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SaM

• Structure and Motion Estimation (SaM) is the problem of
using 2D measurements arising from a set of images of the
same scene in order to recover information related to the
3D geometry of the imaged scene as well as the locations
and optical characteristics of the employed camera(s)

• It is an archetypal problem with a wide spectrum of
applications:
◦ organizing community photo collections
◦ visual odometry
◦ augmented reality & virtual telepresence
◦ video post production
◦ video metrology
◦ image-based 3D graphics
◦ 3D motion capture
◦ object grasping & manipulation
◦ ...

http://www.ics.forth.gr/~lourakis
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Bundle Adjustment

• Bundle Adjustment (BA) is a key ingredient of SaM, almost
always used as its last step

• It is an optimization problem over the 3D structure and
viewing parameters (camera pose, intrinsic calibration, &
radial distortion parameters), which are simultaneously
refined for minimizing reprojection error

• BA is the ML estimator assuming zero-mean Gaussian
image noise

• BA boils down to a very large nonlinear least squares
problem, typically solved with the Levenberg-Marquardt
(LM) algorithm

• Std LM involves the repetitive solution of linear systems,
each with O(N3) time and O(N2) storage complexity, resp.

• Example: for 54 cameras and 5207 3D points, N = 15945

• This is prohibitively large for practical problems!

http://www.ics.forth.gr/~lourakis
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What this talk is about

• Fortunately, there is a way out

• The linear systems that LM needs to solve for BA have a
sparse block structure

• This is because the projection of a point on a certain
camera does not depend on the parameters of any other
point or camera

• Sparse BA is one of the driving forces behind the success
of recent SaM systems

• This talk concerns
◦ a scheme for dealing with BA that exploits sparseness to

yield significant computational savings
◦ an ANSI C software library (called sba) that implements

this scheme and which has been made publicly available
under the GNU GPL

http://www.ics.forth.gr/~lourakis
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Levenberg-Marquardt algorithm overview

• Let f : Rm → Rn. Given an initial estimate p0 ∈ Rm and a
measurement vector x ∈ Rn, LM seeks to find p+

minimizing ǫT ǫ, ǫ = x − f(p)

• Note that this is a (nonlinear) least squares problem since
ǫT ǫ = ||x− f(p)||2, ||.|| being the L2 norm

• The minimizer can be found by the Gauss-Newton method,
which iteratively linearizes f at p and determines
incremental update steps δp by solving the normal
equations JT Jδp = JT ǫ, J being the Jacobian of f at p and
JT J the approximate Hessian of ||ǫ||2

• To ensure convergence, LM uses damping, i.e. adaptively
alters the diagonal elements of JT J and solves the
augmented normal equations (JT J + µI)δp = JT ǫ, µ > 0

http://www.ics.forth.gr/~lourakis
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Bundle Adjustment

• Assume n 3D points are seen in m views. Illustration with
n = 7, m = 3

• Let xij be the projection of the i-th point on image j, aj the
vector of parameters for camera j and bi the vector of
parameters for point i

• BA minimizes the reprojection error over all point and

camera parameters: minaj ,bi

n
∑

i=1

m
∑

j=1

vijd(Q(aj ,bi), xij)
2,

Q(aj ,bi) being the predicted projection of point i on image
j, d(., .) the Euclidean distance between image points and
vij = 1 iff point i is visible in image j

• This is a large problem: if κ, λ are the dimensions of the aj

& bi, the total number of parameters involved in BA is
mκ + nλ

http://www.ics.forth.gr/~lourakis
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BA as a nonlinear least squares problem

• A parameter vector P is defined by partitioning parameters
as P = (a1

T , . . . , am
T , . . . ,b1

T , . . . ,bn
T )T

• A measurement vector X is defined as
(x11

T , . . . ,x1m
T , x21

T , . . . ,x2m
T , . . . , xn1

T , . . . ,xnm
T )T

• For each parameter vector, an estimated measurement X̂

is (x̂11
T , . . . , x̂1m

T , x̂21
T , . . . , x̂2m

T , . . . , x̂n1
T , . . . , x̂nm

T )T

and the corresponding error
(ǫ11

T , . . . , ǫ1m
T , ǫ21

T , . . . , ǫ2m
T , . . . , ǫn1

T , . . . , ǫnm
T )T ,

where x̂ij ≡ Q(aj ,bi) and ǫij ≡ xij − x̂ij ∀ i, j

• With the above definitions, BA corresponds to minimizing
n
∑

i=1

m
∑

j=1

||ǫij ||
2 = ||X− X̂||2 over P, which is a nonlinear

least squares problem

http://www.ics.forth.gr/~lourakis
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Jacobian block structure

• The Jacobian J = ∂X̂
∂P

has a block structure [A|B ], where

A =
[

∂X̂
∂a

]

and B =
[

∂X̂
∂b

]

• The LM updating vector δ is partitioned as (δa
T , δb

T )T

• The normal equations become
[

AT A | AT B

BT A | BT B

](

δa

δb

)

=

(

AT ǫ

BT ǫ

)

• The lhs matrix above is sparse due to A and B being
sparse: ∂x̂ij

∂ak
= 0, ∀ j 6= k and ∂x̂ij

∂bk
= 0, ∀ i 6= k

• This is the so-called primary structure of BA

http://www.ics.forth.gr/~lourakis
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A simple case with n = 4, m = 3

• Assume all points are seen in all images

• The measurement vector X =

(x11
T

, x12
T

, x13
T

, x21
T

, x22
T

, x23
T

, x31
T

, x32
T

, x33
T

, x41
T

, x42
T

, x43
T )T

• The parameter vector
P = (a1

T , a2
T , a3

T , b1
T , b2

T , b3
T , b4

T )T

• The LM updating vector
δ = (δa1

T , δa2

T , δa3

T , δb1

T , δb2

T , δb3

T , δb4

T )T

• Let Aij =
∂x̂ij

∂aj
and Bij =

∂x̂ij

∂bi

http://www.ics.forth.gr/~lourakis
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A simple case with n = 4, m = 3 (cont’d)

• The Jacobian J in block form:

∂X̂

∂P
=









































a1
T a2

T a3
T b1

T
b2

T
b3

T
b4

T

x11 A11 0 0 B11 0 0 0

x12 0 A12 0 B12 0 0 0

x13 0 0 A13 B13 0 0 0

x21 A21 0 0 0 B21 0 0

x22 0 A22 0 0 B22 0 0

x23 0 0 A23 0 B23 0 0

x31 A31 0 0 0 0 B31 0

x32 0 A32 0 0 0 B32 0

x33 0 0 A33 0 0 B33 0

x41 A41 0 0 0 0 0 B41

x42 0 A42 0 0 0 0 B42

x43 0 0 A43 0 0 0 B43









































(1)

http://www.ics.forth.gr/~lourakis
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A simple case with n = 4, m = 3 (cont’d)

• Approximate Hessian in block form:

J
T
J =

0

B

B

B

B

B

B

B

B

B

@

a1
T a2

T a3
T b1

T b2
T b3

T b4
T

a1 U1 0 0 W11 W21 W31 W41

a2 0 U2 0 W12 W22 W32 W42

a3 0 0 U3 W13 W23 W33 W43

b1 WT
11

WT
12

WT
13

V1 0 0 0

b2 WT
21

WT
22

WT
23

0 V2 0 0

b3 WT
31

WT
32

WT
33

0 0 V3 0

b4 WT
41

WT
42

WT
43

0 0 0 V4

1

C

C

C

C

C

C

C

C

C

A

≡

 

U W

WT V

!

,

(2)

where

Uj ≡
∑4

i=1 AT
ijAij ,

Vi ≡
∑3

j=1 BT
ijBij ,

Wij = AT
ijBij

• The above generalize directly to arbitrary n and m

• U and V are block diagonal, W arbitrarily sparse

http://www.ics.forth.gr/~lourakis
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J
T
J sparsity pattern for a real problem

• Oxford’s “basement” sequence
Note the arrowhead pattern

• Matrix is 992 × 992, black pixels denote nonzero elements

http://www.ics.forth.gr/~lourakis
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Solving the augmented normal equations

• The augmented normal equations (JT J + µI)δp = JT ǫ take
the form

(

U∗ W

WT V∗

)(

δa
δb

)

=

(

ǫa
ǫb

)

(3)

• Performing block Gaussian elimination in the lhs matrix, δa
is determined with Cholesky from V∗’s Schur complement:

(U
∗

− W V
∗−1

W
T

) δa = ǫa − W V
∗−1

ǫb(4)

This is not alternation!

• Note that V∗−1 =

0

B

B

@

V∗

1

−1 0 · · ·

0 V∗

2

−1
· · ·

...
...

. . .

1

C

C

A

• Why solve for δa first? Typically m << n

• δb can be computed by back substitution into

V
∗

δb = ǫb − W
T

δa(5)

http://www.ics.forth.gr/~lourakis
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The reduced camera matrix

• The lhs matrix S ≡ U∗ − W V∗−1 WT is referred to as the
reduced camera matrix

• Since not all scene points appear in all cameras, S is
sparse. This is known as secondary structure

• The secondary structure depends on the observed point
tracks and is hard to predict. This not crucial up to a few
hundred cameras

• Two classes of applications for very large datasets
◦ visual mapping: extended areas are traversed, limited

image overlap (sparse S)
◦ centered-object: a large number of overlapping images

taken in a small area (dense S)

Courtesy of Agarwal et al., ECCV’10

http://www.ics.forth.gr/~lourakis
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Dealing with the RCM

• Store as dense, decompose with ordinary linear algebra
◦ M. Lourakis, A. Argyros: SBA: A Software Package For Generic

Sparse Bundle Adjustment. ACM Trans. Math. Softw. 36(1): (2009)
◦ C. Engels, H. Stewenius, D. Nister: Bundle Adjustment Rules.

Photogrammetric Computer Vision (PCV), 2006.

• Store as sparse, factorize with sparse direct solvers
◦ K. Konolige: Sparse Sparse Bundle Adjustment. BMVC 2010: 1-11

• Store as sparse, use conjugate gradient methods
memory efficient, iterative, precoditioners necessary!
◦ S. Agarwal, N. Snavely, S.M. Seitz, R. Szeliski: Bundle Adjustment in

the Large. ECCV (2) 2010: 29-42
◦ M. Byrod, K. Astrom: Conjugate Gradient Bundle Adjustment. ECCV

(2) 2010: 114-127

• Avoid storing altogether
◦ C. Wu, S. Agarwal, B. Curless, S.M. Seitz: Multicore Bundle

Adjustment. CVPR 2011: 30 57-3064
◦ M. Lourakis: Sparse Non-linear Least Squares Optimization for

Geometric Vision. ECCV (2) 2010: 43-56

http://www.ics.forth.gr/~lourakis
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Reducing the cost of BA

• BA is not a cheap operation, thus for certain applications it
may take unacceptably long to complete

• A large body of work is devoted to reducing BA’s size or
frequency of invocation

• Divide-and-conquer approaches
◦ K. Ni, D. Steedly, F. Dellaert: Out-of-Core Bundle Adjustment for

Large-Scale 3D Reconstruction. ICCV 2007: 1-8
◦ H.-Y. Shum, Z. Zhang, Q. Ke: Efficient Bundle Adjustment with Virtual

Key Frames: A Hierarchical Approach to Multi-Frame Structure from
Motion. CVPR 1999: 2538-2543

• BA in a sliding time window (local BA)
◦ E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd: Real

Time Localization and 3D Reconstruction. CVPR (1) 2006: 363-370

• Solve the RCM fewer times: Dog-leg in place of LM
◦ M. Lourakis, A. Argyros: Is Levenberg-Marquardt the Most Efficient

Optimization Algorithm for Implementing Bundle Adjustment?. ICCV
2005: 1526-1531

http://www.ics.forth.gr/~lourakis
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sba historical overview

• “Every good work of software starts by scratching a developer’s
personal itch”. Eric S. Raymond, open source proponent

• Started as an internal project in 2004, as a component for
camera tracking

• First public version released in September 2004; new
versions once or twice a year

• The sba library implements the presented scheme in C,
forming S as a dense matrix and relying on LAPACK for
linear algebra

• Has spawned two side free source projects
◦ LM for dense least squares:
http://www.ics.forth.gr/~lourakis/levmar

◦ LM for arbitrarily sparse least squares:
http://www.ics.forth.gr/~lourakis/sparseLM

http://www.ics.forth.gr/~lourakis
http://www.ics.forth.gr/~lourakis/levmar
http://www.ics.forth.gr/~lourakis/sparseLM
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sba features
• Supports generic BA by accepting user-defined projection

functions; includes code for Euclidean BA as example

• This lends it the versatility to support various BA flavors
with the same optimization engine: e.g. BA
including/excluding camera extrinsics and/or distortion
parameters, projective BA, non-pinhole cameras, etc

• Provides efficient mechanisms for approximating the
Jacobians via finite differences and checking the
correctness of user supplied ones

• Provides support for intersectioning/resectioning problems
(constant camera poses/scene structure, resp.)

• Usable in MATLAB though a MEX interface

• Supports robust cost functions and projection covariances

• Highly optimized yet portable

• Can take advantage of multicore architectures through the
PLASMA library (http://icl.cs.utk.edu/plasma/)

http://www.ics.forth.gr/~lourakis
http://icl.cs.utk.edu/plasma/
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sba weaknesses

• Storing the full RCM makes it inefficient for very large
datasets, e.g. long, weakly connected image sequences
(i.e., visual mapping). However, local BA is a viable
alternative in some of these cases

• A few interesting practical situations violate its underlying
assumption regarding the problem’s sparsity pattern,
rendering it inapplicable. E.g., fixed but unknown intrinsics
shared by all cameras

• Example: Hessians corresponding to BA for motion and
structure (left) and BA for motion, structure and shared
intrinsics (right)

http://www.ics.forth.gr/~lourakis
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sba usage

• sba is considered to be the standard BA implementation

• Best suited to processing small to medium-sized datasets

• Has over 280 citations according to Google Scholar, well
above 100K page loads for its webpage

• Was used as the optimization engine of Bundler, the SaM
system used in the Photo Tourism system
(http://phototour.cs.washington.edu) that was
the predecessor of Microsoft’s Photosynth

• Other sample applications include multiview reconstruction,
camera & camera networks calibration, camera tracking,
visual SLAM, catadioptric imaging, geocoding, face
modeling, autonomous UAVs, remote sensing, and more

• Released under a dual licensing scheme: GPL +
proprietary license, thereby creating an income from
commercial applications

http://www.ics.forth.gr/~lourakis
http://phototour.cs.washington.edu
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User feedback

• Compilation problems are by far the most common topic of
user inquiries

• Students often ask to have (part of) their homework done

• Most users send thank-you notes

• Others do not want to spend time perusing the
documentation but prefer to ask direct questions

• A few knowledgeable users report bugs or suggest
extensions

• Even fewer contribute code snippets

• In a couple of cases, users have reported that sba has
inspired them to do further research

http://www.ics.forth.gr/~lourakis
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Lessons learnt

• The devil is indeed in the details!

• An efficient implementation should be cache-oblivious so
as to minimize data movement across a computer’s
memory hierarchy

• Releasing code in public motivates oneself to write &
maintain better code. Seeing it being used by others can
be very rewarding

• Good documentation is important

• Need to set up tools for easy communication and sharing of
code, knowledge, experiences and problems among the
user community (cf. SourceForge facility)

• The vision community is in need of wider adoption of the
free/open source culture

• Should have been given a better name!

http://www.ics.forth.gr/~lourakis
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Further reading

• B. Triggs, P.F. McLauchlan, R.I. Hartley, A.W. Fitzgibbon: Bundle Adjustment - A
Modern Synthesis. Workshop on Vision Algorithms 1999: 298-372

• Y. Jeong, D. Nister, D. Steedly, R. Szeliski, I.-S. Kweon: Pushing the Envelope of
Modern Methods for Bundle Adjustment. CVPR 2010: 1474-1481

• M. Lourakis, A. Argyros: SBA: A Software Package For Generic Sparse Bundle
Adjustment. ACM Trans. Math. Softw. 36(1): (2009)
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Conclusions

• Presented the mathematical theory behind an LM-based
sparse bundle adjustment algorithm

• Described sba, a freely available C/C++ software package
for generic sparse BA

• sba can be obtained from
http://www.ics.forth.gr/~lourakis/sba

• More details on sba can be found in
Lourakis & Argyros, “SBA: A Software Package For Generic Sparse
Bundle Adjustment. ACM Trans. Math. Softw.”, 36(1): 2009
and in the (slightly outdated)
Lourakis & Argyros, “The Design and Implementation of a Generic
Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm”, Tech. Rep. FORTH-ICS TR-340-2004,
Aug. 2004

• Making your next project publicly available is worth
considering!

http://www.ics.forth.gr/~lourakis
http://www.ics.forth.gr/~lourakis/sba
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The end

Any questions?

http://www.ics.forth.gr/~lourakis
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