilitating the long-term goal of implement-
ing artificial systems with mammal-like cognitive
skills.

Note

1 Epigenesis here includes all learning processes during
lifetime.
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