
Accelerating Shared Virtual Memory via
General-purpose Network Interface Support

Angelos Bilas (bilas@eecg.toronto.edu)

Department of Electrical and Computer Engineering

10 King’s College Road, University of Toronto, Toronto, ON M5S 3G4, Canada

and

Dongming Jiang (dj@cs.princeton.edu)

Department of Computer Science

35 Olden Street, Princeton University, Princeton, NJ 08544, USA

and

Jaswinder Pal Singh (jps@cs.princeton.edu)

Clusters of symmetric multiprocessors (SMPs) are important platforms for high performance com-
puting. With the success of hardware cache-coherent distributed shared memory (DSM), a lot of
effort has also been made to support the coherent shared address space programming model in
software on clusters. Much research has been done in fast communication on clusters and in pro-
tocols for supporting software shared memory across them. However, the performance of software
virtual memory (SVM) is still far from that achieved on hardware DSM systems. The goal of
this paper is to improve the performance of SVM on system area network clusters by considering
communication and protocol layer interactions.

We first examine what are the important communication system bottlenecks that stand in the
way of improving parallel performance of SVM clusters; in particular, which parameters of the
communication architecture are most important to improve further relative to processor speed,
which ones are already adequate on modern systems for most applications, and how will this
change with technology in the future. We find that the most important communication subsystem
cost to improve is the overhead of generating and delivering interrupts for asynchronous protocol
processing.

Then we proceed to show that by providing simple and general support for asynchronous
message handling in a commodity network interface (NI), and by altering SVM protocols appro-
priately, protocol activity can be decoupled from asynchronous message handling and the need
for interrupts or polling can be eliminated. The NI mechanisms needed are generic, not SVM-
dependent. We prototype the mechanisms and such a synchronous home-based LRC protocol,
called GeNIMA (GEneral-purpose Network Interface support for shared Memory Abstractions),
on a cluster of SMPs with a programmable NI. We find that the performance improvements are
substantial, bringing performance on a small-scale SMP cluster much closer to that of hardware-
coherent shared memory for many applications, and we show the value of each of the mechanisms
in different applications.

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization]: Performance
of Systems—Shared Virtual Memory

General Terms: Design, Performance

Additional Key Words and Phrases: clusters, system area networks, shared virtual memory, ap-
plications

Parts of this work have appeared as conference publication in SC97 [9] and ISCA99 [8].



2 · A. Bilas, D. Jiang, and J.P. Singh

1. INTRODUCTION

As clusters of workstations, PCs or symmetric multiprocessors (SMPs) become im-
portant platforms for parallel computing, there is increasing interest in supporting
the attractive, shared address space (SAS) programming model across them in soft-
ware. Supporting a programming model gives rise to a communication architec-
ture that is shown in Figure 1. The lowest layer is the communication layer, which
consists of the communication hardware and the low level communication library
that provide basic messaging facilities. Next is the protocol layer that provides the
programming model to the parallel application programmer. In this paper we are
interested in all–software DSM protocols. In particular, we focus on page–based
shared virtual memory (SVM). Finally, above the programming model or protocol
layer runs the application itself.

Application Layer

Protocol/Programming Model Layer

Communication Layer

Communication Library

Network

Fig. 1. The layers that affect the end application performance in software shared memory.

In the last few years there has been much improvement of SVM protocols and
systems, and several applications have been restructured to improve performance
substantially [32; 25; 53; 34]. However, Figure 2 shows that parallel performance
is still not satisfactory. Speedups on a 16-processor, all-software, home-based SVM
system running on a Myrinet-connected cluster of Pentium Pro Quad SMPs [42]
are still substantially lower than those achieved on hardware-coherent machines for
the same problem sizes, even with restructured applications. The processors used
by the two systems are different (although of similar generations and with similar
clock speeds), so a direct comparison cannot be made, but the implication is clear.
This difference in performance in many cases is attributed to the the fact that
clusters use less aggressive and specialized communication subsystems. Improving
communication layers for clusters can help reduce this gap. However, it is not clear
which parameters of the communication subsystem are most important.

This paper examines two basic questions: (i) what are the important communi-
cation system bottlenecks that stand in the way of effective parallel performance;
in particular, which parameters of the communication architecture are most impor-
tant to improve further relative to processor speed, which are already adequate on
modern systems for most applications, and how will this change with technology
in the future and (ii) how can we enhance the communication layer and design
new protocols that take advantage of these enhancements to alleviate the system
bottlenecks. The research results present here are extended versions presented in
previous conference publications of the authors [9; 8].



Improving the Performance of Shared Virtual Memory on System Area Networks · 3

0
2
4
6
8
10
12
14
16
18
20

FFT

LU-co
nti

gu
ou

s

Oce
an

-ro
wwise

W
ate

r-n
sq

ua
red

W
ate

r-s
pa

tia
l

Rad
ix-

loc
al

Volr
en

d-
ste

ali
ng

Ray
tra

ce

Barn
es

-re
bu

ild

Barn
es

-sp
ati

al
0
2
4
6
8

10
12
14
16
18
20

Speedup 

HLRC-SMP 
Origin 2000

Fig. 2. Application speedups for a hardware distributed shared memory (DSM) machine (the
SGI Origin 2000) and an SVM system (our Base protocol).

We examine the first question through detailed architectural simulation using
applications with widely different behavior. We simulate a cluster architecture
with SMP nodes and a fast system area interconnect with a programmable net-
work interface (i.e. Myrinet). We use a home-based SVM protocol that has been
demonstrated to have comparable or better performance than other families of
SVM protocols. The base case of the protocol, called home-based lazy release con-
sistency (HLRC) does not require any additional hardware support. The major
communication performance parameters we consider are the host processor over-
head to send a message, the network interface occupancy to prepare and transfer
a packet, the node-to-network bandwidth (often limited by I/O bus bandwidth),
and the interrupt cost. We do not consider network link latency, since it is a
small and usually constant part of the end-to-end latency, in system area networks
(SAN). We find, somewhat surprisingly, that host overhead to send messages and
per-packet network interface occupancy are not critical to application performance.
In most cases, interrupt cost is by far the dominant performance bottleneck, even
though our protocol is designed to be very aggressive in reducing the occurrence of
interrupts.

In SVM systems, nodes exchange both protocol control information and applica-
tion shared data with messages. Thus, there is a need both for handling messages
that arrive asynchronously at the destination node as well as performing protocol
operations related to those messages. In current SVM systems the two activities
are coupled together and performed by the host processor. For example, SVM
protocols manipulate protocol-level page timestamps when a page request message
or a page update message is received. Essentially, the sending node asks for some
service to be performed by the servicing node by means of asynchronous messages
using either interrupts or polling. We find that these interrupts constitute a major



4 · A. Bilas, D. Jiang, and J.P. Singh

system bottleneck. Using polling introduces a number of issues (application code
instrumentation, frequency of polling, interactions with application behavior, etc.)
which are discussed further in Section 8. Our scheme avoids interrupts and polling
all-together.

This paper proceeds to deal with this problem by enhancing the communication
layer with general purpose operations and by taking advantage of these operations
in the SVM protocol. The insight behind the communication-layer mechanisms
and the synchronous home-based lazy release consistency (GeNIMA) protocol we
present in this paper is to decouple protocol processing from message handling.
By providing support in the network interface for simple, generic operations, asyn-
chronous message handling (e.g. data movement and synchronization) can be per-
formed entirely in the network interface without involving the host processor or
doing any protocol processing at the time of asynchronous message handling. The
protocol is then restructured to perform protocol processing at synchronous points
when sending messages rather than when receiving asynchronous requests. This
eliminates the need for interrupting the receiving host processor or using polling to
handle asynchronous events.

While we use a programmable Myrinet network interface for prototyping, the
message-handling mechanisms are simple and do not require programmability. We
find that the proposed protocol extensions improve performance substantially for
our suite of ten applications. Performance improves by about 38% on average for
reasonably well performing applications (and up to 120% for applications that do
not perform very well under SVM even afterward).

The rest of the paper is organized as follows. Section 2 presents the overall
cluster architecture and the base SVM protocol. Section 3 briefly presents the
main characteristics of the applications we use in this work. Section 4 presents our
results for the dependence of end application performance on communication layer
parameters. Section 5 presents the proposed NI mechanisms, the protocol changes,
and the performance results. Section 6 discusses the remaining bottlenecks in the
systems, and Section 7 gives a more detailed view of where time is now being spent
in the communication layer. Section 8 presents related work and Section 9 presents
concluding remarks.

2. CLUSTER ARCHITECTURE

The architecture we are considering is a cluster composed of commodity compo-
nents. The nodes of the system are small–scale symmetric multiprocessor (SMP)
systems. Each node is a “standard” workstation or PC, with a memory bus, a
number of memory modules, and a number of processors.

The interconnection network is a low-latency, high-bandwidth system area net-
work (SAN) that plugs into each node at the I/O bus level. The network interfaces
do not provide any support for hardware cache coherence. However, for the ar-
chitectures we consider, the network interface can perform different types of data
movement or synchronization functions. Figure 3 presents the general architecture
of each node in the system.

When a message is exchanged between two hosts, it is put in a post queue on
the network interface at the sending side. In an asynchronous send operation,
which we assume, the sender is free to continue with useful work. The network



Improving the Performance of Shared Virtual Memory on System Area Networks · 5

F

F
O F

F
O

I

I

Core

Processor
M
e
m
o
r
y

B
u
s

Processor

I/O
B
u
s

First level Cache

Core

Buffer
Write

Second
Level
Cache

Network Interface

M
e
m
o
r
y

Snooping

Device

Fig. 3. System node architecture.

interface processes the request, prepares packets, and queues them in an outgoing
network queue, incurring an occupancy per packet. After transmission, each packet
enters an incoming network queue at the receiver, where it is processed by the
network interface and then deposited directly in host memory without causing an
interrupt [11; 14]. Interrupts are caused explicitly by messages that require protocol
action (e.g. page requests). Thus, the interrupt cost is an overhead related not so
much to data transfer but to processing requests.

The shared address space abstraction is provided to the applications in software
by the SVM protocol. The protocol we use is a home–based protocol that supports
SMP nodes [42]. The protocol uses traditional software diffs (HLRC) to propagate
updates to the home node of each page at a release point. The necessary pages
are invalidated only at acquire points according to lazy release consistency (LRC).
At a subsequent page fault, the whole page is fetched from the home, where it is
guaranteed to be up to date according to the lazy release consistency [25]. The pro-
tocol for SMP nodes attempts to utilize the hardware sharing and synchronization
within an SMP as much as possible, reducing software involvement [5; 42]. The
optimizations used include the use of hierarchical barriers and the avoidance of
interrupts as much as possible. Interrupts are used only when remote requests for
pages and locks arrive at a node. Requests are synchronous (RPC like), to avoid
interrupts when replies arrive at the requesting node. Barriers are implemented
with synchronous messages and no interrupts. Interrupts are delivered to processor
0 in each node. However, they are handled by a floating process that is scheduled
independently by the operating system on any processor in the node.



6 · A. Bilas, D. Jiang, and J.P. Singh

3. APPLICATIONS

We use 10 applications from the SPLASH-2 [52] application suite (including dif-
ferent versions of the applications). A detailed classification and description of the
application behavior for SVM systems with uniprocessor nodes is provided in [27].
The applications can be divided in two groups, regular and irregular.

3.1 Regular Applications

The applications in this category are FFT [2; 52], LU [52] and Ocean [13; 48;
28]. Their common characteristic is that they are optimized to be single-writer
applications; i.e. a given word of data is written only by the processor to which
it is assigned. Given appropriate data structures, they are single-writer at page
granularity as well, and pages can be allocated among nodes such that writes to
shared data are almost all local. The applications have different inherent and
induced communication patterns [52; 27], which affect their performance and the
impact on SMP nodes.

3.2 Irregular Applications

The irregular applications in our suite are Barnes [3; 21; 46; 28], Radix [10; 23], Ray-
trace [47; 52], Volrend [39; 52; 28] and Water [52]. In this work we use both original
versions of several SPLASH-2 applications [27] as well as versions that have been re-
structured to improve performance on SVM systems [28]. The same restructurings
are found to be very important on large-scale hardware-coherent machines [29].
Thus, although they are often substantial and algorithmic, they are not specific
to SVM. FFT, LU-contiguous, Ocean-contiguous, Radix-original, Barnes-original,
Water-nsquared, and Water-spatial are the original SPLASH-2 applications. These
versions of the applications are already optimized to use good partitioning schemes
and data structures, both major and minor, for both hardware coherence and re-
lease consistent SVM [23]. Barnes-spatial, Ocean-rowwise, Radix-local, Volrend,
and Raytrace are the restructured applications from [28]. With a drastic algorith-
mic change for one phase of Barnes-Hut, Barnes-spatial substantially reduces the
amount of lock synchronization. The restructurings for the others are less intrusive
and try to improve data assignment, make remote accesses less scattered, or elim-
inate unnecessary synchronization. The version of Raytrace we use eliminates a
lock that assigns unique ids to rays, resulting in less locking. The restructured ver-
sion of Volrend, Volrend-stealing, uses task stealing, but employs a different initial
partition than the SPLASH-2 version.

4. EFFECTS OF COMMUNICATION PARAMETERS

We focus on the following performance parameters of the communication architec-
ture: host overhead, I/O bus bandwidth, network interface occupancy, and inter-
rupt cost. We do not examine network link latency, since it is a small and usually
constant part of the end-to-end latency in system area networks (SAN). These pa-
rameters describe the basic features of the communication subsystem. The rest of
the parameters in the system, for example cache and memory configuration, number
of processors, etc. remain constant.

While we examine a range of values for each parameter, in varying a parameter
we usually keep the others fixed at the set of achievable values. These are the



Improving the Performance of Shared Virtual Memory on System Area Networks · 7

values we might consider achievable currently, on systems that provide optimized
operating system support for interrupts. These values represent the actual system
we use in Section 5. Interrupt cost, however, is higher in the actual system in the
actual system and corresponds to the region around 2500 cycles. The fixed values
we use when varying parameters are relatively aggressive, so that the effects of the
parameter being varied are observed. In more detail:

Host Overhead is the time the host processor itself is busy sending a message.
The range of this parameter is from a few cycles to post a send in systems that
support asynchronous sends, up to the time needed to transfer the message data
from the host memory to the network interface when synchronous sends are used.

The I/O Bus Bandwidth determines the host to network bandwidth (relative to
processor speed). In contemporary systems this is the limiting hardware component
for the available node-to-network bandwidth; network links and memory buses tend
to be much faster.

Network Interface Occupancy is the time spent on the network interface preparing
each packet. Packets have variable sizes with the maximum size being equal to the
page size (4KBytes). Network interfaces employ either custom state machines or
network processors (general purpose or custom designs) to perform this processing.
Thus, processing costs on the network interface vary widely.

Interrupt Cost is the cost to issue an interrupt between two processors in the
same SMP node, or the cost to interrupt a processor from the network interface.
It includes the cost of context switches and operating system processing. Although
the interrupt cost is not a parameter of the communication subsystem, it is an
important aspect of SVM systems. Interrupt cost depends on the operating sys-
tem used; it can vary greatly from system to system, affecting the performance
portability of SVM across different platforms. We therefore vary the interrupt cost
from free interrupts to 50000 processor cycles for both issuing and delivering an
interrupt. The achievable value we use is 500 processor cycles, which results in a
cost of 1000 cycles for a null interrupt. This choice is significantly more aggressive
(about a factor of 4) than what current operating systems provide. However it is
achievable with fast interrupt technology [51]. We use it as the achievable value
when varying other parameters to ensure that interrupt cost does not swamp out
the effects of varying those parameters. Table 1 summarizes the achievable values
of each parameter.

Parameter Range Achievable Best

Host Overhead (cycles) 0-10000 600 ∼0
I/O Bus b/w (Mbytes/MHz) 0.25-2 0.5 2

NI Occupancy (cycles) 0-10000 1000 200

Interrupt Cost(cycles) 0-50000 500 ∼0

Table 1. Ranges and achievable and best values of the communication parameters under consid-
eration.

4.1 Simulation Testbed

We examine the dependence of system performance on communication parameters
using detailed architectural simulation. The simulation environment we use is built



8 · A. Bilas, D. Jiang, and J.P. Singh

on top of augmint [45], an execution driven simulator using the x86 instruction
set, and runs on x86 systems. The simulation environment and the architectural
parameters instantiate a system that follows the general architecture described in
Section 2. In particular the simulator tries to model (roughly) a cluster with 4-way
PentiumPro (at 200 MHz) nodes interconnected with a Myrinet network (M2M-
PCI32C).

The simulated architecture (Figure 3) assumes a cluster of c–processor SMPs
connected with a commodity interconnect like Myrinet [12]. Contention is modeled
at all levels except in the network links and switches themselves. The processor has
a P6-like instruction set, and is assumed to be a 1 IPC processor. The data cache
hierarchy consists of a 8 KBytes first-level direct mapped write-through cache and
a 512 KBytes second-level two-way set associative cache, each with a line size of 32
Bytes. The write buffer has 26 entries [49], 1 cache line wide each, and a retire-at-4
policy. Write buffer stalls are simulated. The read hit cost is one cycle if satisfied
in the write buffer and first level cache, and 10 cycles if satisfied in the second-level
cache. The memory subsystem is fully pipelined.

Each network interface (NI) has two 1 MByte memory queues, to hold incoming
and outgoing packets. The size of the queues is such that they do not constitute
a bottleneck in the communication subsystem. If the network queues fill, the NI
interrupts the main processor and delays it to allow queues to drain. Network
links operate at processor speed and are 16 bits wide. We assume a fast messaging
system [16; 40; 14] as the basic communication library.

The memory bus is split-transaction, 64 bits wide, with a clock cycle four times
slower than the processor clock. Arbitration takes one bus cycle, and the priorities
are, in decreasing order: outgoing network path of the NI, second level cache, write
buffer, memory, incoming path of the NI. The I/O bus is 32 bits wide. The relative
bus bandwidth and processor speed match those on modern systems. If we assume
that the processor has a 200 MHz clock, then the memory bus is 400 MBytes/s.

Protocol handlers themselves cost a variable number of cycles. While the code for
the protocol handlers can not be simulated since the simulator itself is not multi-
threaded, we use for each handler an estimate of the cost of its code sequence. The
cost to access the TLB from a handler running in the kernel is 50 processor cycles.
The cost of creating and applying a diff is 10 cycles for every word that needs to
be compared and 10 additional cycles for each word actually included in the diff.
Computing diffs accounts for cache pollution as well.

The protocol we simulate is close to the base protocol described in 2. With SMP
nodes there are many options for how interrupts may be handled within a node.
Our protocol uses one particular method: Always deliver to processor 0 and perform
protocol processing in the same processor. We also experimented with round robin
interrupt delivery and the results look similar to the case where all interrupts are
delivered to a fixed processor in each SMP. Overall performance seems to increase
slightly, compared to the static interrupt scheme, but as in the static scheme it
degrades quickly as interrupt cost increases. Moreover, implementing such a scheme
in a real system may be complicated and may incur additional costs.



Improving the Performance of Shared Virtual Memory on System Area Networks · 9

Application Page Faults Page Fetches Lcl Lock Acq Rmt Lock Acq Barriers
1 4 1 4 1 4 1 4 1,4

FFT (20) 397.12 251.89 393.31 167.17 0.00 0.00 0.00 0.00 1.14
LU-contiguous (512) 81.36 56.61 71.78 34.94 0.02 0.22 0.27 0.07 19.24
Ocean-contiguous (514) 647.61 117.34 646.97 24.92 0.00 0.76 2.17 1.41 13.05
Water-nsquared (512) 69.19 22.06 68.26 19.01 0.01 120.36 203.20 82.85 3.30
Water-spatial (512) 97.86 21.42 93.81 17.73 0.01 1.83 3.94 2.16 4.19
Radix (1K) 208.82 82.73 203.69 44.92 0.10 0.44 4.52 4.11 1.04
Volrend (head) 105.09 44.06 104.78 29.35 0.00 29.34 44.34 17.64 1.61
Raytrace (car) 89.80 25.64 89.79 25.57 0.03 2.21 4.89 3.26 0.10
Barnes-rebuild (8K) 211.22 103.02 207.72 90.90 0.07 33.92 127.74 93.81 1.44
Barnes-spatial (8K) 48.06 10.43 46.20 9.92 0.00 0.16 0.24 0.07 1.79

Table 2. Number of page faults, page fetches, local and remote lock acquires and barriers per
processor per 107 cycles for each application for 1 and 4 processors per node.

4.2 Results

Table 2 can be used to characterize the applications. It presents counts of protocol
events for each application, for 1, 4 and 8 processors per node (16 processors total
in all cases).

Table 3 presents the maximum slowdown obtained for each application by varying
each of the parameters under consideration across its range of values. The maxi-
mum slowdown is computed from the speedups for the smallest and biggest values
considered for each parameter, keeping all other parameters at their achievable
values. Negative numbers indicate speedups.

Application Host Overhead NI Occupancy I/O Bus Bandwidth Interrupt Cost

FFT 22.6% 11.9% 40.8% 86.6%

LU-contiguous 17.9% 7.5% 15.9% 70.8%

Ocean-contiguous 4.5% 2.8% 6.5% 35.2%

Water-nsquared 32.4% 16.6% 10.8% 83.2%

Water-spatial 23.7% 8.5% 8.9% 67.9%

Radix-original 35.8% -31.8% 77.6% 58.7%

Volrend-stealing 34.7% 12.8% 15.7% 91.3%

Raytrace 8.2% 2.9% 8.9% 52.3%

Barnes-original 40.7% 21.8% 44.8% 80.3%

Barnes-spatial 4.4% -0.6% 27.5% 59.0%

Table 3. Maximum Slowdowns with respect to the various communication parameters for the
range of values with which we experiment. Negative numbers indicate speedups.

4.2.1 Host Overhead. Table 3 shows that the slowdown due to the host overhead
is generally low, especially for realistic values of asynchronous message overheads.
Across the entire range of values, it varies among applications from less than 10%
for Barnes-spatial, Ocean-contiguous, and Raytrace to more than 35% for Volrend-
stealing, Radix, and Barnes-original. As expected, applications that send more
messages exhibit a higher dependency on the host overhead. Note that with
asynchronous messages, host overheads will be on the low side of our range, so we
can conclude that host overhead for sending messages is not a major performance
factor for coarse grain SVM systems and is unlikely to become so in the near future.



10 · A. Bilas, D. Jiang, and J.P. Singh

4.2.2 Network Interface Occupancy. Table 3 shows that network interface occu-
pancy has even a smaller effect than host overhead on performance, for realistic
occupancies. Most applications are insensitive to it, with the exception of a cou-
ple of applications that send a large number of messages. For these applications,
slowdowns of up to 22% are observed at the highest occupancy values we explore.
The small increase in speedup observed for Radix is caused by timing issues (con-
tention is the bottleneck in Radix). Generally, the relatively large message (and
thus packet) size makes the system insensitive to network interface occupancy.

4.2.3 I/O Bus Bandwidth. Table 3 shows the effect of I/O bandwidth on ap-
plication performance. Reducing the bandwidth across the entire range results in
slowdowns of up to 82%, with 4 out of 11 applications exhibiting slowdowns of more
than 40%. However, many other applications are not so dependent on bandwidth,
and only FFT, Radix, and Barnes-original benefit much from increasing the I/O
bus bandwidth beyond the achievable relationships to processor speed today. This
does not mean that it is not important to worry about improving bandwidth; as
processor speed increases, if bandwidth trends do not keep up, we will find our-
selves at the relationship reflected by the lower bandwidth case we examine (or
even worse). Our results show that if bandwidth keeps up with processor speed, it
is not likely to be the major performance limitation in SVM systems.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0 500 1000 2500 5000 10000 50000 
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sp
ee

du
p

FFT
LU-contiguous
Ocean-contiguous

Water-nsquared
Water-spatial
Radix-original
Volrend

Raytrace
Barnes-spatial
Barnes-original

Fig. 4. Effects of interrupt cost on application performance. The six bars for each application
correspond to an interrupt cost of 0, 500, 1000, 2500, 5000, 10000, and 50000 processor cycles.

4.2.4 Interrupt Cost. Figure 4 shows that interrupt cost is a very important
parameter in the system. Unlike bandwidth, it affects the performance of all ap-
plications dramatically, and in many cases a relatively small increase in interrupt
cost leads to a big performance degradation. For most applications, interrupt costs
of up to about 2000 processor cycles for each of initiation and delivery do not seem
to hurt much. However, commercial systems typically have much higher interrupt
costs. Increasing the interrupt cost beyond the 2000-cycle level begins to hurt



Improving the Performance of Shared Virtual Memory on System Area Networks · 11

sharply. All applications have a slowdown of more than 50% when the interrupt
cost varies from 0 to 50000 processor cycles (except Ocean-contiguous, where NI
queue overflows at 0 interrupt cost result in low speedup).

5. NETWORK INTERFACE AND SVM PROTOCOL EXTENSIONS

The previous section has shown that interrupt cost is the dominant problem in SVM
systems. We now describe a minimal set of extensions to the network interface that
can be used to remove the need for asynchronous protocol processing from the
Base (HLRC) protocol we used in the previous section [5; 42]. We discuss how
the resulting message and protocol handling differs from that of the Base protocol.
These extensions are prototyped on a real system that consists of 4-way Intel SMPs
connected with a system area network.

5.1 Protocol Extensions

In the Base protocol, each incoming message that requires protocol processing
causes an interrupt that schedules the protocol process on one of the processors.
The incoming requests are (i) page fetches, (ii) lock acquisition, and (iii) diff ap-
plication at the home. Other requests that require interrupting host processors
in some protocols include page home allocation and migration requests. These
however, are infrequent and not so critical for common-case system performance.
Figure 5 presents an example with both the Base protocol and the final version of
GeNIMA.

5.1.1 Remote Deposit. The communication layer we use (VMMC) already allows
for data explicitly transferred to a remote node via a send message to be deposited in
specified destination virtual addresses in main memory without involving a remote
host processor. This is different from transparently updating remote copies of
data structures via memory bus snooping, code instrumentation, or specialized NI
support [11; 19; 35; 25]. In our implementation, non-contiguous pieces of data are
sent directly to remote data structures with separate messages, and are not packed
into bigger messages or combined by scatter-gather support. Many communication
systems support this or similar type of operations [11; 19; 31; 24; 15].

In the Base protocol remote data structures are updated by sending updates for
non-consecutive fields in a single message. This reduces the number of messages
exchanged and results in larger messages. The disadvantage of this approach is
that processing is required both at the sending and the receiving sides to pack and
unpack the data.

We use the remote deposit mechanism in all our subsequent protocols to exchange
small pieces of control information during barrier synchronization and to directly
update remote protocol data structures (e.g. page timestamps, barrier control
information). In addition, there are two major cases where this operation is used:
to propagate coherence information and to remotely apply diffs to application data
(direct diffs).

(i) First, we use it to propagate coherence information in a sender-initiated way
rather than in response to incoming messages, without causing interrupts. In tradi-
tional interrupt-based lazy protocols coherence information (page invalidations) is
transferred as part of lock transfers. When the last owner of a lock hands the lock



12 · A. Bilas, D. Jiang, and J.P. Singh

Lock()

Read(x)

Write(x)

N1 (lock home/owner)

Node0 (requester) Node1 (page home)

NIC (reply
with lock)

lock req

lock reply

GeNIMA

Lock()

Read(x)

Unlock()

Write(x)

N1 (lock home/owner)

Node0 (requester) Node1 (page home)

Intr (reply with page)

Intr (service diff)

HLRC

Intr (reply with lock)

lock req

lock reply (including invalidations)

page req

page reply

diff update

direct diffs

Invalidations
Unlock()

remote read page

remote read timestamp

Remote Reads

Direct Writes

Fig. 5. Protocol example for both the base (HLRC) and final (GeNIMA) protocols. On the left,
HLRC uses interrupts for asynchronous message handling. On the right, GeNIMA uses general
network interface support to eliminate interrupts.

to another process, it also sends the page invalidations that the requester needs to
maintain the release-consistent view of the shared data. Thus, in the base proto-
col, when the protocol handler asynchronously services a remote acquire, it sends
to the requester both the lock (mutual exclusion part) and the page invalidations
(coherence information).

The mutual exclusion and the coherence information parts can be separated. We
will see further motivation for this when we examine servicing lock acquire messages
without interrupts, so the host processor at the last owner does not even know
about the lock acquire. In GeNIMA we propagate coherence information eagerly to
all nodes at a release, using remote deposit directly into the remote protocol data
structures. Invalidations are still applied to pages at the next acquire, preserving
LRC.

(ii) Second, we use the asynchronous send mechanism with remote deposit to
remotely apply diffs and hence update shared application data pages at the home
nodes. In the Base protocol diffs are propagated to the home lazily, at the next
incoming acquire of a lock. Diffs for the same page are packed in a single message
and then sent to the home, where they interrupt the processor and are applied to
the page by the protocol handler. In GeNIMA when the local processor computes
a diff, instead of storing it in a local data structure and then sending this diff data



Improving the Performance of Shared Virtual Memory on System Area Networks · 13

structure to the home of the page, it directly sends each contiguous run of different
words to the home as it compares the page with its twin. We call this method of
computing and applying the differences in shared data direct diffs.

Direct diffs save the cost of packing the diff, interrupting a processor at the home
of the page and having it unpack and apply the diff on the receive side. However,
they may substantially increase the number of messages that are sent, since they
introduce one message per contiguous run of modifications within a page rather
than one message per page (or multiple pages) that has been modified.

Since synchronization points do not involve interrupts any more (as we shall
see shortly), diffs must now be computed at release points rather than incoming
acquires. However, if another processor in the same node as the releaser is waiting to
acquire the lock next, then no diffs need to be computed. Thus, diff computation is
done with a hybrid method that is eager for synchronization transfers across nodes
and lazy for transfers within nodes.

In all cases, the remote deposit (send) messages used are asynchronous. Thus,
blocking of the sending processor is avoided, except when the post queue between
the processors and the network interface is full and must be drained before new
requests are posted.

5.1.2 Remote fetch. Unlike remote deposit, remote fetch is not provided in the
base VMMC. We extend the communication system to support (in NI firmware)
a remote fetch operation to fetch data from arbitrary exported remote locations
in virtual memory to arbitrary addresses in local virtual memory. Again, the re-
mote fetches must be for contiguous data in our implementation, but there is little
occasion for non-contiguous fetches in the protocol.

In the Base protocol page fetches are performed as follows. The requester sends
a message to the home node and invokes a protocol handler via an interrupt. The
home node performs the necessary protocol processing (i.e. timestamp manipula-
tion) and eventually returns the page to the requester by using the remote deposit
mechanism of VMMC.

We use the remote fetch operation to avoid interrupts at page fetches. When
a remote page is needed, the local processor first requests the timestamp of the
remote page and then immediately requests the page itself. The request messages
are asynchronous, so the request for the page is sent before the timestamp arrives.
If the timestamp is determined to be incorrect, i.e. the necessary diffs have not
been applied at the home, the requester retries.

Another important advantage of the remote fetch operation is that it enhances
protocol scalability significantly. When remote deposit is used to transfer pages in
VMMC in response to a request, each home node needs to be able to send its pages
to every node in the system. With memory mapped communication layers, this
requires that each node, as a potential requester, export (and pin) all the shared
pages in the entire application, limiting the amount of shared memory. With the
remote fetch operation, the requester itself fetches updated page versions from the
home, so the requester rather than the home needs to “directly” access remote
pages. Thus, each node needs to export (and pin) only those shared pages for
which it is the home. Other uses of a remote fetch operation are possible as well,
e.g. for fetching protocol data as mentioned earlier.



14 · A. Bilas, D. Jiang, and J.P. Singh

Remote fetch can also be used instead of remote deposit to avoid interrupts
for coherence information propagation: a processor can “pull” the necessary write
notices with a point-to-point remote fetch operation at lock acquires rather than
pushing it to all nodes at a release. The total traffic is usually about the same
in both cases since invalidations for all intervals generally do need to be sent to
all nodes in the system at some point, and propagating this information at the
releases or at the acquires does not change the number of intervals. However, using
remote fetch can reduce the number of messages: If multiple intervals have to be
communicated from a releaser to an acquirer, this will be done via a single fetch
of all intervals at the acquire, rather than a broadcast operation at each release.
Thus, the eager approach increases the remote release cost while the lazy approach
increases the remote acquire cost. We choose the former method rather than remote
fetch for this purpose, since it spreads out the traffic over a longer period of time
throughout the execution of the application. Thus, while the protocol is still lazy
in applying invalidations, the coherence information is propagated eagerly.

As mentioned earlier we use remote deposit to implement direct diffs. Inter-
estingly, direct diffs require that pages be fetched with remote fetches and retries
rather than by involving the home processor. The reason is that since direct diffs
do not interrupt or involve a host processor at the home at diff application, home
processors do not know when they have the updated version of a page and are
ready to service queued page requests. Remote fetches do not rely on home pro-
cessors having this knowledge, since the requester retries whenever it fails to fetch
the right version of a page. This is why we will present results for direct diffs only
after presenting those for remote fetch.

5.1.3 Network interface locks. With coherence information propagation already
separated from mutual exclusion as described in the discussion of remote deposit,
mutual exclusion does not need to be tied to protocol processing. We extend the
communication layer to provide support for mutual exclusion in the NI as well.
Lock acquisition and release for mutual exclusion per se become communication
system rather than SVM protocol operations, and no host processors other than
the requester are involved.

In the Base protocol, lock synchronization is implemented as follows: Every lock
is statically assigned a home. When a process needs to acquire a lock, it sends a
message to the home of the lock. The home forwards the message to the last owner
and the owner releases the lock to the requester. The requests at the home and
at the last owner are both handled using interrupts, and typically involve protocol
activity such as preparing and propagating coherence information as well. The
host processor at the home of each lock is in charge of maintaining a distributed
linked list of nodes waiting for the lock. The last owner keeps the lock until another
processor needs to acquire it.

The implementation of locks in the network interface firmware is similar to the
algorithm used in LRC and HLRC. However, no coherence information is involved
and the distributed lists for locks are maintained in the network interface proces-
sors, without host processor involvement or interrupts. Coherence propagation is
decoupled and managed at synchronization points as described earlier. Associated
with each lock is one timestamp, which must be interpreted and managed by the



Improving the Performance of Shared Virtual Memory on System Area Networks · 15

protocol. The network interface does not need to perform any interpretation or
operations on this timestamp, but the current implementation requires that this
piece of information be stored as part of the lock data structure in the network
interface and transferred by the NIs among nodes along with the lock.

On the protocol side, each process knows what invalidations it needs to apply
at acquires by looking at protocol timestamps that are exchanged with the locks.
Flags are used to ensure that invalidations for each interval have reached the node
before they are applied. The only requirement in the communication layer is in-
order delivery of messages between two processes. There are no requirements for
global or other strict forms of ordering.

An alternative to our moving all the functionality for mutual exclusion into the
communication layer, including a lock algorithm, is to have the communication
layer or NI simply provide remote atomic operations and to build the locking al-
gorithm into the protocol layer while still avoiding interrupts. This makes the NI
support simpler, and hence more likely to be implemented in hardware in commod-
ity NIs. It also allows flexibility in the locking algorithm chosen at the protocol
level. The performance tradeoffs between the two approaches are unclear, and more
investigation is necessary.

VMMC Operation Cost

1-word send (one-way latency) 14µs

1-word fetch (round-trip latency) 31µs

1-page send (one-way latency) 46µs

1-page fetch (round-trip latency) 105µs

Maximum ping-pong bandwidth 96MBytes/s

Maximum fetch bandwidth 95MBytes/s

Notification 42µs

Remote lock acquire 53.8µs

Local lock acquire 12.7µs

Remote lock release 7.4µs

Host overhead for asynchronous send/fetch 2-3µs

Table 4. Basic VMMC costs. All send and fetch operations are assumed to be synchronous, unless
explicitly stated otherwise. These costs do not include contention in any part of the system.

5.2 Experimental Testbed

We implement the network interface extensions on a cluster of Intel SMPs connected
with Myrinet. This system follows the general architecture described in Section 2.
The nodes in the system are 4-way Pentium Pro SMPs running at 200 MHz. The
Pentium Pro processor has 8 KBytes of data and 8 KBytes of instruction L1 caches.
The processors are equipped with a 512 KBytes unified 4-way set associative L2
cache and 256 MBytes of main memory per node.

The operating system is Linux-2.0.24. The only operating system call used in the
protocol (after the initialization phase) is mprotect. The cost of mprotect for a single
page is about 10-15 µs; coalescing mprotect calls for consecutive pages reduces this



16 · A. Bilas, D. Jiang, and J.P. Singh

cost. We use this technique in our protocol when multiple consecutive pages need
to be mprotected1.

Myrinet [12] is a high-speed system-area network, composed of point-to-point
links that connect hosts and switches. Each network interface in our system has a
33 MHz programmable processor and connects the node to the network with two
unidirectional links of 160 MBytes/s peak bandwidth each. Actual node-to-network
bandwidth is constrained by the 133 MBytes/s PCI bus. All nodes in the system
are connected directly to an 8-way crossbar switch.

The communication layer we use in this system is Virtual Memory Mapped Com-
munication (VMMC) for the Myrinet network [14]. VMMC provides protected,
reliable, low-latency, high-bandwidth user-level communication. VMMC includes a
performance monitor in firmware that allows us to look in detail at the activities
in the communication layer at runtime.

Since we loosely contrast our results with an aggressive hardware cc-NUMA sys-
tem, an SGI Origin2000 we mention here the base system characteristics: We use
an SGI Origin 2000 [36], containing sixty-four 200MHz R10000 processors. The 64
processors are distributed in 32 nodes, each with 512MBytes of main memory, for a
total of 16GBytes of system memory. The nodes are assembled in a full hypercube
topology with fixed-path routing. Each processor has separate 32KByte, instruc-
tion and data caches and a 4MByte unified 2-way set associative second-level cache.
The main memory is organized into pages of 16KBytes. The memory buses and the
interconnection network support a peak bandwidth of 780MBytes/s for both local
and remote memory accesses. The minimum (uncontented) latency for accessing
remote memory (in clean state) is about 650ns.

For the SPLASH-2 applications we use to evaluate our extensions we choose
problem sizes that are close to the sizes of real-world problems. Table 5 presents the
problem sizes along with the uniprocessor execution times. Speedups are computed
between the sequential program version (without linking to the SVM library or
introducing any other overheads) and the parallel version. The initialization and
cold-start phases are excluded from both the sequential and the parallel execution
times in accordance with SPLASH-2 guidelines.

5.3 Results

We evaluate four different protocols. Each protocol successively and cumulatively
eliminates the use of interrupts in some aspect of the base protocol. The first
protocol (DW or direct write) uses the direct deposit mechanism to directly update
(write) remote protocol data structures only. The second protocol (RF or remote
fetch) extends DW to also use the remote fetch mechanism to fetch pages and
their timestamps. The third protocol (DD or direct diff) extends RF to also use
the remote deposit mechanism for direct diffs. (We present these results in this
order, rather than presenting both DD and DW that use remote deposit first, since
direct diffs depend on remote fetch). Finally, the fourth protocol (GeNIMA) uses
all previous features as well as network interface support for mutual exclusion,
eliminating all interrupts or asynchronous protocol processing.

1Measuring these costs precisely is difficult since it requires taking into account many other factors
as well, e.g. page and cache invalidations, etc.



Improving the Performance of Shared Virtual Memory on System Area Networks · 17

Application Problem Size Uni(sec) Overall(%) Data(%) Lock(%)

FFT 4M points 4.6 52.50 45.37 (44.92) 0.00

LU-contiguous 4096x4096 matrix 935.9 4.63 13.46 (11.20) 0.00

Ocean-rowwise 514x514 ocean 248.3 18.40 21.76 (19.26) 9.21

Water-nsquared 4096 molecules 360.6 21.00 15.26 (46.17) 62.76

Water-spatial 15625 molecules 157.2 6.80 41.60 (41.80) 9.69

Radix-local 4M keys 5.9 90.79 26.76 (27.00) 53.21

Volrend-stealing 256x256x256 cst head 13.2 45.30 43.81 (42.44) 50.44

Raytrace 256x256 car 29.8 39.89 2.52 (50.03) 59.01

Barnes-original 32K particles 47.7 117.65 41.07 (68.25) 1.98

Barnes-spatial 128K particles 219.2 -20.16 40.99 (37.70) 33.84

Table 5. Application statistics. The fourth column represents the overall percentage improve-
ment in each application between the Base protocol and GeNIMA. The fifth column is the per-
centage improvement in data wait time between DW and DW+RF and the sixth column, the
percentage improvement for lock time between DW+RF+DD and GeNIMA. For remote fetch we
also report the percentage improvement between DW and GeNIMA in parentheses.

0

2

4

6

8

10

12

14

16

FFT

LU-co
nti

gu
ou

s

Oce
an

-ro
wwise

W
ate

r-n
sq

ua
red

W
ate

r-s
pa

tia
l

Rad
ix-

loc
al

Volr
en

d-
ste

ali
ng

Ray
tra

ce

Barn
es

-o
rig

ina
l

Barn
es

-sp
ati

al
0

2

4

6

8

10

12

14

16

Speedup 

Base DW DW+RF DW+RF+DD DW+RF+DD+NIL (GeNIMA)

Fig. 6. Application speedups. From left to right the bars for each application are (i) Base, (ii)
direct writes (DW), (iii) remote fetch (RF), (iv) direct diffs (DD), and (v) network interface locks
(NIL).

Figures 6 and 7 show the speedups and the average execution time breakdowns
respectively, for each protocol. Breakdowns are averaged over all processors. The
major components of the execution time we use are: Compute time is the useful
work done by the processors in the system. This includes stall time to local memory
accesses. Data wait time is the time spent on remote memory accesses. Lock time
is the time spent on lock synchronization (in both the lock and unlock routines).
Acq/Rel time is the time spent in acquire/release primitives used for release consis-
tency, in cases where mutual exclusion (and thus locks) is not necessary. Barrier
time is the time spent in barriers. Let us examine the results for each protocol.

5.3.1 Direct writes to remote protocol data structures (DW). We see that all
applications with the exception of Water-nsquared perform either comparably or
better with DW than with the base protocol (Figure 7). This is primarily due to the



18 · A. Bilas, D. Jiang, and J.P. Singh

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FFT

LU-co
nti

gu
ou

s

Oce
an

-ro
wwise

W
ate

r-n
sq

ua
red

W
ate

r-s
pa

tia
l

Rad
ix-

loc
al

Volr
en

d-
ste

ali
ng

Ray
tra

ce

Barn
es

-o
rig

ina
l

Barn
es

-sp
ati

al
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Normalized execution time breakdown

Barrier
Acq/Rel
Lock
Data
Compute

Fig. 7. Normalized average execution time breakdowns for 16 processors. From left to right the
bars for each application are (i) Base, (ii) direct writes (DW), (iii) remote fetch (RF), (iv) direct
diffs (DD), and (v) network interface locks (NIL).

removal of message related protocol processing at the sender and the receiver (e.g.
copying, packing and unpacking of messages). However, the DW protocol sends
more messages than the Base protocol, both because it uses eager propagation and
because it uses small messages. This is in fact the reason that Water-nsquared
performs worse. This version of Water-nsquared uses fine-grained, per-molecule
locks when updating the private forces computed by each process into the shared
force array, to reduce inherent serialization at locks. However, this causes the
frequency of locks and hence of invalidation propagation to be very large. We find
that these messages occupy the queues in the NIs, increasing the time it takes
for lock acquire requests to be delivered to the host processor and serviced. We
experimented with coarser-grained locks and with staggering lock acquisitions in
Water-nsquared. Although the relative costs across nodes changed, overall system
performance remained at the same level. However, these techniques require further
investigation.

In the final GeNIMA protocol (described later in this Section) the effect of this
problem is much less apparent and the performance of Water-nsquared improves
by 21% compared to the Base protocol. This is because in the final protocol lock
acquire messages need not be delivered to host memory but are handled completely
in the network interface, so they do not get stuck behind other messages. Thus, the
real problem here is not the increased traffic in the network, but the fact that there
is one FIFO queue (and one level of priorities) for all messages in the incoming
path from the network interface to the host.

As discussed earlier, to reduce the number of messages, invalidations can be
“pulled” at acquires with the remote fetch operation rather than pushed with
broadcast remote deposit at releases. The cost is increased acquire latency. We
experimented with the second approach in a different, WindowsNT version of our
system, which has similar performance characteristics, and found no noticeable
benefits for GeNIMA at the scale of systems we examine here.

5.3.2 Remote fetches of pages (RF). Our simple micro-benchmarks show that the
uncontended page fetch time is improved with the use of the remote fetch operation



Improving the Performance of Shared Virtual Memory on System Area Networks · 19

from about 200 µs to about 105 µs. Figures 6 and 7 show that all applications
benefit from the use of remote fetch even beyond DW, to varying degrees. Especially
applications with high data wait times, like FFT, Water-spatial, Radix-local and
Barnes-original see a large improvement in performance. The data wait time is
reduced up to 45%, and more than 20% for most applications. It is interesting that
the 45% improvement in data wait time in FFT comes almost exclusively from the
uncontended latency reduction of eliminating the interrupts at the home and the
related scheduling effects within an SMP. Using the performance monitor we found
that the use of the remote fetch operation does not reduce the contention in the
communication layer in this case.

5.3.3 Remote diff application (DD). As we see from the execution time break-
downs in Figure 7, direct diffs are particularly useful in the irregular applications
that have a lot of synchronization and hence diffs: Radix-local, Barnes-original,
Raytrace, Volrend-stealing, and Water-nsquared. The benefits in performance come
from eliminating the interrupts (and related scheduling effects in the SMP nodes)
as well as from better load balancing of protocol costs, and they come despite the
fact the direct diffs use smaller messages than diffs in the Base protocol.

Barnes-spatial performs much worse with DD than without. This is because the
number of messages in the network increases by more than a factor of 30 in this
case, due to the highly scattered nature of diffs within each page. This problem
can perhaps be addressed at the application level by changing the layout of data
structures, so that updates to shared data are done more contiguously. At the sys-
tem level, analysis with the performance monitor shows that the increased number
of diff messages indeed results in (i) the send request queue in the NI becoming full
and thus stalling subsequent messages from the host (both synchronous and asyn-
chronous), and (ii) increased NI occupancy at the send side. The stalls at the send
queue increase the effective overhead at the host processor and lead to less over-
lapping of communication and computation. The increased NI occupancy at the
send side does not seem to have a significant effect on performance. These results
agree with the simulation results described earlier, that found NI packet processing
occupancy not to be a major bottleneck for SVM on a Myrinet like system.

There are different ways to deal with this problem in the system itself: (i) By
increasing the size of the post queue, such that most of the time there is enough
space for all diff requests. (ii) By adding a scatter-gather operation in the NI. The
host processor can use this operation to send in one message all scattered update
“runs” of the local copy to the home copy of each shared page. This approach
would greatly reduce the number of messages and the contention at the post queue,
but would increase the NI occupancy at both the sending and receiving sides. The
NI is assumed to be relatively slow compared to the host processor (as it very slow
in our system), and a scatter-gather operation would require additional processing
in the NI to pack data from different virtual locations to the same message on
the send side and to unpack them on the receive side. It would also require fast
fine-grained access to local memory from the NI, which we do not have due to
the interposition of an I/O bus. For these reasons, and because we are examining
a minimal set of extensions needed to avoid interrupts or polling, we do not use
scatter-gather. (iii) By increasing the pipelining between successive messages in



20 · A. Bilas, D. Jiang, and J.P. Singh

the outgoing path of the NI. Then messages can be picked from the post queue as
previous messages are sent so the queue is drained faster. We have experimented
with the third approach in the WindowsNT version of our system and we have
found that indeed this greatly reduces contention in the post queue (the resulting
speedup for Barnes-spatial increases from 8.87 to 12.21).

5.3.4 Network interface locks (NIL). This version includes all NI extensions and
is the final version of the protocol (GeNIMA). Our simple micro-benchmarks show
that the uncontended time for lock acquisition is reduced from about 220 µs (in
the Base protocol) to about 54 µs. Compared to the previous version, GeNIMA
substantially improves the performance of applications that use locks frequently.
Table 5 shows that lock time is reduced up to about 60%. These improvements
come from the elimination of interrupts, and also from the fact that lock messages
do not need to be delivered to host memory. As discussed earlier, the latter re-
sults in shorter service times for lock messages since they need not wait for other
messages to be delivered to the host first. Interestingly, Barnes-original does not
benefit from network interface support for locks despite its very high lock time. In
particular, we find that lock acquire time is very imbalanced across different pro-
cessors, and that the largest component of lock acquire time comes from contention
in either the SVM protocol or the communication system. This issue bears further
investigation. Finally, GeNIMA makes task stealing in Volrend more effective than
with previous protocols, and it improves the computational load balance too. In
previous studies [28], it was found that task stealing is not effective in Volrend
because of the high cost of locks as well as the dilation of critical sections.

5.3.5 Summary. Overall, we see from Figure 8 that GeNIMA, which leverages
all our general-purpose NI extensions to eliminate interrupts and asynchronous
protocol processing, improves application performance by on average 38% for ap-
plications that end up performing quite well and up to 120% for applications that
still do not perform very well under SVM. The improvements in individual overhead
components of execution time are even larger. Several applications that performed
in mediocre ways now perform much better, even well, on a 16-processor system.
The only application that performs worse in GeNIMA than in the Base protocol is
Barnes-spatial, due to the direct diffs problem discussed earlier. Eliminating direct
diffs causes Barnes-Spatial to perform better than in the Base protocol too (with a
speedup of 12.2). Our results also show that all three mechanisms are important in
different applications (i.e. locks for Volrend-stealing, remote fetch for FFT, direct
diffs for Raytrace, remote deposit for enabling the decoupling of mutual exclusion
from coherence propagation and direct diffs), so all should be supported in the NI
if possible.

6. REMAINING BOTTLENECKS

Unfortunately, despite all the improvements in GeNIMA, Figure 8 shows that the
resulting performance is still not quite where we would like it to be to compete with
efficient hardware coherence on several applications. Let us now examine what the
most significant remaining bottlenecks are.



Improving the Performance of Shared Virtual Memory on System Area Networks · 21

0
2
4
6
8
10
12
14
16
18
20

FFT

LU-co
nti

gu
ou

s

Oce
an

-ro
wwise

W
ate

r-n
sq

ua
red

W
ate

r-s
pa

tia
l

Rad
ix-

loc
al

Volr
en

d-
ste

ali
ng

Ray
tra

ce

Barn
es

-re
bu

ild

Barn
es

-sp
ati

al
0
2
4
6
8

10
12
14
16
18
20

Speedup 

HLRC-SMP 
Final
Origin 2000

Fig. 8. Application speedups for a hardware DSM machine (Origin-2000), and for the Base and
the final GeNIMA protocols.

6.1 Data wait time

Figure 7 shows that GeNIMA exhibits high data wait time for three applications:
Barnes-original, FFT, and Radix-local. Barnes has low inherent bandwidth re-
quirements, but it exhibits scattered accesses to remote addresses at very small
granularity and incurs high fragmentation overheads due to the page granularity
of SVM. FFT on the other hand, exhibits coarse-grained memory access patterns,
but has high inherent bandwidth demands. If we compare the data wait time in
FFT under GeNIMA to what it would be with uncontended remote fetch opera-
tions, the increase is less than 30%. The rest of the data wait time is due to the
still-remaining uncontended cost of the remote fetch operation. Thus, FFT would
benefit from bandwidth increases in the communication layer. Radix exhibits both
these problems to a higher extent, as well as a lot of false write-sharing due to the
page granularity.

6.2 Lock synchronization

Previous work has identified locks and their dilation to be a major performance
problem for SVM for many applications [26; 28]. The restructured versions of
these applications dramatically reduce the number of locks and hence their effect
on performance. Moreover, a large part of the additional improvement in lock
synchronization overheads comes from the fact that lock messages are handled
in the network interface and do need to wait in queues to be delivered to the host
processor and handled there by the protocol handlers. In GeNIMA the applications
that still suffer from high lock synchronization costs are the unrestructured Water-
nsquared and Barnes-original. Both exhibit fine grain locking, and despite the
dramatic reduction in lock overhead costs due to the NI support, the lock costs
as well as the dilation of critical sections remain very high compared to hardware



22 · A. Bilas, D. Jiang, and J.P. Singh

cache coherent systems.

6.3 Barrier synchronization

For the restructured or other applications that are not dominated by locks (except
for FFT), the time spent in barriers emerges as the most significant remaining bot-
tleneck. Barrier time can be divided into two parts: the wait time at the barrier
and the cost of protocol processing (including page invalidation or mprotect cost)
and communication. Separating these tells us whether major improvements require
improving protocol processing costs at barriers or better load balancing of compu-
tation, communication and protocol costs. Table 6 shows the portion of time spent
in barriers for each application and the portion of the barrier time that is devoted to
protocol processing (the third column). While for LU-contiguous, Water, Volrend-
stealing, and Barnes-original both imbalances and protocol costs are significant,
for FFT, Radix-local, and Barnes-spatial most of the barrier cost is in fact proto-
col processing time. Protocol processing time can be reduced mostly by protocol
level modifications or by faster communication and mprotect support. For exam-
ple, reducing the amount of laziness in the protocol could cause protocol processing
(i.e. propagation and application of invalidations) not to be deferred exclusively
to synchronization points (with remote deposit support and low-overhead messag-
ing, it may become feasible to send out invalidation notices when a page changes
its protection rather than waiting for the release, more akin to hardware coher-
ence protocols). However, such protocol modifications may increase other costs.
In GeNIMA we have optimized the amount of overlapping between communication
and protocol processing at barriers to reduce waiting time. However, we have not
considered NI support for barrier synchronization since the actual communication
costs are relatively low.

Application Barrier Barrier Protocol mprotect

FFT 7.6% 87% 32.4%

LU-contiguous 13.5% 30% 15.1%

Ocean-rowwise 15.7% 50% 8.6%

Water-nsquared 10.5% 20% 14.1%

Water-spatial 30.5% 37% 23.9%

Radix-local 57.7% 94% 51.9%

Volrend-stealing 11.5% 35% 13.1%

Raytrace 20.6% 20% 15.7%

Barnes-original 22.7% 19% 30.5%

Barnes-spatial 39.0% 82% 19.7%

Table 6. Barrier time. The second column (Barrier) is the portion of the execution time that
is spent in barriers. The third column (Barrier Protocol) shows how much of the barrier time is
spent for protocol processing. The last column (Barrier mprotect) shows the percentage of the
total SVM overhead time (including barrier, lock, and data wait time) spent in mprotect.

6.4 mprotect cost

For most applications, the cost of mprotect is an issue primarily to the extent that
it contributes to the protocol cost at barrier synchronization; in many applications,



Improving the Performance of Shared Virtual Memory on System Area Networks · 23

Application SourceLat LANaiLat NetLat DestLat

Water-nsquared 1.7/10.4 2.2/13.8 1.9/13.2 3.2/5.1

Barnes-original -/8.6 -/12.6 -/12.4 -/6.0

Volrend-stealing -/7.2 -/8.8 -/7.8 -/4.6

Raytrace 1.8/7.3 2.4/8.2 2.2/5.3 3.5/2.4

FFT 1.8/2.4 3.1/3.8 3.0/3.2 4.2/5.5

Ocean-rowwise 1.5/- 2.4/- 2.0/- 4.3/-

Water-spatial 1.8/4.6 3.2/6.9 3.4/6.2 4.7/4.6

Radix-local 1.8/4.3 3.5/1.3 3.4/5.3 4.6/7.1

Barnes-spatial 1.9/3.2 3.6/5.5 3.6/4.3 5.2/5.8

Table 7. Ratios of average time to uncontended time for each network or NI stage in the path
from the sender to the receiver, for small messages in the Base protocol and GeNIMA (reported
as Base/GeNIMA)

a lot of shared pages need to be invalidated at barriers between major phases of
computation. Table 6 shows that in certain cases (e.g. Radix) the cost of mprotect
is a very large component of the protocol costs. Reducing the cost of mprotect
is not straightforward, mainly because the operating system needs to be involved.
We coalesce mprotect system calls to multiple contiguous pages into one call, and
have experimented with mprotecting more pages than necessary to further reduce
the number of mprotect calls (e.g. mprotect all pages in contiguous range when
more than a certain threshold of them need to be mprotected), but more basic
improvements may be necessary.

6.5 Memory bus contention and cache effects

For two applications, FFT and Ocean, the aggregate “compute time” (which in-
cludes stall time on local memory) in the parallel execution increases compared to
the execution time of the sequential run, despite the fact that the per-processor
working set in the parallel execution is smaller than the uniprocessor working set
in the sequential execution. For both FFT and Ocean, the increase is due to con-
tention on the SMP memory bus caused by the misses from the four processors
within each SMP node. This problem increases with problem size and with the
number of processors used in each node. Whether it is a problem in general de-
pends on whether the application has a lot of capacity misses and on the memory
and bus subsystems of the SMP nodes.

7. COMMUNICATION LAYER IMPLICATIONS

Due to many complex interactions in the system, the mechanisms we use often affect
other, seemingly unrelated, aspects of performance. The approach taken in GeN-
IMA creates a tradeoff: On one hand, the number of messages and the total traffic
in the system are both increased compared to the Base protocol (e.g., due to the
more eager propagation in GeNIMA), potentially leading to increased contention.
On the other hand, the traffic is less bursty (not confined to synchronization points)
over larger time intervals, and there is more overlapping of communication, compu-
tation and message handling due to both the use of asynchronous messages as well
as the spreading of traffic throughout program execution. In this section, we use
the performance monitoring tool implemented in the NI [37] to examine the impact



24 · A. Bilas, D. Jiang, and J.P. Singh

Application SourceLat LANaiLat NetLat DestLat

Water-nsquared 1.1/1.5 1.0/1.3 1.1/1.4 1.1/1.3

Barnes-original -/2.0 -/1.5 -/2.1 -/1.5

Volrend-stealing -/1.7 -/1.3 -/1.5 -/1.4

Raytrace 1.1/1.1 1.2/1.2 1.2/1.2 1.4/1.2

FFT 1.2/1.4 1.0/1.0 1.3/1.3 1.2/1.1

Ocean-rowwise 1.2/- 1.2/- 1.2/- 1.4/-

Water-spatial 1.1/1.4 1.2/1.3 1.3/1.4 1.4/1.3

Radix-local 1.3/1.6 1.3/1.3 1.3/1.5 1.5/1.3

Barnes-spatial 1.2/1.6 1.3/1.3 1.3/1.4 1.4/1.3

Table 8. Ratios of average time to uncontended time for each network or NI stage in the path
from the sender to the receiver, for large messages in the Base protocol and GeNIMA (reported

as Base/GeNIMA).

of this tradeoff by looking at the network interface activity in detail for both the
Base protocol and GeNIMA.

Tables 7 and 8 quantify the effect of contention in the Base and GeNIMA proto-
cols for small (up to 256 bytes) and large messages respectively (over all types of
messages). Each column represents one stage of the path from the sender to the
receiver (described in Section 5.2), which can be individually measured by the mon-
itor firmware and software [37]. In all stages, queuing and contention is included
in the measurements. Note that in VMMC there is no explicit receive operation;
thus, there is no receive stage in the message transfer pipeline that involves the
host processor, even in the Base protocol.

In Tables 7 and 8 there are two numbers per stage for each application, separated
by a slash: one for the Base protocol and one for GeNIMA. Each number is the
ratio of the average time spent by a message in the corresponding stage to the time
that would have been spent in the same stage in uncontended transfers. Thus, each
number is a ratio that shows the average effect of contention incurred in that stage.

Table 8 shows that large messages behave very similarly in the two protocols; con-
tention is very small in the NI in both cases. This may be because large messages
are often page fetches, for which the processors usually stall and which therefore
afford the least overlap between that message and other activities. For small mes-
sages, however, GeNIMA greatly increases contention at the NI or network for
almost all applications, and for all stages except the last one (data delivery to host
memory). Moreover, in the same protocol, applications that were found to perform
poorly tend to have higher contention than others. The most apparent cases are
Water-nsquared and Barnes-original.

Thus, GeNIMA performs much better despite incurring higher contention for
small messages. This means that besides the improvements from removing in-
terrupts, scheduling problems, etc. in the host processors, the system can better
tolerate the higher latencies due to contention. This increased tolerance comes from
the facts that almost all communication layer operations used in the protocol are
asynchronous, so the processor directly incurs only the small post overhead2, and

2Certain messages that exchange flags are synchronous. However, these are usually one word
messages with very small post overhead.



Improving the Performance of Shared Virtual Memory on System Area Networks · 25

Application Speedup (32 procs)
SVM SGI Origin2000

FFT 5.55 26.36

LU-contiguous 16.49 24.73

Ocean-rowwise 5.93 30.98

Water-nsquared 14.07 24.65

Water-spatial 7.75 25.45

Radix-local 1.74 21.68

Volrend-stealing 18.64 23.88

Raytrace 17.48 26.86

Barnes-original 1.05 25.57

Barnes-spatial 23.99 24.22

Table 9. Speedup on 32 processors or both our system and the SGI Origin2000. The data
presented for Barnes-spatial is for 32K bodies (as opposed to 128K bodies in the Linux version).

that the bandwidth in the system is adequate in most cases [1]. Thus, GeNIMA
takes advantage of current technology trends that make it easier to improve effec-
tive system bandwidth than latency. Ordering and data integrity is guaranteed by
ensuring that the necessary conditions are met at the protocol level.

It is also interesting to see how GeNIMA performs on larger scale systems. Table 9
presents data for GeNIMA on 32 processors for the WindowsNT version of our
system. We see that many applications scale reasonably well up to 32 processors
(and in fact performance improves for larger problem sizes). We are currently
pursuing this research further to judge the potential of SVM in constructing larger
scale systems.

Finally, in this work we explore the two extreme points in a spectrum of possible
configurations. We start from an HLRC protocol that uses interrupts for protocol
processing [42] and we eliminate the use of all interrupts in the protocol. It is also
possible to use hybrid schemes where interrupts are used for protocol processing in
some cases and not in others. For instance, diffs could sometimes be propagated
with the use of interrupts and some times with the direct diffs mechanism. Similar
possibilities exist with fetching pages and acquiring locks). Such schemes could
try to minimize both the cost of interrupts as well as the number of messages
exchanged. However, it is no clear what is the overhead of choosing which method
to use in each case, and we do not consider such schemes in this work.

8. RELATED WORK

The impact of individual communication architecture parameters on performance
has been studied for different architectures. In [38], the authors examine the impact
of communication parameters on end performance of a network of workstations with
the applications being written in Split-C on top of Generic Active Messages. They
find that application performance demonstrates a linear dependence on host over-
head and on the gap between transmissions of fine grain messages. Applications
were found to be quite tolerant to latency and bulk transfer bandwidth. [22] finds
that the occupancy of the communication controller is critical to good performance
in DSM machines that provide communication and coherence at cache line granu-
larity. Overhead is not so significant in that study (unlike in [38]). For SVM, we



26 · A. Bilas, D. Jiang, and J.P. Singh

find host overhead and NI occupancy to not be very important, since their cost is
usually amortized over page granularity. However, we find interrupt cost and I/O
bus bandwidth to be very important.

The dependency of software shared memory on communication layer parameters
was studied in [9], which represents the first part of this paper. The limitations
of and synergies between the different layers of shared memory clusters, both for
SVM as well as fine–grained software DSM were studied in [7]. The authors in [50]
examine the impact of network total order, broadcast, and remote-write capability
on a family of shared memory protocols. They find that latency is more important
than remote writes, broadcast, or total ordering. The difference with our results
comes from the significant differences in the protocols used (directory vs. no di-
rectory, etc.). Also, in this work we break the communication path between the
server and the receiver into a set of stages, and treat each stage separately. Thus,
latency in our work refers only to wire latency, whereas in [50] latency is an end-
to-end metric including host overhead and packet processing cost. Various types
of hardware support to accelerate protocols have been examined for SVM in [25]
and [35], and for fine–grained software DSM in the Typhoon–zero prototype [41].
In [30], Karlsson et al. find that the latency and bandwidth of an ATM switch
is acceptable in a clustered SVM architecture. In [33] a Lazy Release Consistency
protocol for hardware cache-coherence is presented. In a different context, they find
that applications are more sensitive to the bandwidth than the latency component
of communication.

Previous efforts to avoid interrupts other than for write propagation have mainly
focused on using polling on the main processor to handle asynchronously arriving
messages and requests. Using polling instead of interrupts for page-based SVM
could reduce the cost of handling asynchronous requests [34; 54]. However, it
introduces a number of new issues: (i) It requires fairly intrusive instrumentation
mechanisms that are not needed with our scheme. If asynchronous requests are to
be handled in a timely fashion, instrumentation of the application is likely to be
necessary (e.g. polling at back edges); (ii) the optimal frequency of polling may
vary with applications and may lead to significant polling overhead; (iii) polling is
not a very portable solution, since it depends on the ISA of the processor under
consideration and since it affects performance portability as well. Our scheme
increases the portability of protocols, since it eliminates interrupts and relies only
on standard NI operations. Moreover, by eliminating interrupts and polling, it
reduces the need to tweak performance parameters and it makes performance more
portable across platforms with different operating systems.

Related work in network interface support for SVM has discussed how NIs can
be used for several purposes: (i) Fast communication to improve the performance
of traditional send and receive communication. This type of support has been ex-
ploited in many SVM projects [17; 25; 34; 53; 34; 43; 42; 44] and is also used in
our base system, HLRC-SMP [42]. (ii) Protocol processing in the network interface.
This choice lies at the other end of the spectrum. The network interface can be used
not only to avoid interrupting the compute processor but also to perform full-blown
protocol processing, including diff creation and application and the management
of timestamps and write notices. This approach was taken in [53]. [18] reserves a
compute processor in an SMP node for protocol processing. The amount of proto-



Improving the Performance of Shared Virtual Memory on System Area Networks · 27

col processing involved in SVM systems with SMP nodes was examined also in an
earlier simulation study [30] and other research, and is found to be small compared
to other system overheads. (iii) Transparent remote data and synchronization han-
dling that can be utilized by protocols to alleviate key bottlenecks. In this case
the remote compute processor is not involved in handling message requests, but
remains responsible for all protocol processing and SVM-specific operations. This
is the approach we have taken. Previous work in this area relies on more special-
ized network interface and/or network support. The Automatic Update Release
Consistency (AURC) [25] protocol takes advantage of automatic write propagation
to a remote node’s memory based on write-through caching and snooping writes
from the memory bus in the SHRIMP network interface [11] to avoid diff compu-
tation and application in a home-based SVM protocol. The Cashmere system [34]
uses the fine-grained remote write capability of the DEC Memory Channel network
interface, where code instrumentation is used to propagate relevant writes (of ap-
plication or protocol data) to a remote node, also in a home-based protocol. A
different type of coarse- or variable-grained remote fetch support has been exam-
ined through simulation [35], but not in real implementation. More sophisticated
support to accelerate specific protocol operations has also been examined in sim-
ulation, such as hardware diff engines in [4]. Support for AURC with write-back
caches has also been designed and evaluated through simulation in [6]. A discussion
on how the remote write access capabilities of VM-based networks can be used in
SVM systems is provided in [20].

9. CONCLUSIONS

This paper has examined how the performance of software shared memory clusters
of SMPs interconnected with system area networks can be improved by protocol
and communication layer co-design.

We have examined the effects of communication parameters to a family of SVM
protocols. Through detailed architectural simulations of a cluster of SMPs and a
variety of applications, we find that most applications are very sensitive to interrupt
cost, and a few would benefit from improvements in bandwidth relative to processor
speed as well. Unbalanced systems with relatively high interrupt costs and low
I/O bandwidth can result in substantial losses in application performance. In these
cases we observe slowdowns of more than 90% (a factor of 10 longer execution time).
However, most applications are not sensitive to host overhead and network interface
occupancy. Overall, our results show that SVM systems can benefit significantly
from the availability of faster network interfaces. We are currently investigating
this direction by emulating a cluster on top of a hardware cache-coherent system
that provides faster communication than today’s state-of-the-art clusters.

We have used network interface support to decouple asynchronous message han-
dling from protocol processing and to thereby eliminate the need for expensive
interrupts or polling in SVM protocols. In particular, we have implemented NI sup-
port for general-purpose, explicit data movement and synchronization operations
that are not specific to SVM, and altered the SVM protocol to take advantage of
these operations. In the final GeNIMA protocol, asynchronous message handling
is done entirely in the NI, and protocol processing is done on the host processors
but only at synchronous points with respect to application and protocol execution.



28 · A. Bilas, D. Jiang, and J.P. Singh

The protocol propagates information more eagerly in some cases, but the need for
asynchronous protocol processing and the related interrupts (or polling) is elimi-
nated without requiring the NI to be tightly integrated in the node or to observe
memory operations in it.

We have prototyped these extensions in the programmable network interface of
the Myrinet network—though they are simple enough to not require programmability—
and evaluated their impact on application performance on a network of Intel Pen-
tium Pro SMPs. This system exhibits the characteristics of the achievable configu-
ration used in the simulation results with higher interrupt cost. We found that: (i)
The proposed communication and protocol extensions improve performance sub-
stantially for our suite of ten applications. Application performance improves by
38% on average for reasonably well-performing applications (and up to 120% for
applications that do not perform very well under SVM). Similarly, the specific
components of execution time targeted by the individual mechanisms improve sub-
stantially: data wait time improves up to 45% and lock time up to 60%. Several
applications that originally performed in mediocre ways now perform much better,
even well, on a 16-processor system. (ii) Different applications benefited greatly
from different NI features, indicating that all three should be supported. These
features also provide more flexibility in the choice of efficient protocol operations
and management. (iii) While speedups are improved greatly by these techniques
and are much closer to those on hardware-coherent systems for most applications,
they are still not as close as we might like even at this 16-processor scale. On our
applications and modern systems, we find synchronization cost to be the most im-
portant protocol overhead for improving overall application performance further.
(iv) Analysis with a firmware performance monitor in the NI shows that GeNIMA
indeed exhibits increased traffic and contention in the communication layer due to
its more eager propagation of information; however, most messages exchanged are
asynchronous and the system is able to tolerate the increased contention and to
improve overall system performance with current communication bandwidths and
latencies.

While our simple NI extensions suffice to eliminate interrupts and polling, alter-
native and more sophisticated extensions are possible, even within our target scope
of explicit operations that don’t require the NI to observe memory operations.
These may improve performance further given appropriate system characteristics,
and we plan to explore them in the future.

10. ACKNOWLEDGMENTS

We thank Hongzhang Shan for making available to us the improved version of
Barnes. We also thank the members of the PRISM group at Princeton, in partic-
ular Liviu Iftode, Kai Li, Rudrajit Samanta, Limin Wang, and Yuanyuan Zhou for
useful discussions. We gratefully acknowledge the support of NSF and DARPA.

REFERENCES

[1] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and J. Philbin. User-space communica-
tion: A quantitative study. In Proceedings of Supercomputing 98, Orlando, FL, November
1998.

[2] D. H. Bailey. FFTs in External or Hierarchical Memories. Journal of Supercomputing, 4:23–



Improving the Performance of Shared Virtual Memory on System Area Networks · 29

25, 1990.

[3] J. E. Barnes and P. Hut. A hierarchical O(N log N) force calculation algorithm. Nature,
324(4):446–449, 1986.

[4] R. Bianchini, L.I Kontothanassis, R. Pinto, M. De Maria, M. Abud, and C.L. Amorim. Hiding
communication latency and coherence overhead in software dsms. In The 7th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, October 1996.

[5] A. Bilas, L. Iftode, R. Samanta, and J. P. Singh. Supporting a coherent shared address
space across SMP nodes: An application-driven investigation, volume 105, pages 19–59.
Springer-Verlag New York, Inc., November 1998.

[6] A. Bilas, L. Iftode, and J. P. Singh. Evaluation of hardware support for shared virtual memory
clusters. In The 12th ACM International Conference on Supercomputing (ICS’98), July
1998.

[7] A. Bilas, D. Jiang, Y. Zhou, and J.P. Singh. Limits to the performance of software shared
memory: A layered approach. In The 5th IEEE Symposium on High-Performance Com-
puter Architecture, February 1999. Also Princeton University Tech. Report No. TR-576-
98.

[8] A. Bilas, C. Liao, and J. P. Singh. Accelerating shared virtual memory using commodity ni
support to avoid asynchronous message handling. In The 26th International Symposium
on Computer Architecture, May 1999.

[9] A. Bilas and J. P. Singh. The effects of communication parameters on end performance of
shared virtual memory clusters. In Proceedings of Supercomputing 97, San Jose, CA,
November 1997.

[10] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.
A comparison of sorting algorithms for the connection machine CM-2. In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 3–16,
July 1991.

[11] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. A virtual mem-
ory mapped network interface for the shrimp multicomputer. In Proceedings of the 21st
International Symposium on Computer Architecture (ISCA), pages 142–153, April 1994.

[12] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro, 15(1):29–36,
February 1995.

[13] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Com-
putation, 31(138):333–390, April 1977.

[14] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: efficient support for
reliable, connection-oriented communication. In Proceedings of Hot Interconnects, August
1997.

[15] D. Dunning and G. Regnier. The Virtual Interface Architecture. In Proceedings of Hot In-
terconnects V Symposium, Stanford, August 1997.

[16] T. Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages: A mechanism
for integrated communication and computation. In Proceedings of the 19th International
Symposium on Computer Architecture (ISCA), pages 256–266, May 1992.

[17] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: analyzing the perfor-
mance of clustered distributed virtual shared memory. In The 7th International Con-

ference on Architectural Support for Programming Languages and Operating Systems,
pages 210–220, Oct 1996.

[18] B. Falsafi and D. A. Wood. Scheduling communication on an SMP node parallel machine. In
The 3nd IEEE Symposium on High-Performance Computer Architecture, pages 128–138,
1997.

[19] R. Gillett, M. Collins, and D. Pimm. Overview of network memory channel for PCI. In
Proceedings of the IEEE Spring COMPCON ’96, February 1996.

[20] N. Hardavellas, G. C. Hunt, S. Ioannidis, R. Stets, S. Dwarkadas, L. Kontothanassis, and
M. L. Scott. Efficient use of memory-mapped network interfaces for shared memory com-



30 · A. Bilas, D. Jiang, and J.P. Singh

puting. In Newsletter of the IEEE CS Technical Committee on Computer Architecture,

pages 28–33, March 1997.

[21] L. Hernquist. Hierarchical N-body methods. Computer Physics Communications, 48:107–115,
1988.

[22] C. Holt, M. Heinrich, J. P. Singh, , and J. L. Hennessy. The effects of latency and occupancy
on the performance of dsm multiprocessors. Technical Report CSL-TR-95-xxx, Stanford
University, 1995.

[23] C. Holt, J. P. Singh, and J. Hennessy. Architectural and application bottlenecks in scalable
DSM multiprocessors. In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, May 1996.

[24] R. W. Horst and D. Garcia. ServerNet SAN I/O Architecture. In Proceedings of Hot Inter-
connects V Symposium, Stanford, August 1997.

[25] L. Iftode, C. Dubnicki, E. W. Felten, and Kai Li. Improving release-consistent shared virtual
memory using automatic update. In The 2nd IEEE Symposium on High-Performance
Computer Architecture, February 1996.

[26] L. Iftode, J. P. Singh, and K. Li. Understanding application performance on shared vir-
tual memory. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture, May 1996.

[27] L. Iftode, J. P. Singh, and Kai Li. Understanding application performance on shared virtual
memory. In Proceedings of the 23rd International Symposium on Computer Architecture
(ISCA), May 1996.

[28] D. Jiang, H. Shan, and J. P. Singh. Application restructuring and performance portability
across shared virtual memory and hardware-coherent multiprocessors. In Proceedings of
the 6th ACM Symposium on Principles and Practice of Parallel Programming, June
1997.

[29] D. Jiang and J. P. Singh. Does application performance scale on cache-coherent multipro-
cessors: A snapshot. In Proceedings of the 26th International Symposium on Computer
Architecture (ISCA), May 1999.

[30] M. Karlsson and P. Stenstrom. Performance evaluation of cluster-based multiprocessor built
from atm switches and bus-based multiprocessor servers. In The 2nd IEEE Symposium
on High-Performance Computer Architecture, February 1996.

[31] M. G. H. Katevenis, E. P. Markatos, G. Kalokerinos, and A. Dollas. Telegraphos: A sub-
strate for high-performance computing on workstation clusters. Journal of Parallel and
Distributed Computing, 43(2):94–108, 15 June 1997.

[32] P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating systems. In Proceedings of the Winter
USENIX Conference, pages 115–132, January 1994.

[33] L. I. Kontothanasis, M. L. Scott, and R. Bianchini. Lazy release consistency for hardware-
coherent multiprocessors. In Supercomputing ’95, November 1995.

[34] L. I. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak, S. Parthasarathy,
W. Meira, Jr., S. Dwarkadas, and M. L. Scott. VM-based shared memory on low-latency,
remote-memory-access networks. In Proc. of the 24th Annual Int’l Symp. on Computer
Architecture (ISCA’97), pages 157–169, June 1997.

[35] L. I. Kontothanassis and M. L. Scott. Using memory-mapped network interfaces to improve
t he performance of distributed shared memory. In The 2nd IEEE Symposium on High-
Performance Computer Architecture, February 1996.

[36] J. P. Laudon and D. Lenoski. The sgi origin2000: A scalable cc-numa server. In Proceedings
of the 24rd Annual International Symposium on Computer Architecture, June 1997.

[37] C. Liao, M. Martonosi, and D. W. Clark. Performance monitoring in a myrinet-connected
shrimp cluster. Submitted for publication, 1998.

[38] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effect of communication
latency, overhead, and bandwidth on a cluster architecture. Technical Report CSD-96-
925, Berkeley, November 1996.



Improving the Performance of Shared Virtual Memory on System Area Networks · 31

[39] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory MIMD architectures. In

Proceedings of the Boston Workshop on Volume Visualization, October 1992.

[40] S. Pakin, M. Buchanan, M. Lauria, and A. Chien. The Fast Messages (FM) 2.0 streaming
interface. Usenix’97, 1996.

[41] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decoupled hardware support for distributed
shared memory. In Proceedings of the 23rd Annual International Symposium on Com-
puter Architecure, pages 34–43, New York, May22–24 1006. ACM Press.

[42] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based svm protocols for smp clusters:
Design, simulations, implementation and performance. In Proceedings of the 4th Inter-
national Symposium on High Performance Computer Architecture, Las Vegas, February
1998.

[43] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-Grain Software Distributed Shared
Memory on SMP Clusters. In The 4th IEEE Symposium on High-Performance Computer
Architecture, pages 125–136, January 1998.

[44] I. Schoinas, B. Falsafi, M. D. Hill, J. R. Larus, C. E. Lucas, S. S. Mukherjee, S. K. Reinhardt,
E. Schnarr, and D. A. Wood. Implementing fine-grain distributed shared memory on
commodity smp workstations. Technical Report 1307, University of Wisconsin-Madison,
March 1996.

[45] A. Sharma, A. T. Nguyen, J. Torellas, M. Michael, and J. Carbajal. Augmint: a multipro-
cessor simulation environment for Intel x86 architectures. Technical report, University of
Illinois at Urbana-Champaign, March 1996.

[46] J. P. Singh, A. Gupta, and J. L. Hennessy. Implications of hierarchical N-body techniques
for multiprocessor architecture. ACM Transactions on Computer Systems, May 1995. To
appear. Early version available as Stanford Univeristy Tech. Report no. CSL-TR-92-506,
January 1992.

[47] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and
architectural implications. IEEE Computer, 27(6), june 1994.

[48] J. P. Singh and J. L. Hennessy. Finding and exploiting parallelism in an ocean simulation pro-
gram: Experiences, results, implications. Journal of Parallel and Distributed Computing,
15(1):27–48, May 1992.

[49] K. Skadron and D. W. Clark. Design issues and tradeoffs for write buffers. In The 3nd IEEE
Symposium on High-Performance Computer Architecture, Feb 1997.

[50] R. Stets, S. Dwarkadas, L. Kontothanassis, , U. Rencuzogullari, and M. L. Scott. The effect
of network toral order, broadcast, and remote-write capability on network-based shared
memory computing. In The 6th IEEE Symposium on High-Performance Computer Ar-
chitecture, January 2000.

[51] D. Stodolsky, J. B. Chen, and B. Bershad. Fast interrupt priority management in operating
system kernels. In USENIX Association, editor, Proceedings of the USENIX Symposium
on Microkernels and Other Kernel Architectures: September 20–21, 1993, San Diego,
California, USA, pages 105–110, Berkeley, CA, USA, September 1993. USENIX.

[52] S.C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological considerations
and characterization of the SPLASH-2 parallel application suite. In Proceedings of the
23rd International Symposium on Computer Architecture (ISCA), May 1995.

[53] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-based lazy release con-
sistency protocols for shared virtual memory systems. In Proceedings of the Operating
Systems Design and Implementation Symposium, October 1996.

[54] Y. Zhou, L. Iftode, J. P. Singh, K. Li, B.R. Toonen, I. Schoinas, M.D. Hill, and D. Wood.
Relaxed consistency and coherence granularity in DSM systems: A performance evalua-
tion. In Proceedings of the 6th ACM Symposium on Principles and Practice of Parallel
Programming, June 1997.


