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ON FINDING AND UPDATING SPANNING TREES AND

SHORTEST PATHS*

P. M. SPIRA’ AND A. PAN
Abstract. We consider one origin shortest path and minimum spanning tree computations in

weighted graphs. We give a lower bound on the number of analytic functions of the input computed by a

tree program which solves either of these problems equal to half the number of worst-case comparisons
which well-known algorithms attain. We consider the work necessary to update spanning tree and
shortest path solutions when the graph is altered after the computation has terminated. Optimal or

near-optimal algorithms are attained for the cases considered. The most notable result is that a spanning
tree solution can be updated in O(n) when a new node is added to an n-node graph whose minimum

spanning tree is known.
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1. Synopsis of results. Dijkstra [2] has given an algorithm to find all shortest
paths from a single origin in a directed graph with positive arc weights and Prim
has given an algorithm t6 find a minimal spanning tree in an undirected graph.
We discuss the optimality of these algorithms in the sequel and show that no

program whose unit operation is the evaluation and testing for positivity of an
analytic function ofthe weights can better these algorithms by more than a factor of
two. We then consider the problem ofupdatingprevious shortest path andminimum
spanning tree solutions when parameters of the graph are changed. We consider
what must be done when nodes are added or deleted and when weights on arcs are
increased or decreased. We obtain lower bounds and optimal or near optimal
algorithms for these problems in terms of how many analytic functions of the
weights must be considered.

2. Definitions and preliminaries. Let G be an n-node with d the distance from
node to node j so that G is undirected ifd d for all and j.

DEFINITION 2.1. An analytic tree program T is one defined by a rooted tree.
Each internal node and the root are labeled by analytic functions, and each leaf
is labeled by an answerthe output of the program. Computation begins at the
root. At each node the analytic function is evaluated and the next node visited is
the left or right successor of the present node. Computation terminates when a
terminal node is reached. The depth of T, d (T), is the length of the longest branch.

DEFINITION 2.2. Let l, ..., l,, be linear maps from Rn to R, where R is the real
numbers, and let C

_
Rd be a convex set. Let L + {x Rn:li(x) >= O, < m}.

A complete analytic proof of L / on C is a matrix
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where each pi)’Rd R is analytic and such that x e L + ,, ::li, =< __< k, with
pj(x) >= O, 1 <= j <= k. We call k the width of .

The reason for defining a complete proof is that any lower bound on the width
of a complete proof for L + is a lower bound on the depth of a tree program. In
fact, we have the following lemma.

LEMMA 2.3. Let 11 ..., l" be linear maps from R to R. Let C
_
Re. Let k be the

minimum width of any analytic proof of L + on C. Let T be a program which, given
any point x C, determines whether or not x L +. Then d(T) >_ k.

Proof. The proof is direct from the definition of complete analytic proof.
Q.E.D.

We shall use in all our lower b’ound proofs the following theorem.
THEOREM 2.4 (Rabin). Let/1, l" be linear forms from Rd to R, with m <= d.

Let C
_
Ra contain a point for any given of the 3" possible +, 0, sign conditions

of the Then any complete analytic proof of L + on C has width at least m.
This theorem says that under the given hypotheses, the easiest thing to do to

verify that a point x e C is in L + is to compute l(x), ..., l"(x) and see if they are all
nonnegative.

3. Spanning trees. Prim’s [1] well-known procedure finds the minimum
spanning tree in an undirected graph. There are two types of comparisons em-
ployed. The first type finds the closest unconnected node to the set of nodes already
connected. This closest node becomes a connected node. The second type compares
for each unconnected node the distance to it via the last connected node and the
distance to it which was minimal before the last node was connected. If the al-
gorithm is properly programmed by introducing a tree of depth [log2 (n k)] for
the arcs from the kth node brought in, then it will take between 1/2(n 1). (n 2)
and (n- 1). (n- 2) comparisons, depending upon the number of new arcs
brought into consideration in the second type of comparison. We show that any
analytic tree program will have depth at least (n 1). (n 2) for this problem.
In fact, more strongly, we have the next theorem.

THEOREM 3.1. Let T be an analytic tree program which, given a complete un-
directed weighted graph and n arcs, determines whether or not these arcs form
a minimum spanning tree. Then d(T) >= 1/2(n 1). (n 2).

Proof. Let D be the set of n arcs. Let d max {dij:the arc from node to
node j is in D}. Then the arcs of D form a minimum spanning tree if and only if
they form a tree and dij __> d for each and j such that the arc from to j is not
in D. But this is a set of (n 1). (n 2) inequalities which satisfy Rabin’s hy-
pothesis. Q.E.D.

We now discuss updating minimum spanning tree solutions when graph
parameters are changed. First we consider adding a new node to the graph.

THEOREM 3.2. Let an n-node weighted undirected graph G be given, together with
n arcs known to be a minimum spanning tree. Let an (n + 1)-st node be added to
G, together with at least two arcs connecting it to the original n nodes. Then any
analytic tree program to compute the minimum spanning tree of the new graph has
depth at least n.

Proof. Consider the case in which there are two arcs from the new node which,
together with the given minimum spanning tree, form a cycle of length n + 1.
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Then the new minimum spanning tree will contain each of these arcs except that
arc with the maximum weight. Q.E.D.

The reader can easily construct an O(n log n) algorithm to update the minimum
spanning tree if he or she notes the fact that the only eligible arcs are the n arcs
now in the tree and the at most n new arcs connected to the new node. In fact,
there is an O(n) algorithm which we now present. Also, the algorithm uses storage
proportional to n.

THEOREM 3.3. There is an algorithm to update the minimum spanning tree of
an n-node graph to which a new node has been added which uses O(n) comparisons
and O(n) storage.

Proof. We give the algorithm. The input to the algorithm is the set of arcs in
the old tree and the set of arcs to the new node. All arcs appear with their weights.

ALGORITHM.
1. Find minimum weight arc incident upon each node.
2. Find the connected components of the set of arcs found in step 1.
3. Find the minimum arc between each pair of trees found in step 2 such that

there is at least one such arc.
4. Collapse each tree found in step 2 to a new node, and go to step if there is

more than one such node.
Step requires at most 4n comparisons. Step 2 is linear in n if we use Tarjan’s

[4] connected components algorithm. Step 3 can be done by processing each edge
not found in step once and uses linear storage. To see this, note that there can be
no more than one arc between any two trees unless one ofthem contains the newly
added node, or there would have been a cycle in the original spanning tree. So we
only need to process arcs that go to the component containing the new node and
hence use linear storage. In the process we will throw out all nonminimal con-
necting arcs, so that step 4 is trivial. When we return to step 1, we have the original
problem on at most half as many nodes. Hence for a constant c, we have a recursion
for the work, F(n), given by

F(n) <= F(n/2) + cn,

so that F(n) <= 2cn. Q.E.D.
We note that Johnson and Simon [5] have independently discovered an

entirely different O(n) algorithm for this problem.
The rest of the results on updating spanning trees are now stated as Theorem

3.4.
THEOREM 3.4. Let G be an n-node undirected weighted graph whose minimum

spanning tree is specified. Then:
(i) If the value of a tree arc is increased any analytic tree program to update

the minimum spanning tree has depth at least n/4 for n even and (n2 4)/4 for n
odd. Furthermore there is an algorithm using this many comparisons in the worst
case.

(ii) If the value of a nontree arc is decreased in weight, then an algorithm
using n comparisons in the worst case will yield the new minimum spanning
tree and no analytic tree program with depth less than n can solve this problem.

(iii) If a node is deleted from the graph together with all of its arcs, then an
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analytic tree program to update the solution has depth at least n 2). (n 3)
(although it will usually be easier than this).

Proof. (i) Consider all arcs running between the two subtrees formed by
deleting the arc whose weight has increased. Then the new tree will be the union of
the subtrees and the connecting arc of minimum weight. If the subtrees have and
n nodes, there are n(n i) such arcs. Hence the result follows.

(ii) The arc of decreased weight is in the new tree if and only if it is no longer
the maximum weight arc in the cycle it forms when added to the old minimum
spanning tree.

(iii) The worst case occurs when the deleted node was a root of degree n
of the old tree. Then no old information is useful. Q.E.D.

4. Shortest paths. In this section we discuss finding and updating shortest
paths from a single origin in positively weighted directed graphs (digraphs).
Dijkstra’s [2] procedure for finding a shortest path from a root to every other node
in an n-node graph requires between 1/2(n 1). (n 2) and (n 1). (n 2) com-
parisons. Similar considerations apply as in the spanning tree problem. Also,
similarly to Theorem 3.1, we have Theorem 4.1.

THEOREM 4.1. Let T be an analytic tree program which verifies that a tree rooted
at node specifies a shortest path from node to each other node in a positively
weighted digraph. Then d( T) >= n 1). (n 2).

Proof. Let Dj be the shortest distance from node to node j in the given tree
foreach < .j =< n. Assume with no loss of generality that D 2 =< D3 =< _< D,.
Then for each =< <__ .j n such that dj is not in the proposed shortest path tree,
we must verify that dj >= Dj Dj and this set of 1/2(n 1). (n 2) inequalities
cannotbeprovenbyananalyticproofofwidthlessthan1/2(n- 1).(n- 2). Q.E.D.

In contrast to the case of spanning trees, when a new node is added, it requires
an O(n2) algorithm to update the solution. In fact, the updating problems we con-
sidered for shortest paths all require O(n2) steps.

THEOREM 4.2. Let G be an n-node positively weighted digraph for which a
shortest path tree from node to each other node is specified. Then"

(i) If a new node is added, any analytic tree program to update the solution
will have depth at least 1/2(n 1). (n 2).

(ii) If a node is deleted, any analytic tree program for updating the set of
paths will have depth at least 1/2(n 2). (n 3).

(iii) If the weight of some arc in a path is increased any updating program will
have depth at least 1/2(n 2). (n 3).

(iv) If the weight of some arc in a path is decreased, the minimum depth of an
updating program is at least 1/2(n 2). (n 3).

(v) If the weight of an arc not in the shortest path tree is decreased, then any
analytic tree program to update the solution has depth at least 1/2(n 2). (n 3).

Proof. (i) Consider the case in which

dij- 1, <,j<n

dij <-, all other/and.j with =< # .j =< n + 1,

di,,+t min {dii’l <= 4: .j <= n + 1}.
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Then the old tree had a direct arc from node to each other node, but the new tree
will not use any of these arcs. The new solution will have a direct path only from
node to node n + 1, and an entirely new solution for the rest of G which will
entail finding a shortest path from node n + to each other node.

(ii) Consider the case

d12 1,

d2j= 1, 3 <j<n

dij> 2, all otheriandj.

Then if node 2 is deleted, an entirely new problem must be solved on nodes

d12 1,

dzj 1, 3 < j < n

dij> 2, i4: 2, j 2,

di2 > Z dij"
j2

Then the original solution is to go from node to node 2 and thence directly to
each other node. Now let d12 increase to be the maximum of all weights, and we
must solve a new problem from node to nodes 3 through n.

(iv) Let

d0 1, < j <= n,

dj < -, all other and j,
n

and now let d12 decrease to be the minimum weight arc. So we must solve a shortest
path problem from node 2 to each other node.

(v) Let

d12 1,

dzj 1, 2 < .j,

dij > 2, .j 2,

dj<-, all otheriandj.
n

Now let d a3 decrease to 1/n. Then we must solve a new problem from node 3 to
nodes 2,4,..., n. Q.E.D.

5. Further considerations. In this concluding section we make several further
remarks about shortest paths and spanning trees. Firstly, there is an algorithm for
shortest paths or for the spanning tree problem which uses an average of 1/2n 2
+ O(n log2 n) comparisons. To see this, let G be a graph in which the weights are,

chosen independently from any probability distribution which has zero probability
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of yielding negative values. Then Spira’s [6] algorithm for the all shortest path
problem can be adapted to either of the above problems to yield an algorithm
which uses 1/2r/2 + O(r/log2 n) comparisons on the average. Secondly, we have dis-
cussed updating where only the answer to the problem considered is retained. It
seems likely that if intermediate information in obtaining the original solution is
kept, improvements will be possible. We have not investigated this. Thirdly, we
have not considered sparse graphs. A major open problem is whether there are
O(E) algorithms for these computations in the case where E, the number of edges
actually present, is small.
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