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Abstract

Due to occlusions, the estimation of the full pose of a
human hand interacting with an object is much more chal-
lenging than pose recovery of a hand observed in isolation.
In this work we formulate an optimization problem whose
solution is the 26-DOF hand pose together with the pose
and model parameters of the manipulated object. Optimiza-
tion seeks for the joint hand-object model that (a) best ex-
plains the incompleteness of observations resulting from oc-
clusions due to hand-object interaction and (b) is physically
plausible in the sense that the hand does not share the same
physical space with the object. The proposed method is the
first that solves efficiently the continuous, full-DOF, joint
hand-object tracking problem based solely on markerless
multicamera input. Additionally, it is the first to demon-
strate how hand-object interaction can be exploited as a
context that facilitates hand pose estimation, instead of be-
ing considered as a complicating factor. Extensive quanti-
tative and qualitative experiments with simulated and real
world image sequences as well as a comparative evalua-
tion with a state-of-the-art method for pose estimation of
isolated hands, support the above findings.

1. Introduction

The estimation of the full pose of hands from markerless
visual observations is a problem whose solution is of funda-
mental importance in numerous applications including but
not limited to the visual perception of grasping and manip-
ulation, sign language understanding, human computer in-
teraction, etc. It is also known that a number of cascading
issues such as the dimensionality of the problem, the in-
complete and/or ambiguous observations due to scene clut-
ter and occlusions as well as the requirement for accurate
estimates in real time, hinder its effective solution.

Full DOF hand pose recovery during hand-object inter-
action is a much more interesting problem but also more

Figure 1. Top row, and bottom left: Three views of a hand grasp-
ing an object. Skin regions appear in red and edges in black. The
hand is partially occluded by the object in all views. The incom-
plete skin and edge maps of the hand facilitate the generation of a
hypothesis for a hand manipulating a compact sphere. At the same
time, given this hypothesis, the 3D pose of the hand can be esti-
mated more accurately. Bottom right: the output of the proposed
approach superimposed in one of the frames.

difficult due to the induced hand-object occlusions. A com-
mon approach is to treat the object as a “distractor” that
nevertheless leaves some partial evidence which is enough
for hand pose estimation. On the contrary, our goal is to see
the manipulated object as a source of useful constraints.

In this work, it is assumed that hand-object interaction is
observed by a multicamera system. In each of the acquired
views, edge and skin color maps form 2D cues of the pres-
ence of a hand. Depending on the viewpoint, the presence
of an object occludes the performing hand (Fig. 1). This
incomplete observation of the hand provides important evi-
dence on the type and pose of the manipulated object. Con-
versely, attributing missing hand observations (skin color,
edges) to the presence of a manipulated object permits a
more accurate estimation of the pose of the partially ob-
served hand. Another source of useful constraints stems
from the properties of the natural world, i.e., the fact that
the hand and the object cannot share the same physical
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space. Thus, the 3D shape and pose of the object pro-
vides important information on the articulation of the hand
and vice versa. The tight coupling between “what the hand
tells about the object” and “what the object tells about the
hand”, suggests that we should identify simultaneously the
hand configuration and the object 3D model and pose that
best explain the observed scene holistically. In this spirit,
we formulate an optimization problem that takes into ac-
count the constraints mentioned above. Thus, the solution
to this problem is a joint hand-object model that besides be-
ing compatible to the available visual observations, is also
physically plausible.

1.1. Related work

The recovery of the full 3D configuration of articulated
objects such as humans and hands presents a lot of chal-
lenges. Several approaches have been proposed that address
various aspects of the problem such as its dimensionality,
the incomplete and/or ambiguous observations due to scene
clutter, its computational requirements, etc. Moeslund et
al. [15] provide a review of research to the general problem
of visual human motion capture and analysis. A review that
is specific to the problem of human hand motion estimation
is provided in [7]. Related methods are categorized as par-
tial or full pose estimation methods, depending on the level
of detail they provide regarding the observed hand.

Another categorization identifies appearance-based and
model-based methods. Appearance-based methods esti-
mate hand configurations by establishing a direct mapping
of image features to the hand configuration space [3, 22,

, 20]. Model-based approaches employ a 2D or a 3D
hand model [19, 25, 26, 6, 16]. In the case of 3D hand
models, the hand pose is estimated by matching the pro-
jection of the model to the observed image features. The
task is then formulated as a search problem in a high di-
mensional configuration space, which typically induces a
high computational cost. In our work presented in [17], we
proposed an efficient (15 fps) method for tracking the artic-
ulation of a hand, which depends on visual input provided
by the Kinect sensor [14]. A common characteristic of all
the methods mentioned above is that they consider human
hands in isolation. Thus, in the context of hand-object in-
teraction, their accuracy in hand pose estimation is compro-
mised due to the induced hand-object occlusions that affect
drastically the completeness of hand observations.

Given the significant role of context in human visual
recognition [18], several researchers have attempted to
exploit contextual constraints in solving computer vision
problems. Closely related to our problem, a few re-
cent works [12, 8, 29, 21] consider context for classifying
human-object interaction activities. The related methods
can be classified based on whether they refer to the human
body or hand and also on whether they provide a detailed

3D model of the actor (human body or hand) and the object.
Thus, [8, 29] study the full human body while in interaction
with objects. From these, only [29] provides detailed infor-
mation on human body pose. For the same problem, Gupta
et al. [9] and Sigal et al. [23] propose solutions to handling
self-occlusions but not occlusions with other objects. Kjell-
strom et al. [12] consider hand-object interactions but only
for classifying them, without providing a detailed hand and
object model. The work of Hamer et al. [10] also addresses
the problem of hand-object interaction but depends on the
use of a structured light range sensor and does not model the
manipulated object. Finally, Romero et al. [21] propose a
method for estimating the pose of a hand interacting with an
object which is appearance-based. A method that exploits
context to provide a detailed 3D model for both hands and
objects is missing from the current literature. The proposed
method is trying to fill this gap.

Towards this direction, in this work we extend the ap-
proach in [16] by considering jointly the hand and the ma-
nipulated object. In [16], a generative, multiview method
for 3D hand pose recovery is presented. In each of the ac-
quired views, reference features are computed based on skin
color and edges. A 26-DOF 3D hand model is adopted.
For a given hand configuration, skin and edge feature maps
are rendered and compared directly to the respective ob-
servations. The discrepancy of a given 3D hand pose to
the observations is quantified by an objective function that
is minimized through Particle Swarm Optimization (PSO).
The whole approach is implemented efficiently on a GPU.
In the proposed approach, we do not only seek for the op-
timal hand model that explains the available hand observa-
tions but rather the joint hand-object model that best ex-
plains both the available hand/object observations and the
occlusions. Additionally, the objective function penalizes
hand-object penetration, seeking for a physically plausible
solution. It is demonstrated that the aforementioned con-
straints are very useful towards an accurate solution to this
more complex and interesting problem.

The proposed approach is the first model-based method
that solves efficiently, the continuous, full-DOF, joint hand-
object tracking problem based on markerless camera input.
Additionally, it is the first to demonstrate that hand-object
interaction is not necessarily a complicating factor towards
estimating the configuration of a hand but a context that can
be exploited effectively towards a more accurate solution.
As an additional result, the method provides a parametric
3D model of the manipulated object together with its 3D
position and orientation. This is achieved by exploiting the
hand-object occlusions and despite the fact that only a para-
metric representation of the object’s 3D shape is known that
is lacking an explicit appearance model. The approach ex-
plores an infinite configuration space. Thus, its accuracy is
not limited by the size and content of a database of hand
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(a) (b)
Figure 2. Graphical illustration of the employed 26-DOF 3D
hand model, consisting of 37 geometric primitives (a) and the 25
spheres constituting the hand’s collision model (b).

configurations, as e.g. in [20]. The above are supported
by qualitative and quantitative experiments with both simu-
lated and real world image sequences as well as by a com-
parative evaluation with the method in [16].

2. Hand-object pose estimation (HOPE)

The problem of joint hand-object pose estimation is for-
mulated as a multidimensional optimization problem. In the
following, we present in detail the basic building blocks of
the proposed method for joint Hand-Object Pose Estima-
tion (HOPE), with emphasis on the employed observation
model, joint hand-object 3D model, hypothesis evaluation
mechanism and optimization method.

2.1. Computed visual cues

The proposed method operates on sequences of syn-
chronized views acquired by intrinsically and extrinsically
calibrated cameras. A set of images acquired from these
cameras at the same moment in time is called a multi-
Sframe. If M; = {I, I, ...} is a multiframe of a sequence
S = {My,M>,...}, I; denotes the image from the j-th
camera/view at the ¢-th time step. For each image I of
a multiframe M, an edge map o.([) is computed through
Canny edge detection [4] and a skin color map o4([) is com-
puted using the method presented in [2]. As a convention, 1
indicates presence and 0 indicates absence of skin or edges
in the respective maps. For each edge map o.(I), a distance
transform o4(I) is computed. Maps {0s(I),04(I)} consti-
tute the observation cues for image 1.

2.2. Joint hand-object model

The proposed approach employs a model m = (h, o)
that represents jointly a hand h and the manipulated object
0. The hand model / consists of a palm and five fingers.
The palm is modeled as an elliptic cylinder and two ellip-
soids for caps. Each finger consists of three cones and four
spheres, except for the thumb that consists of two cones,
an ellipsoid and three spheres (Fig. 2, (a)). 25 additional
spheres constitute the hand’s collision model and are used

for checking for hand-hand and hand-object interpenetra-
tion (Fig. 2, (b) and Sec. 2.3). The resulting 62 3D ge-
ometric primitives of the hand model are different param-
eterizations of an ellipsoid and a truncated cylinder. The
assembly of appropriate homogeneous transformations of
these two geometric primitives yields a hand model similar
to that of [25].

The kinematics of each finger is modeled using four pa-
rameters encoding angles, two for the base of the finger and
two for the remaining joints. Ranges of parameter values
are determined based on anatomical studies [1]. The posi-
tion of a fixed point on the palm defines the global position
of the hand. The global orientation is parameterized using
the redundant representation of quaternions. This parame-
terization results in a 26-DOF model encoded in a vector of
27 parameters.

For representing an object, in principle, any parametric
model o can be used. The representation of common hand-
held objects such as cuboids, ellipsoids and cylinders re-
quires 3, 3 and 2 intrinsic shape parameters, respectively.
More complex parametric shape models like superquadrics
require as many as 6 parameters. Regardless of the intrin-
sic shape parameterization, 7 additional parameters are re-
quired, 3 for 3D position and 4 for a quaternion-based rep-
resentation of 3D orientation. In this work, we provide ex-
perimental results with ellipsoids, cuboids and cylinders.
Nevertheless, there is no inherent limitation that prevents
the method from being able to handle more complex object
models, provided that this does not increase the dimension-
ality of the problem prohibitively. Interestingly, a complex,
known 3D object represented as a mesh has less DOFs com-
pared to our parametric object models (6 DOFs, 3D pose).

2.3. Evaluation of hand-object model hypotheses

Given a joint parametric hand-object model m = (h, o),
the goal is to estimate the parameters that give rise to the
hand-object configuration that (a) is most compatible to
the image features present in multiframe M (Sec. 2.1) and
(b) is physically plausible in the sense that two different
rigid bodies cannot share the same physical space (inter-
penetration constraints). To achieve this, an objective func-
tion O(m, M) is defined as:

O(m, M) =" D(I,m)+ AW (m). (1)
IeM

In Eq.(1), the first term quantifies the discrepancies of a
given hand-object model m to the actual camera-based ob-
servations, while the second term quantifies the penetration
depth between the hand and the object, but also among hand
parts (fingers, palm, etc). )\ is a weighting factor experi-
mentally set to Ay = 0.1.

To compute D(I,m), we first compute comparable im-
age features from each hypothesized hand-object model.
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More specifically, an edge map r.(m) and a skin color map
rs(m) can be generated my means of rendering. The refer-
ence implementation of the rendering process is similar to
that of [25]. The implicit assumption made at this point is
that an object cannot contain skin-colored pixels. Thus, the
hand component h of m contributes to the skin color map
rs(m) by setting visible hand pixels to 1, while the object
component o of m contributes to the skin color map r4(m)
by setting map pixels to 0. Experimental results have veri-
fied that the presence of a moderate number of skin-colored
pixels on the object’s surface does not affect the accuracy of
the method. D(I,m) is then defined as:

1— 2> 0s(I) Ars(m)
O os(I) Ars(m)) + (O 0s(I) V rs(m))
> 0a(I) - re(m)

+A Sre(m)+e )

where o05(I), 04(I) are defined in Sec. 2.1 and e is a small
quantity to prevent division by zero. The 1st row of Eq.(2)
models the discrepancies between the skin-colored pixels
of the model and the observations. Sums are computed over
entire feature maps. In contrast to [16], this part of the ob-
jective function is normalized to the interval [0..1]. The 2nd
row models the discrepancies between the rendered edge
maps and the observed edge maps. This is achieved by
summing the values of the distance-transformed observa-
tion edge map that concur with the edges of the rendered
model. A is a constant normalization factor that was set to
0.02 in all experiments.

The role of function W(m) in Eq.(1) is to penalize
(a) hand configurations where hand parts intersect each
other (self-penetration) and (b) hand-object configurations
where the hand h intersects the object o (interpenetration).
Let P(p;,p;) be the minimum magnitude 3D translation
that is required so that the volume of intersection of ge-
ometric primitives p; and p; becomes equal to 0. This
is effectively computed using the Open Dynamics Engine
(ODE) [24]. Let also S;, be the primitives of the hand’s
collision model, as shown in Fig.2(b). The self-penetration
Ppp, of a given hand configuration is defined as P, =
max;es, jes, iz {4, j)}. The interpenetration Py, is
similarly defined as P, = max;eg, {P(i,0)}. Then,
W (m) is defined as W (m) = max{ Py, Pho}. Thus, both
self- and inter- penetrations are treated in a uniform manner.
Additionally, self-penetration is treated more systematically
compared to [16] where only certain abduction-adduction
angles between adjacent fingers were penalized.

D(I,m)

2.4. Optimization

The minimization of the objective function of Eq.(1) is
achieved through PSO. Introduced by Kennedy et al. [11],
PSO achieves optimization through a policy which emulates
the “social interaction” of a population of atoms (particles)
that evolves in a number of generations. A population is

essentially a set of particles that lie in the parameter space
of the objective function to be optimized.

Following the notation introduced in [27], every particle
holds its current position (current candidate solution, set of
parameters) in a vector x; and its current velocity in a vec-
tor v;. The ¢th particle stores in vector p; the position which
corresponds to the best evaluation of its objective function
up to the current generation ¢. All particles of the swarm be-
come aware of the current global optimum p, the best posi-
tion encountered across all particles of the swarm. In every
generation ¢, the velocity of each particle is updated accord-
ingto v, = K(vi—1 +ciri(ps — ve—1) + car2(pg — T4-1))
and its position according to x; = x4—1 + v¢. In the
above equations, K is a constant constriction factor [5], ¢;
is called the cognitive component, ¢, is termed the social
component and 71, ry are random samples of a uniform dis-
tribution in [0..1]. Finally, ¢; 4+ ¢o > 4 must hold [5]. In all
performed experiments the values ¢; = 2.8, co = 1.3 and

K =2/|2 =1 — /92 — 49| with ) = ¢; + ¢ were used.

The search space is a multidimensional cuboid. The par-
ticle positions are initialized randomly and the particle ve-
locities are set to zero. If, during the position update, a
velocity component forces the particle to move outside the
search space, this component is zeroed and the particle does
not perform any move at the corresponding dimension. The
final outcome of the PSO is p,, the particle with the best
score across all generations.

The search space of HOPE is the joint hand-object model
parameter space m. Given a hand model represented by 27
parameters and an object model represented by d parame-
ters, the search space has (27 + d) dimensions. The objec-
tive function to be minimized is O(m, M) and the popula-
tion is a set of hypothesized 3D hand-object configurations.
The outcome of PSO p, = m, = argmin,, (O(m,M))
represents the best guess of the algorithm for the joint hand-
object model parameters m given the multiframe M.

In the first multiframe, tracking is manually initialized by
placing the hand roughly at a predefined position and pose.
We have verified experimentally that model estimation is
successful with discrepancies of up to 10cm in position and
up to 20deg in global hand pose. Finger joints are correctly
estimated if the above constraints are met. To cope with the
tracking of the hand-object configuration in time, temporal
continuity is exploited. The solution for multiframe M;_1 is
used to bootstrap the initial population for the optimization
problem of M;. The first member of the population .y
for M, is the solution for M;_1; The rest of the population
consists of perturbations of this solution. The optimization
for multiframe M, is executed for a fixed amount of genera-
tions/iterations. After all generations have evolved, the best
hypothesis m, is dubbed as the solution for time step .
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3. Experimental Evaluation

The proposed method has been validated extensively
based on both synthetic and real-world sequences of multi-
frames. First, we demonstrate the accuracy and the compu-
tational performance of the proposed (HOPE) method on a
synthetically rendered data set where hands perform differ-
ent grasps on a variety of objects (Sec. 3.1). We also com-
pare the performance of HOPE to that of the method in [16],
hereafter abbreviated as PEHI (Pose Estimation of Hands in
Isolation). A final experiment with synthetic data involves
the application of HOPE to a data set showing hands in iso-
lation. The goal of this experiment is to show that HOPE
can also estimate the pose of hands in isolation effectively,
as a special case.

Besides the synthetic data, we also provide qualitative
evidence on how the HOPE and PEHI perform on real se-
quences of multiframes (Sec. 3.2). Although ground truth
information is not available, these indicative results confirm
the superiority of HOPE over PEHI which is in accordance
with the experimental results over synthetic data.

3.1. Experiments on synthetic data

Experiments with synthetically produced sequences of
multiframes were performed to enable the assessment of
the proposed method based on ground truth data. To that
end, we simulated different grasps of three different objects
(an ellipsoid, a cylinder, and a box) performed by the em-
ployed hand model (Sec. 2.2). The interaction of the hand
with each of these three objects was observed by 8 virtual
cameras surrounding the scene. This resulted in three se-
quences consisting of 116 multiframes of 8 frames, each.
The required cue maps (edges, skin color) were synthesized
through rendering (Sec. 2.2).

For the quantitative evaluation of the method, an er-
ror metric quantifying the discrepancy between a true hand
pose and an estimated hand pose is required. This was com-
puted as follows. The five fingertips as well as the cen-
ter of the palm were selected as reference points. For each
such reference point, the Euclidean distance between its es-
timated position and its ground truth position is first calcu-
lated. These distances are averaged across all multiframes
of each sequence, and all sequences. This results in a single
error value D for the whole dataset.

Figures 3(a) and (c) illustrate the estimated error D of
the HOPE method as a function of the PSO parameters. In
Fig. 3(a), D is plotted as a function of the number of PSO
generations and particles per generation, for multiframes
consisting of 2 views. The cameras providing these two
views are placed opposite to each other. D takes values be-
tween 22mm and 55mm. It can be verified that for more
than 30 generations and more than 32 particles/generation
the error in 3D hand pose recovery for HOPE does not vary
considerably and it is in the order of 25mm.
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Figure 3. Mean error D for hand pose estimation (in mm) for
HOPE (left) and PEHI (right) for different PSO parameters and
number of views. (a),(b): Varying PSO particles and generations
for 2 views. (c),(d): Same as (a),(b) for 8 views. (e): Increasing
number of views, 40 generations, 64 particles/generation.

Figure 3(b) is analogous to that of Fig. 3(a) for the PEHI
algorithm. In this case, the mean error D does not decrease
monotonically as a function of particles. This is attributed to
the incomplete/occluded hand observations that undermine
the convergence of PEHI. D now ranges between 51mm
and 101mm. It can be verified that for more than 30 gen-
erations and more than 32 particles/generation the error in
3D hand pose recovery for PEHI is in the order of 55mm.
Thus, the error of PEHI is on average more than twice the
error of HOPE.

Figures 3(c) and (d) are analogous to Figs. 3(a) and (b),
except the fact that each multiframe now consists of 8 rather
than 2 views. D takes values between 3mm and 29mm for
HOPE and between 12mm and 47mm for PEHI. For more
that 30 PSO generations and more than 32 particles per gen-
eration the error of PEHI is still more than twice the error
of HOPE. Interestingly, whatever HOPE achieves with 16
particles and 20 generations is equal or better to what PEHI
achieves with any of the tested particles/generations combi-
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Table 1. Estimated/actual parameters for the object models in the
experiments with synthetic data.

] Object H Estimated/Actual parameters (in mm,) ‘
Cylinder || Radius: 54/55, Height: 127/128
Ellipsoid || X: 54/55,Y: 83/85, Z: 126/128
Box X:7777,Y 128/129, Z: 155/156

nations.

In order to better assess the behavior of the method with
respect to the number of available views, additional experi-
ments with a varying number of views were conducted. Fig-
ure 3(e) shows the behavior of HOPE and PEHI as a func-
tion of the size of a multiframe. For the experiments with
less than 8 views, these were selected empirically to be as
complementary as possible. PSO involved 64 particles run-
ning for 40 generations. The obtained results demonstrate
that modeling the occluder and the physical constraints is
more beneficial than adding an extra camera. As an exam-
ple, exploiting these constraints with two cameras is still
better than with three cameras and the hand alone. In fact,
whatever HOPE achieves with three views is already better
to what PEHI achieves with as many as eight.

Overall, the experiments in Fig. 3 show a consistent and
significant superiority of HOPE over PEHI which is domi-
nant in the case of a limited number of available views. This
is important because it allows for practical joint hand-pose
estimation by a multicamera system with a few cameras that
is associated with less costs, complexity and requirements
for computational resources.

Besides its superiority in hand pose estimation, HOPE
also estimates the model parameters of the manipulated ob-
ject. The average positional error of object detection across
all sequences of multiframes in the experiments of Fig. 3 is
3mm (Euclidean distance between true and estimated po-
sitions) and the average orientation error is 2 deg. Table 1
shows the actual and estimated object parameters. The later
are averaged for all the multiframes of the sequence that de-
picts the corresponding object. It can be verified that for all
types of objects, the estimated model parameters are very
close to the ground truth.

The runtime' of a GPU-powered implementation of
HOPE [13] for runs of 40 PSO generations and 64 parti-
cles per generation is 0.31sec for a single-view multiframe
and 2.19sec for an 8-view multiframe. An online version of
the system employing 4 cameras, operates at 2 fps.

In multiframes of sizes larger than 2, PEHI is approxi-
mately 20% faster than HOPE. This overhead is attributed
to the computation of the W (m) component of the objective
function. Since this is a fixed overhead that is independent

'Experiments run on the computational infrastructure presented in
Sec.3.2.

2

0 2 4 6 8
number of views

Figure 4. Performance of HOPE and PEHI on a synthetic sequence
of multiframes that shows hands in isolation. 64 PSO particles and
40 generations have been used in both cases.
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Figure 5. Camera setup for the experiments with real data.

of the multiframe size, the relative difference in computa-
tional performance decreases with the number of views.
Finally, we applied both HOPE and PEHI to a synthetic
image sequence (400 multiframes, 8 frames/multiframe)
showing non-rigid motion of hands in isolation. Figure 4
plots the mean error D as a function of the number of the
employed views. For both algorithms, 40 PSO generations
and 64 particles per generation were used. For HOPE, a
cylindrical object has been hypothesized. The result shows
that the performance of the two algorithms is comparable, a
fact that indicates the capability of HOPE to track hands ob-
served in isolation. Expectedly, HOPE estimated the pres-
ence of very small objects (size in the order of a few mms).

3.2. Experiments on real image data

Real-world image sequences were acquired using a mul-
ticamera system (Fig. 5) installed around a 2 x 1m? bench
and consisting of 8 synchronized and calibrated Flea?2
PointGrey cameras. Each camera has a maximum framer-
ate of 30 fps, at 1280 x 960 image resolution. However, the
core processing is performed on 256 x 256 windows cen-
tered around the previous multiframe solution. The work-
station for image acquisition and processing is equipped
with a quad-core Intel i7 920 CPU, 6 GBs RAM and a
1581 G Flops Nvidia GTX 580 GPU with 1.5 GBs RAM.

Three sequences of multiframes have been acquired,
each showing a hand grasping and manipulating a spheri-
cal (301 multiframes), a cylindrical (261 multiframes), and
a box (251 multiframes) object. Figure 6(a) provides sam-
ple results obtained by applying HOPE (top row) and PEHI

2093



Table 2. Estimated/actual parameters for the object models in the
experiments of Fig. 6.

] Object H Estimated/actual parameters (in mm) ‘
Cylinder || Radius: 51/53, Height: 121/131
Ellipsoid || X: 128/116, Y: 128/116, Z: 122/116
Box X: 66/67, Y: 158/150, Z: 84/93

Table 3. The mean value of the objective function of HOPE and its
standard deviation when optimization searches for cylinders, ellip-
soids and cuboids for a sequence showing an ellipsoid (sphere).

] H Cylinder \ Ellipsoid \ Cuboid ‘
Mean value 3.02 2.65 3.95
Stdev. 0.68 0.57 1.17

(bottom row) to a specific multiframe of the sphere se-
quence. Since the hand is mostly occluded by the sphere
in all views, HOPE estimates the hand configuration cor-
rectly while PEHI fails completely. Similar results were
obtained in the case of the cylinder sequence which shows
a hand grasping and turning a cylindrical object up-side
down. Fig. 6(b) shows four frames acquired from the same
camera in different moments in time. HOPE tracks the
configuration of the hand throughout the whole sequence
whereas PEHI looses track of the hand as soon as the later
becomes severely occluded by the object. Figure 6(c) shows
a similar result for the box sequence. Additionally, in Ta-
ble 2, we compare the object shape parameters estimated by
HOPE to the actual, physically measured ones, computed
by averaging estimations for all multiframes of a given se-
quence. The standard deviation of these estimations is in
the order of a few millimeters. It can be verified that the
error in object shape estimation is satisfactory.

For HOPE, we also run a simple classification experi-
ment. Although shape classification is not the focus of this
work, it provides an indirect indication of the accuracy of
the optimization process. For the sphere sequence (Fig. 6(a)
and (b)), we ran HOPE assuming a cuboid, an ellipsoid and
a cylinder. Table 3 shows the mean value and the standard
deviation of the objective function of HOPE in all multi-
frames of the sequence. As it can be verified, the hypothesis
of an ellipsoid better explains the observed scene. In fact,
98.67% of the multiframes were better explained by the el-
lipsoid, 1.33% by the cylinder and none by the cuboid.

Finally, Fig.7, shows sample snapshots from the results
obtained on a sequence of a hand performing fine manipu-
lation of an elongated cuboid. Visual inspection confirms
that the accuracy of HOPE is quite satisfactory, despite the
complex and challenging hand-object interaction. Sample
videos out of these experiments are provided as supplemen-
tal material to this submission and are also available online.

Zhttp://www.youtube.com/watch?v=N3ffgj IbBGw

e #103, 4 views, HOPE (top), PEHI (bot.)

(a) Sphere, fram
. ™~

(b) Cylinder, 4 frames, view #2, HOPE (top), PEHI (bot.)

(c) Box, 4 frames, view #1, HOPE (top), PEHI (bot.)
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Figure 6. Sample frames from the results obtained by HOPE and
PEHI in real-world experiments. For HOPE the projection of the
estimated 3D object model is shown in pink color.
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Figure 7. Snapshots from an experiment where a hand performs a
complex manipulation of an elongated cuboid.

4. Discussion and conclusions

In a hand-object interaction scenario, the observation of
hands provides information that is important to the under-
standing of the object’s state and vice versa. In this paper,
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we demonstrated that by considering jointly the hand and
the object and by modeling occlusions and physical con-
straints it is possible to better understand aspects of both.
More specifically, the optimization over the parameters of a
joint hand-object 3D model results in full hand pose estima-
tion that is performed more accurately compared to meth-
ods that consider the hand in isolation. On top of that,
a parametric expression of the manipulated object is also
computed. PSO is proved very competent in handling the
complex, multidimensional and multimodal objective func-
tion of this problem. Results from extensive experiments
on simulated data demonstrated the potential of the method
against ground truth, but also comparatively to the results of
a state-of-the-art hand pose estimation method that consid-
ers hands in isolation. Experiments in real world sequences
exhibit that the proposed method performs well in chal-
lenging cases of complex hand articulation and hand-object
interaction. Ongoing research investigates the potential of
HOPE in supporting the interpretation of the semantics of
human grasping and manipulation activities.

Acknowledgments

This work was partially supported by the IST-FP7-
IP-215821 project GRASP. The contribution of Kon-
stantinos Tzevanidis and Pashalis Padeleris, members of
CVRL/FORTH, is gratefully acknowledged.

References

[1] 1. Albrecht, J. Haber, and H. Seidel. Construction and
animation of anatomically based human hand models. In
2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter Animation. Eurographics Association, 2003. 3

[2] A. Argyros and M. Lourakis. Real-time tracking of multi-

ple skin-colored objects with a possibly moving camera. In

ECCV,2004. 3

V. Athitsos and S. Sclaroff. Estimating 3d hand pose from a
cluttered image. In CVPR, volume 2, page 432, Los Alami-
tos, CA, USA, 2003. IEEE Computer Society. 2

J. Canny. A computational approach to edge detection.
PAMI, 8(6):679-698, 1986. 3

M. Clerc and J. Kennedy. The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space. [EEE Transactions on Evolutionary Computation,
6(1):58-73, 2002. 4

M. de la Gorce, N. Paragios, and D. Fleet. Model-based hand
tracking with texture, shading and self-occlusions. In CVPR,
pages 1-8, 2008. 2

A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A review.
CVIU, 108(1-2):52-73, Oct. 2007. 2

A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-
object interactions: Using spatial and functional compatibil-
ity for recognition. PAMI, 31:1775-1789, 2009. 2

(3]

[4

—

[5

[t

[6

—_

(71

[8

—_—

(91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

2095

A. Gupta, A. Mittal, and L. Davis. Constraint integration
for efficient multiview pose estimation with self-occlusions.
PAMI, 30(3):493 —506, Mar 2008. 2

H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool.
Tracking a hand manipulating an object. In /CCV, Oct 2009.
2

J. Kennedy, R. Eberhart, and Y. Shi. Swarm Intelligence.
Morgan Kaufmann Publishers, 2001. 4

H. Kjellstrom, J. Romero, D. Martinez, and D. Kragic. Si-
multaneous visual recognition of manipulation actions and
manipulated objects. In ECCV, 2008. 2

N. Kyriazis, I. Oikonomidis, and A. Argyros. A gpu-powered
computational framework for efficient 3d model-based vi-
sion. Technical Report 420, FORTH, July 2011. 6
Microsoft Corp. Redmond WA. Kinect for Xbox 360. 2

T. B. Moeslund, A. Hilton, and V. Kriiger. A survey of ad-
vances in vision-based human motion capture and analysis.
CVIU, 104(2-3):90-126, Dec 2006. 2

I. Oikonomidis, N. Kyriazis, and A. Argyros. Markerless and
efficient 26-dof hand pose recovery. In ACCV, 2010. 2, 3, 4,
5

I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient
model-based 3d tracking of hand articulations using kinect.
In BMVC, Aug 2011. 2

A. Oliva and A. Torralba. The role of context in object
recognition. Trends in Cognitive Sciences, 11(12):520 — 527,
2007. 2

J. Rehg and T. Kanade. Model-based tracking of self-
occluding articulated objects. In ICCV, page 612, Los
Alamitos, CA, USA, 1995. IEEE Computer Society. 2

J. Romero, H. Kjellstrom, and D. Kragic. Monocular real-
time 3d articulated hand pose estimation. [EEE-RAS Int’l
Conf. on Humanoid Robots, Dec 2009. 2, 3

J. Romero, H. Kjellstrom, and D. Kragic. Hands in action:
Real-time 3d reconstruction of hands in interaction with ob-
jects. In ICRA, 2010. 2

R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff. 3d hand
pose reconstruction using specialized mappings. In ICCV,
2001. 2

L. Sigal and M. Black. Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation. In CVPR,
volume 2, pages 2041 — 2048, 2006. 2

R. Smith. Open dynamics engine, http://www.ode.org/,
2006. 4

B. Stenger, P. Mendonca, and R. Cipolla. Model-based 3d
tracking of an articulated hand. CVPR, pages [I-310-11-315,
2001. 2, 3,4

E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Visual
hand tracking using nonparametric belief propagation. In
CVPR Wkshp on Generative Model-based Vision, 2004. 2
B. White and M. Shaw. Automatically tuning background
subtraction parameters using particle swarm optimization. In
IEEE ICME, 2007. 4

Y. Wu and T. S. Huang. View-independent recognition of
hand postures. In CVPR, pages 88-94, 2000. 2

B. Yao and L. Fei-Fei. Modeling mutual context of object
and human pose in human-object interaction activities. In
CVPR, Jun 2010. 2



