
Practical Information Flow for
Legacy Web Applications

Georgios Chinis
FORTH-ICS

Polyvios Pratikakis
FORTH-ICS

Elias Athanasopoulos
Columbia University, NY

Sotiris Ioannidis
FORTH-ICS

FORTH-ICS Technical Report 428-Apr-2012

Abstract
The popularity of web applications, coupled with the data they operate

on, makes them prime targets for miscreants that want to misuse them. To
make matters worse, a lot of these applications, have not been implemented
with security in mind, while refactoring an existing, large web application
to implement a security or privacy policy is prohibitively difficult. This pa-
per presents LabelFlow, an extension of PHP that simplifies implementation
of security policies in web applications. To enforce a policy, LabelFlow
tracks the propagation of information throughout the application, transpar-
ently and efficiently, both in the PHP runtime and through persistent stor-
age. We provide strong theoretical guarantees for the policy enforcement
in LabelFlow; we define its semantics for a simple calculus and prove that
it protects against information leaks. LabelFlow is applicable to real-world
large scale web applications. We used LabelFlow to add and enforce access
control policies in three popular web application MediaWiki, Wordpress and
OpenCart with minimal execution overhead and code changes.

1 Introduction
Controlling the flow of information is paramount to the security of applications.
Web applications, in particular, pose a challenge to traditional information flow

1

techniques, because they span a multitude of layers, platforms and languages. To
control information flow in a web application, certain parts must be designed ac-
cordingly from the ground up, during the development cycle, to reflect the desired
policy sets. Even then, web applications are composed of many parts, possibly
written in different languages, making it difficult for the programmer to imple-
ment a security policy, test and debug it. For the same reason, changing an ex-
isting web application to control information flow or adhere to, for instance, a
specific privacy policy, is very difficult.

Unfortunately, the majority of popular applications has not been designed with
privacy as a prime consideration. Legacy applications are more susceptible to in-
formation leakages, which may lead to financial loss [11] or loss of users’ pri-
vacy [7]. The cost of redesigning an application to harden its security may be
prohibitively high, or the functionality of the system may be so important to its
users, that they may be resistant to change.

Even when a security policy is designed into an application, it is the respon-
sibility of the developers to implement it correctly. In essence, it is up to the
programmer to find all the points in the code where e.g., sensitive data may leak
and insert the appropriate checks. In large, complex applications that undergo
continuous development, it is very easy to miss such a check, forget to patch all
points, etc., often introducing information leaks, vulnerabilities and exploits.

For example, MediaWiki is a wiki application written in PHP, developed and
used in Wikipedia and other online encyclopedias, dictionaries, etc. As such, it is
designed to facilitate collaboration and information sharing, not avoid leaks and
control access levels. Indeed, MediaWiki’s manual explicitly states that:

“MediaWiki is not designed to be a CMS, or to protect sensitive data. To the
contrary, it was designed to be as open as possible. Thus it does not inherently
support full featured, air-tight protection of private content.” [14]

Changing such a complex application to implement various security policies is
very tedious and error-prone, as the system was not designed to track and restrict
information flow.

MediaWiki in particular, and web applications in general, usually follow a
three-tier architecture consisting of client-side code, server-side code and a database.
This multi-tier architecture [10] imposes an extra problem to correctly implement-
ing and enforcing security and privacy policies, as the programmer has to reason
about persistent state in the database, untrusted user input, arbitrary client-side
code behavior, etc. Existing solutions for system-wide information flow [23] are
often too general; they cannot take into account (i) the specific application se-
mantics and policy requirements —causing false positives, and (ii) the distributed

2

setting of a web application, where the database may very well be at a different
machine —causing false negatives.

This paper presents LABELFLOW, a system for dynamic information flow
tracking on web applications in PHP. LABELFLOW aims to improve security and
privacy in legacy web applications using label-based information flow. LABEL-
FLOW is designed to handle the 3-tier architecture usually found in web applica-
tions; it transparently extends the database schema to associate information flow
labels with every row; it extends the PHP bytecode interpreter to transparently
track labels at runtime; and it combines the two so that the programmer need only
implement the policy code with minimal or zero changes to the rest of the legacy
application.

LABELFLOW works in the PHP language runtime, implicitly tracking labels
for every piece of data: data received from or sent to the user, and data written to
or read from the database. LABELFLOW does not specify explicit, fixed policies;
instead it provides an API to the user to write the policy code, i.e., a mechanism to
create labels and associate them to pieces of data. The programmer can then use
this mechanism to implement and enforce a wide range of policies with minimal
changes to the rest of the application code.

In comparison, the state of the art PHP data flow system is RESIN [30]. In
RESIN, the developer writes application specific code for the assertions that must
hold for each piece of data. RESIN ensures the proper propagation and the timely
execution of the assertions. RESIN, however, requires the developer who imple-
ments the assertions to have detailed knowledge of the application implementa-
tion. In LABELFLOW, the policy is expressed in an application agnostic repre-
sentation, making the migration easier. Finally, LABELFLOW is lightweight com-
pared to RESIN, imposing much less time and space overhead on the application.
Overall, this paper makes the following contributions:

• We designed LABELFLOW, an information flow framework for implement-
ing security and privacy policies in legacy web applications. LABELFLOW

can be used in a wide range of web applications, with minimal programming
effort.

• We implemented LABELFLOW in the PHP runtime, targeting web applica-
tions that use MySQL for persistent storage. Our implementation is fast,
imposing an overhead of 3% over the original PHP runtime.

• We formally defined LABELFLOW’s semantics for a simple language that
abstracts over PHP, and proved that it protects against information leaks.

3

• We deployed LABELFLOW in existing real-world applications. More pre-
cisely, with minimum code changes (less than 100 lines of code), we apply
LABELFLOW on MediaWiki, the software that runs Wikipedia.

2 Background
The most common security policy in web applications is access control. Such
policies model every user of the system with an identifier and describe which data
a user can access. Access control policies restrict the release of information, but
not its propagation afterwards. Once the information is released, all control over
it is lost. In contrast, information flow policies ensure that the propagation of data
follows the specified policy. For instance, a policy may dictate (i) the users who
could access the information and (ii) places in the code where the data can be
used.

Information flow policies partition program variables into different security
levels and restrict the flow of information among variables in different levels.
Label-based information flow, in particular, uses a set of labels to represent secu-
rity levels and to track the flow of information. Consider, for instance, the simplest
two security levels secret (H) and public (L). Program variables are assigned one
of those labels —we write X : H to denote that variable X has security level
secret. To enforce the policy we must prevent for any variables X : H and
Y : L, any execution Y := X that would consist an information leak, because the
secret label is more restrictive than the public label. Information can propagate
from L to H but not the other way around.

Note that labels can have different semantics according to context. Labels
can be used to label secret or public data in one context and trusted or untrusted
data in another context. A label-based information flow system like LABELFLOW

simply tracks the propagation of data and their labels as the program executes.
Individual label semantics are defined by the programmer according to their needs
and application policy. In general, one can implement many kinds of security and
privacy policies using label-based information flow: access control lists, tainting
analysis, public/private data, etc.

In the simple model with two labels, secret is more restrictive than public
—we write L ≤ H . Real-world applications may have multiple security levels
in many contexts, so, their labels do not need to be in the same hierarchy. To
support more expressive label dependencies, we use a label lattice [16]. The label
lattice is usually a semi-lattice with the following properties. (i) A label l1 is more

4

Figure 1: The architecture of LABEL-
FLOW

Figure 2: Label graph: A semi-
lattice representing the relation be-
tween the labels

restrictive than a label l2 if there is a path from l1 to l2 in the label lattice. (ii) The
bottom of the label lattice always represents the label with lowest restrictions.
The lattice create a transitive, partial order relation between labels, better suited
to represent policies in complex applications.

Side channels, like time attacks [3, 32, 2], the program’s execution flow, power
analysis, etc., can also cause information leaks. To protect against such leaks, a
secure information system must enforce the property of non-interference. Non-
interference dictates that an attacker would not be able to distinguish two runs
of the program if they differ only in their secret values. Unfortunately, full non-
interference is too strict to be enforced in practice. Moreover, it is a property of all
execution paths, i.e., it can only be enforced using static techniques. Dynamic sys-
tems cannot normally decide non-interference, as they only observe one possible
execution path. In LABELFLOW, however, we restrict secret values to the persis-
tent database, which allows us to enforce a (somewhat relaxed) non-interference
property dynamically.

3 Design
LABELFLOW aims to integrate easily with existing web applications, with mini-
mal changes. LABELFLOW protects sensitive information inside the application
from reaching unauthorized users by malicious actions or programming errors.
We target web application with a 3-tier architecture, where the presentation, the
application and the storage are three distinct components running on different
platforms.

The presentation tier is inherently unsafe since it is executed in the user’s

5

browser. Sensitive data should not reach the presentation layer of an unauthorized
user, as this amounts to an information leak. It is very easy to intercept the infor-
mation on the wire or modify the client code to steal the information. Information
is only safe so long as it stays in the application or the storage tier. One of the
challenges in this work was to ensure that labels propagate correctly when data
migrate between the application and storage tier. Overall, our system is used as
follows.

3.1 Application Layer
Initially, the programmer must label sensitive data that need to be monitored us-
ing our API. Deciding which data need labeling depends on privacy policy the
developer wishes to enforce. For instance, if the developer wishes to enforce an
access control policy, they should create a label for every user and associate new
data with the labels representing only the users that can access it. Alternatively,
implementing a tainting analysis needs only two labels for trusted and untrusted
data.

Apart from initial labeling, the application should follow its normal execution
path. During execution, data values that depend directly on labeled data are also
transparently labeled. If two operands have different labels the result is labeled
with a combination of those labels (usually the union of the labels). Section 5
discusses propagation in detail.

3.2 Storage Layer
A database being an important component of any web application, data should not
lose their labels when stored in the database. Otherwise, labeling is not persistent
across requests. Storing this additional information in a database is difficult to do
manually, because it requires modifying the schema. LABELFLOW automatically
extends the database schema with a label per row, for each table. This granu-
larity is similar to row-level security offered by several databases (Oracle, IBM,
Microsoft), and means to label the data forming the row, but also their relation.

Our approach requires specific changes to the database schema of the applica-
tion. This, however, is not trivial to do manually, as the schema may be dynam-
ically generated according to installation configuration options. Installing web
applications is commonly done via their web interface, so it often uses the same
database API to send CREATE TABLE queries to the database, as it does for com-
mon selection and update. Thus, we have designed LABELFLOW to intercept the

6

queries from the application to the database at run time, and automatically rewrite
them to change the schema as necessary, transparently adding a label per row in
each table. We opted for this method instead of changing the schema after instal-
lation, as done by systems in related work, because (i) installation and creating a
schema is a part of the web application, and thus may leak information, and (ii) it
makes porting a web application to LABELFLOW easier.

We decided to restrict granularity to a label per row of each table, instead of
the finer granularity of a label per field [6]. LABELFLOW extends each table in the
database with an extra column where the label is stored. Certainly, a finer-grained
granularity allows for more control over which information is tainted with a cer-
tain label. However, coarse-grained labeling per row reduces space requirements
and minimizes changes to the original schema. Moreover, the relation among data
items may be important. For example, consider the case where even though two
pieces of information are public, their relation may be secret. To capture such
cases, we use one label per row.

Moreover, row-based labeling allows for easier and faster query rewriting. To
guard against information leaks when a row consists of fields with different labels,
we use the following conservative policy: The label of the whole row is the “meet”
of the labels of all fields stored in the row. This conservative policy can restrict
the label of some fields even further, when, for example, many public data items
are stored in the same tuple with a secret data item. This conservative policy may
elevate the label of some data but protects against data leaks.

3.3 Label Graph
Consider the secure MediaWiki application example described in Section 1. Me-
diaWiki users generate data, which they may wish to keep private from or share
with other users. The generating user is the owner of the new data and he should
be able to choose the privacy policy regarding his data. LABELFLOW provides a
powerful and application-agnostic mechanism to express privacy policies.

Overall, in addition to labeling new data, the application programmer can use
the LABELFLOW API to add “sub-label” edges among labels, essentially struc-
turing all labels into a semi-lattice. We use the semi-lattice model proposed by
Mayer et al [16], where there is an reflexive, transitive, acts-for partial order rela-
tion between the labels. The semi-lattice includes an implicit, common “bottom”
element for all labels regardless of their context, so that LABELFLOW can use it
as a default label for otherwise unlabeled data. Normally, this “bottom” label in
the semi-lattice corresponds to public information, every user in the system, etc.,

7

according to the policy implemented.
The owner can choose to create a fresh label inaccessible from everyone to

keep their data private, use the “bottom” label to freely share data, or assign a label
accessible only from a small group of other users. With this model, the owner of
the data can grant access to any combination of users. Note that implementing
the graph requires knowledge of the desired policy and of our framework; it does
not require detailed knowledge of the application. We believe this is important for
legacy applications where continuous iterative development may have rendered
the code base unreadable.

Figure 2 shows an example label hierarchy for a hypothetical instance of the
MediaWiki application. The vertices are labels and directed edges correspond to
the partial order relation. The Public vertex is the “bottom” element of the semi-
lattice. In general, an edge between labelsA andB captures the relationA acts for
B, meaning that labelA is more restrictive than labelB. Labels Anne, James, Bob
and Alice are unique to their respective users, whereas, labels Manager, Group A
and Public were created to facilitate sharing between the users.

4 Formal Semantics and Soundness
We formalize our changes on PHP using a simple calculus extended with database
persistent state, we define a small-step operational semantics for our language, and
state the theorem of correctness for label flow. The full details of the formal proof
can be found in an accompanying technical report [4].

Figure 3 presents a simple functional language with support for dynamic la-
bels and database queries. Base labels k are label “atoms”, label representations
created using our dynamic label API. Any combination l1 t l2 of labels is also
a label. The label lattice C is a set of l1 v l2 constraints among labels. Values
include unit, functions, all labels l and integer constants nl, where we annotate
the integer value n with its run-time label l, to reflect the run-time behavior of our
PHP VM. All constants in the program code are trivially annotated with the label
⊥.

Program expressions e include function application, database primitives and
dynamic label allocation. Intuitively, expression create table creates a table in the
database, expression insert e into n inserts the result of expression e into the n-th
table of the database, expression update e1 to e2 in n updates table n, replacing
any row that is equal to the result of e1 with the result of e2, expression newlabel
creates and returns a new label at run time, expression taint e1 with e2 computes

8

(Constants) n ∈ N
(Base Labels) k ∈ L
(Labels) l, pc ::= k | x | l t l | ⊥ | >
(Constraints) C ::= ∅ | C, l v l
(Values) v ::= l | nl | () | λx . e
(Expressions) e ::= v | e e | create table | insert e into n

| update e to e in n | newlabel
| taint e with e | elevate ep

(Databases) DB ::= ∅ | DB,T
(DB Tables) T ⊆ ∅ | T, (n, l)

Figure 3: A simple calculus with dynamic labels and persistent state

e1 to an integer and e2 to a label, and taints the integer with the new label, and
expression elevate ep computes expression ep (which should not have side effects
in the database) to a label, and sets the current state to that label.

4.1 Operational Semantics
Figure 4 presents a subset of the small-step operational semantics for the lan-
guage. Judgments have the form 〈DB, pc, e〉 → 〈DB′, pc′, e′〉, where DB is the
database state, pc is a label representing the “current elevation” level, and e is the
executing program. After the program takes a step to e′, the database may have
changed to DB′ and elevation level pc′. Rule [E-New] executes the dynamic cre-
ation of a label, where expression newlabel always takes a step to a fresh label
l, not previously occurring in the database. Rule [E-Create] creates an additional
table in the database, initially empty of rows. We abstract over table names and
database row fields, instead using the table creation order n to identify database
tables in all queries, where every table has only one column containing values,
and a column holding the label of every row. Rule [E-Insert] inserts a value v into
the database, using label pc. Finally, [E-Select] shows the execution of a select
query which verifies that the value selected is visible in table n using the current
pc elevation.

9

E-New
l − fresh

〈DB, pc, newlabel〉 → 〈DB, pc, l〉

E-Create
〈DB, pc, create table〉 → 〈(DB, ∅), pc, ()〉

E-Insert
T ′k = Tk, (v, pc)〈

T1, . . . , Tk, . . . Tn, pc, insert v
l into k

〉
→

〈T1, . . . , T ′k, . . . Tn, pc, ()〉

E-Select
Tn ∈ DB (v, l2) ∈ {(v, l) | (v, l) ∈ Tn ∧ l v pc}〈

DB, pc, select vl1 from n
〉
→

〈
DB, pc, vl2

〉
Figure 4: Selected semantic rules

4.2 Soundness
We use the semantics to prove that any code not using elevate e instructions satis-
fies noninterference, i.e., cannot leak any data labeled by a label above its pc. To
do that, we define the following:

Definition 1 (Table Similarity). Let tables T1, T2 ⊆ N×L. We say that T1 and T2
are similar up to l and write (T1 ∼l T2), if ∀l′ v l, v (v, l′) ∈ T1 ⇔ (v, l′) ∈ T2.

Definition 2 (Database Similarity). Let databasesDB1 = {T1, . . . , Tn} andDB2 =
{T ′1, . . . , T ′n}. We say that DB1 and DB2 are similar up to l and write DB1 =l

DB2 if: ∀1 ≤ i ≤ n, Ti ∈ DB1, T
′
i ∈ DB2 ⇒ Ti ∼l T

′
i

Theorem 1. Assume e is an expression without any elevate e terms, l and pc are
labels, and DB1, DB2 are databases with DB1 ∼l DB2. Then executing e un-
der the two different databases with input labeled l will yield the same results:
〈DB1, pc, e〉 →∗ 〈DB′1, pc, v〉 if and only if 〈DB2, pc, e〉 →∗ 〈DB′2, pc, v〉 More-
over, it will be DB′1 ∼l DB

′
2.

5 Implementation
This section describes the implementation of LABELFLOW. To implement dy-
namic, label-based information flow, LABELFLOW is comprised of three compo-
nents: (i) support for label-based information flow in the PHP runtime engine and

10

standard library, (ii) support for transparent rewriting of database queries to in-
clude labels, and (iii) a library of PHP code that includes the LABELFLOW API to
the web application programmer, as well as implementations of common policies.

5.1 PHP Runtime
To track information flow in the PHP part of the application, we modified the PHP
runtime engine to propagate labels along with data. This approach is transparent
to the PHP programmer and does not require any dynamic or static rewriting of
PHP code. The LABELFLOW modified PHP runtime engine is based on a pro-
totype engine by W. Venema [26], designed for defending against well known
web attacks such as Cross-Site Scripting and SQL injection using runtime taint
analysis. That runtime engine can prevent such attacks by marking data coming
from the network as untrusted, potential leading SQL or HTML injections, or
PHP control hijacking. The engine tracks untrusted data, which cannot be used
by certain function calls without prior sanitization. We ported this runtime engine
to a current version of PHP, as it was unmaintained, and extended it with support
for generic label propagation, additional primitive operators, and foreign function
calls.

Label representation The PHP interpreter, named the Zend engine, is written in
C. The runtime engine parses PHP code and generates a series of opcodes which
are then executed. The opcodes are in an intermediate bytecode representation
between the PHP code but higher-level than assembly language. The PHP runtime
engine represents userspace variables internally as values of type zval struct. We
extended this structure with an additional field, the labeling field, where the labels
of each value are stored.

We use a bit-vector representation for labels, where the taint field is 32 bits
long; we use one-hot encoding to represent the labels, thus our system can support
up to 32 labels. The number of labels is limited but easy to extend at minimal cost.
Additionally, one-hot encoding of the label permits very fast manipulation of the
taint bit using bitwise operations.

We propagate labels on value copy by copying the taint field from the origin
value to the destination value. Similarly, we have added support for all internal
PHP arithmetic, string, bitwise, copying, assignment and update operators, so that
the resulting value is labeled appropriately. When the operands have different
labels, we label the resulting value using both, meaning that in the bit-vector rep-

11

resentation two bits will be enabled. Note that we do not conflate labels even
when they have a “meet” label in the label graph.

Foreign function interface Unfortunately, the original implementation of taint
propagation in the PHP runtime engine that we used, does not work with calling
functions implemented in a third language. This is a problem, as the default PHP
runtime engine is bundled with a rich set of standard functions called the stan-
dard API. Their functionality ranges from string processing functions to database
interfaces. These functions are implemented in C for speed and thus do not use
the PHP operators to propagate labels from operands to results. A possible so-
lution would have been to manually modify each of these functions to copy the
labels of their parameters to their return value. Although possible [30], this so-
lution is laborious and thus error prone. It also requires in-depth understanding
of the semantics of each function so that the right labels are returned. Moreover,
if more functions are later added to this standard library, it is up to the developer
to implement label flow propagation in the new extended function set. For the
above reasons we implemented the following alternative solution. For all func-
tions that belong to the standard library, the return value is conservatively labeled
with the union of the labels of the arguments used when the function was called.
Moreover, to protect against functions that return values by changing the state of
their arguments, we also label each argument with the union of all labels of the
arguments. This is potentially a very conservative approach, but it ensures that no
information leak will happen from the execution of the function. Since we cannot
track the information flow inside the function, we assume each argument could
have tainted each other argument or the return value.

5.2 Database Modifications
Web applications almost always use persistent storage, where they reliably store
information essential for their normal operation. This storage is normally a re-
lational database. Currently, LABELFLOW works with the MySQL database. To
store extra information in the database we need to extend the schema with ex-
tra fields where the labels can be stored. We believe that a reasonable trade-off
between accuracy and space on one hand, as well as easy-to-implement and easy-
to-manipulate on the other, is to store a label per row. That means that all the
fields in the same row are stored under the same label, even if during execution
their label ware different. To ensure that there is no information leakage, we con-

12

servatively set the common label to be the union of all labels of all fields of the
tuple.

All the necessary modifications in the database schema and in the queries in-
serting and retrieving data from the database take place by automatically rewriting
the corresponding queries. To extend the schema the CREATE TABLE queries
are also rewritten to have one additional column. The INSERT queries populate
that column and the SELECT queries retrieve it. We use a custom SQL parser
written in C to parse and modify all database queries at run time, including the
creation of a new schema during the installation of the application.

Figure 5 shows a representative example of SQL rewrites. The first query
shown in Figure 5(a) (lines 1–6) originally creates a table with three fields. LA-
BELFLOW intercepts the query and rewrites it as shown in Figure 5(b). The
CREATE TABLE query is rewritten to include an extra field to store the label for
each row, shown in Figure 5(b) (line 6). The second query shown in (a), lines 9–
11, inserts a tuple in the table. LABELFLOW rewrites this to also insert a value in
the label field, shown in (b), lines 9–11. The label value corresponds to the union
of all fields’ labels. Finally, the third query performs a selection on the table. We
rewrite this to also constrain the row label to the label of the user performing the
query. Effectively, this creates a “view” (projection) of the table depending on the
label used to generate the selection query. Note that we have used the equality
test, and a predefined user label in the example for the sake of simplicity. Nor-
mally, the rewritten query tests for any label up to the label used to perform the
query, which can be an arbitrary label depending on the policy implemented by
he application.

5.3 LABELFLOW library
LABELFLOW is implemented as a set of PHP functions and classes that are easy
to incorporate into the application. Specifically, LABELFLOW provides the fol-
lowing functionality: (i) A high level API where each application can register
meaningful names as labels, (ii) an API for constructing the label graph discussed
in Section 3.3, and (iii) a custom database API.

Internally, the PHP engine encodes labels as integers stored in internal data
structures. This encoding may be efficient but is very cumbersome to use in real
applications. Also, it is better if the internal representation of the labels is hidden
from the application to minimize hijacking attempts. At any given moment the
LABELFLOW stores the program counter label, pc. The pc is the context under
which the system should evaluate its policy. Normally, when a user logs in the

13

1 CREATE TABLE
2 (fname VARCHAR(100),
3 lname VARCHAR(100),
4 address VARCHAR(255))
5

6

7 INSERT INTO table name
8 (fname, lname, address)
9 VALUES (1, 2, 3)

10

11 SELECT
fname, lname, address

12 FROM table name
13 WHERE condition

(a) Original SQL code

1 CREATE TABLE
2 (fname VARCHAR(100),
3 lname VARCHAR(100),
4 address VARCHAR(255),
5 label ac SET(...) default 1)
6

7 INSERT INTO table name
8 (fname, lname, address, label ac)
9 VALUES (1, 2, 3, label)

10

11 SELECT fname, lname, address, label ac
12 FROM table name
13 WHERE ((label ac | user label)=user label)
14 AND (condition)

(b) SQL code after rewriting

Figure 5: Example SQL queries, rewritten by LABELFLOW.

application the pc is set to the user’s label. The pc defines a privacy context that
is taken into consideration regarding which data should be accessible or not.

The database API has the same interface as the default PHP API and thus mi-
gration is an easy task. This API is responsible for rewriting the SQL queries and
for supporting the persistent labeling of the data. On CREATE TABLE queries it
injects the extra table in the query. On INSERT queries it retrieves the label of the
query string and calculates the label value to be written in the DB. On SELECT
queries LABELFLOW performs two operations. First, it ensures that only data ac-
cessible by the user who initiated the request will be returned from the database.
The results that are accessible must have less restrictive labels than the current pc.
This is a security mechanism protecting unauthorized access to data. Second, the
returned data are re-labeled to ensure proper label flow control.

In most applications, the PHP engine usually terminates after serving one re-
quest and restarts to serve the next one. It is hard to hold information in the engine
itself. For that reason, LABELFLOW needs access to the database for storing in
two tables the mapping between the application-level representation of the labels
and the low-level integer representation. It is important to store the mapping for
avoiding registering the same integer under a different name in a subsequent call.
The second table holds the label graph.

The typical steps to integrate LABELFLOW in an existing legacy application

14

are the following.

1. Incorporate LABELFLOW with the application we want to apply flow con-
trol. This action involves including the source file of our framework in the
main file of the application and instantiating the LABELFLOW object. The
LABELFLOW object accepts as parameters the credentials to a database for
storing its internal tables.

2. Replace the database API calls with our wrappers. Since our wrappers have
the same signatures as the standard functions, this action is done automati-
cally.

3. Define the principals and the label graph.

4. Generate and store a meaningful label for each principal of the application.
Principals can represent users, groups, or roles, according to the applica-
tion’s needs. The application is responsible for storing the label with each
principal and retrieve it when it is executing actions on their behalf.

5. Call the label function to label incoming data in all application entry points.
By default, the data will be labeled with the pc attribute. We assume that the
application has correctly authenticated the user and has assigned the active
label the corresponding label.

5.4 MediaWiki
MediaWiki’s modular and object oriented architecture facilitates migration to LA-
BELFLOW. Including our code to the project and initializing LABELFLOW is sim-
ple, and requires adding just two lines of code to Setup.php. All data received
by the user pass from a central point where they populate PHP structures for easier
processing. At that point we label the data with the pc. Most applications have
a limited number of well-defined entry points that makes it easier to label data as
they arrive. We used the built-in mechanism to store the labels of each user. We
manually extended the table user where the application holds information about
the registered users, like their name, their password etc., to also contain the labels
that have been assigned to them. At the PHP level the users are modeled by the
User class. We extended that class to store and retrieve the label of the user as it
happens by default with all of the user’s attributes.

15

When a user edits an article, that article is labeled with the user’s label, so that
when the SQL query is constructed to save the article in the database, the label is
further propagated in the query string. Later, when the query is transferred to the
database the label is also stored. One issue we encountered in MediaWiki is that
the different revisions of an article are stored in a linked list. The head of the list
is the latest revision and each revision holds a pointer to the previous one.

This can lead to a problematic behavior: if a user does not have authority to
access the latest revision then the link to the previous revision, which may be
originally accessible, has been also lost. To solve this problem we where forced
to change the schema of the MediaWiki application. Currently, MediaWiki holds
an entry in the page table containing the title of the article, some statistics and a
pointer to the latest revision of the article. Information about the revisions of the
article are stored in the revision table. The revision table stores information like
the time of the revision, the user who made it, a pointer to the previous revision
of the article and a pointer to actual text of the article at the current revision.
The text of the article is stored in a table name text. Because the insertion in
the page, revision and text tables inserts data labeled by the user who made the
changes, other users will not be able to retrieve that information in the database.
That may ensure privacy but greatly reduces the functionality, since it is not the
desired behavior. To achieve the expected behavior we made some modifications
that white-list the page table, so that all users can have access to the list of articles.
This may leak some information but we believe it is acceptable. Additionally, all
revisions in the revision table of an article hold a pointer back to the page entry of
the article. This allows to locate previous revisions of the article even if we do not
have access to the latest revision. After those changes, which where less than 50
lines of code, each user has access to the latest revision, according to their label.

6 Evaluation
To test the engine overhead we used bench.php, the standard benchmark bundled
with the engine, namely a loop of CPU intensive operations, and thus closer to the
worst case than typical workloads. While the unmodified engine takes an average
(over 10 runs) of 21.4 seconds, the LABELFLOW engine takes an average of 22.6
seconds, i.e., LABELFLOW causes 5.6% overhead.

To test LABELFLOW’s applicability and ease of use, we used three widely used
applications: MediaWiki, the wiki used by Wikipedia; WordPress, a blog hosting
application; and OpenCart, an e-commerce and store management application.

16

(a) View of project member (b) View of project manager

Figure 6: The same page of our wiki as seen by two different users with different
authorizations.

We run all experiments on a Pentium 4, 3.4GHz workstation with 3 GB of memory
running Linux 3.0.0-17.

6.1 MediaWiki
In MediaWiki, users modify the articles and create new revisions. Using LABEL-
FLOW we implemented an access control policy where each user that creates a
revision labels it with his credential. Other users who wish to read the article have
access only to the revisions accessible from their credential.

For instance, Figures 6(a) and 6(b) show an article as viewed by two different
users. The article is a progress report about a project. The first user 6(a) is a
contributor to the project with low level clearance, and thus, can edit the details
about the scope and the goals of the project and their changes will affect all other
users accessing the articles. The second user is a high-level manager in charge of
the project. The manager has higher level clearance, which allows them to see and
edit the whole article, including the budget section. The budget section includes
sensitive information about the economics of the project that should be kept secret.
Any changes done by the manager in this article are going to be visible only by
the users that have equal or higher level access than the manager. Those users

17

Type Vulnerability Fixed with
LABELFLOW

API
Can the revids parameter for action=query
be used to fetch revisions that should be
hidden?

Yes

Author
back-
door

Some extensions always allow the original
author of a page to access it, ignoring later
access restrictions.

Yes

Redirects
Some extensions always allow the original
author of a page to access it, ignoring later
access restrictions.

Yes

Other
exten-
sions

Can a user use other extensions to view
part of a page? Think of DynamicPage-
List or Semantic MediaWiki, which pro-
vide ways to query the database for certain
pages or properties.

Yes

Table 1: Common Vulnerabilities

will have labels that are more restrictive than the ones assigned to the manager,
corresponding to “higher-up” in the label lattice.

The MediaWiki page provides a set of common security limitations [14]. For
some, MediaWiki offers suggestions on how to overcome them. We focused on
the ones that offer no such suggestions (see Table 1). To the best of our knowledge
LABELFLOW is able to offer protection against all of these vulnerabilities.

The necessary modifications to enforce the policy on MediaWiki were fairly
straightforward, totaling around 100 lines of additional code in a code base of
over 100,000 lines. Moreover, they were often made apparent by helpful error
messages while migrating to LABELFLOW, when MediaWiki encountered an er-
ror. We measured the overhead that our changes impose to MediaWiki. To study
the cost that our modifications have on the end-user experience, we measure the
time needed to login and load an article, two representative operations. We per-
formed 200 requests of each and measured response time.

Figure 7 (a) shows the time needed to log into the application. The login
operation requires a database query to retrieve the information of the user and
check that the password is correct. When no user is logged in, LABELFLOW

labels all data as public and performs all operations using the public label. The

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

Latency (sec)

MediaWiki Vanilla
MediaWiki Taint

WordPress Vanilla
WordPress Taint

OpenCart Vanilla
OpenCart Taint

(a) User login.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

Latency (sec)

MediaWiki Vanilla
MediaWiki Taint

WordPress Vanilla
WordPress Taint

OpenCart Vanilla
OpenCart Taint

(b) Full page load.

Figure 7: Cumulative Distribution Function (CDF) of the time for two kinds of
requests.

“public” label is a hard-coded value designed to represent the bottom of the label
graph. All users can read data having the public label, but any user using the public
label to request data can only see public data. Figure 7 (b), shows the total time
needed to retrieve an article from the database. MediaWiki must retrieve the user’s
information based on their cookie, find the appropriate revision for the particular
article for the user and finally retrieve the text. In both experiments, LABELFLOW

imposes only a small overhead, because of its efficient label representation and
fast query rewriting.

19

6.2 WordPress
WordPress is a popular open source blogging tool based on PHP and MySQL. In
contrast to MediaWiki, WordPress offers an extensive set of roles ranging from
Administrator, who has complete control over all aspects of the application, to
Subscribers, who can only control their profile. Moreover, blog authors can limit
the visibility of their profiles to selective users of the application. We used LA-
BELFLOW to enforce this policy on WordPress, and compare it with the native
implementation. We noticed that the existing system has one limitation:

“WARNING: If your site has multiple editors or administrators, they will be able
to see your protected and private posts in the Edit panel. They do not need the
password to be able to see your protected posts. They can see the private posts in
the Edit posts/Pages list, and are able to modify them, or even make them public.
Consider these consequences before making such posts in such a multiple-user
environment.” [?]

In WordPress, users do not create accounts for themselves, they instead rely on
the administrator to create the accounts for them. Thus, initially the administrator
must have access to user data, but should drop it as soon as possible. We encoded
this behavior by having the administrator code create a new label for the new user,
use it to taint all user data and then delete the label to make it inaccessible to the
administrator. In total, to integrate LABELFLOW into WordPress, we added 60
lines of code.

6.3 OpenCart
OpenCart is an e-commerce and online store-management software program. In
OpenCart, system administrators add products available for purchase, and cus-
tomers place orders and write reviews about the products they have purchased.
OpenCart follows the MVC model, where the code is divided into three categories:
Model, View and Controller. Model is the database abstraction layer, View is re-
sponsible for the presentation of the information and Controller implements the
application logic. Despite the difference in the architecture, we were able to in-
tegrate LABELFLOW easily in less than 60 lines of code, so that an administrator
could limit the visibility of products to a audience of their choice.

20

6.4 Comparison with RESIN

RESIN [30] is an information-flow system for PHP that uses assertion-based data
flow. Assertions are pieces of code that implement the desired security or privacy
policy for each piece of data. From a programmer’s perspective, writing such
assertions requires deep understanding of the application, its execution paths and
its data structures, since the assertions are application-specific pieces of code. In
comparison, implementing security and privacy policies in LABELFLOW requires
knowledge of the framework rather than the application, our policies are more
application-agnostic.

Yip et al. report a performance overhead of 33% running RESIN in the HotCRP
conference management application. LABELFLOW incurs a much lower overhead
on running MediaWiki (see Figure 7). To further compare the performance of
overhead of RESIN and LABELFLOW, we run a series of microbenchmark tests for
both on the same system. Figure 8 presents the results. We have compared RESIN,
LABELFLOW and their corresponding “original” versions of PHP. For RESIN,
the original version is PHP5.2.5; for LABELFLOW, it is PHP5.2.17. Overall, we
found that LABELFLOW is significantly faster on SQL operations.

7 Related Work
Tainting analysis [29] and flow tracking are both very active research fields. The
academic literature is rich. The closest research effort to LABELFLOW is RESIN [30]
and . RESIN [30] is a language runtime that supports dynamically checking as-
sertions in PHP and Java programs. RESIN requires the programmer to write
policy assertions and modifies the PHP runtime engine to dynamically check and
enforce the described policies. To do that, it performs dynamic tracking of appli-
cation data, similar to information flow tracking in LABELFLOW. LABELFLOW

provides an application agnostic representation of the policy which we believe
is easier to implement in legacy systems. Measurements have shown that LA-
BELFLOW adds a smaller overhead to the application than RESIN. DBtaint [6]
adds information flow tracking in the Perl and Java database API. Similarly to
LABELFLOW, DBTaint replaces each piece of data in the database with a com-
posite representation of the data and its taint value. It then dynamically rewrites
queries to extract the taint bit or data value as required. LABELFLOW also uses
dynamic SQL rewriting to insert labels into the database. It, however, labels the
whole row in a table on INSERT and UPDATE queries, whereas it ignores rows

21

 1

 10

 100

 1000

 10000

 100000

assign call concat add insert select

m
icr

os
ec

on
ds

 (l
og

)

operation

resin
resin_baseline

labelflow
labelflow_baseline

(a) Microbenchmark performance.

 0.1

 1

 10

 100

 1000

assign call concat add insert select

pe
rce

nt
ag

e o
ve

rh
ea

d (
log

)

operation

resin
labelflow

(b) Overhead imposed by each system over its baseline.

Figure 8: Comparison between LABELFLOW and RESIN.

with higher labels on SELECT. To facilitate porting legacy code, we also perform
dynamic rewriting of CREATE TABLE queries, so that all changes in the schema
are transparent and no database code needs to be rewritten in the application.

More particularly, tainting has been extensively used in various proposals for
securing a wide range of systems. Newsome at al., have proposed dynamic taint-
ing analysis for detecting exploits on commodity systems. Tainting has been also
used solely in securing web applications [27, 19, 20], and, partially, for detecting
and preventing code-injection attacks [18, 21]. However, all of these frameworks
target very precise problems, such as cross-site scripting [27] and SQL injection,
or apply selectively to an isolated layer of the complete system. For example,
tainting is used to investigate if the DOM of a web page has been infiltrated by
foreign data [18]. LABELFLOW follows a generic approach for enhancing web
applications with information flow capabilities.

22

There are multiple static and dynamic systems for controlling information
flow. SELinks [5] is a security-enhanced version of the Links web-programming
language, extended with support for typed labels. SELinks supports persistent
labels through the database, since all client, server, and database code is gener-
ated by the Links compiler from the same SELinks web-program. Jif [17, 15]
is an extension of Java with support for label-based information flow. It uses a
combination of type-checking [31], static analysis and runtime checks to enforce
information-flow policies in Jif programs. Banerjee and Naumann [1] present
a similar static type-checking system for statically checking label-based poli-
cies in object oriented languages. Functional languages like Fable, Fine and
F* [25, 24, 22] support complex, dependent label types that are capable of ex-
pressing and enforcing complicated policies, dynamic label creation.

Taint analysis is an important sub-problem of information flow, and has been
studied extensively in the past. Static taint analysis [8, 13] for C and Java use
type-based static analysis to infer tainting for all possible static labels in the pro-
gram, providing sound guarantees, although they suffer from false positives. Dy-
namic taint analysis for Perl1 [28] and Java [9] change the interpreter or VM
to track tainting information per unit of data, either per character or per object.
Php-Taint [26] extends the PHP engine with similar per-object support, although
it is not fully maintained in the current PHP engine. In LABELFLOW, we ex-
tended PHP-Taint with support for arbitrary labels, external C library functions
and the PHP foreign function interface, as well as more language primitives.
Many systems have been proposed in the past for controlling information flow
in the database. LABELFLOW supports row-level label granularity, similarly to
row-level security supported by several commercial relational databases. Li and
Zdancewic [12] present a label-based formal system for checking information
flow through the database in web applications and prove its safety.

8 Conclusions
Web applications are highly complex and sophisticated, usually composed of
many diverse components and layers, and often written in different languages.
This makes it hard for the programmer to change an existing web application
to control information flow or adhere to a specific privacy policy. This paper
presents LABELFLOW, a system for dynamic information flow tracking on web

1http://perldoc.perl.org/perlsec.html#Taint-mode

23

applications in PHP. LABELFLOW improves security and privacy in legacy web
applications using label-based information flow. LABELFLOW handles the multi-
tier architecture usually found in web applications; it transparently extends the
database schema to associate information flow labels with every row; it extends
the PHP bytecode interpreter to transparently track labels at runtime; and it com-
bines the two, so that the programmer need only implement the policy code with
minimal, or even zero, changes to the rest of the legacy application.

We evaluated LABELFLOW on three large real-world web applications. With
minimal code changes, LABELFLOW was able to enforce complex policies with
minimal overhead. Finally, we have formally proven that our extensions protect
against information leakage.

24

A Formal Semantics

A.1 Language Terms

(Constants) n ∈ N
(Base Labels) k ∈ L
(Labels) l, pc ::= k | x | l t l | ⊥ | >
(Constraints) C ::= ∅ | C, l v l
(Values) v ::= l | nl | () | λx . e
(Expressions) e ::= v | e e | create table | insert e into n

| update e to e in n | newlabel
| taint e with e | elevate ep

(Databases) DB ::= ∅ | DB, T
(DB Tables) T ⊆ ∅ | T, (n, l)

25

A.2 Operational Semantics

E-New
l − fresh

〈DB, pc, newlabel〉 → 〈DB, pc, l〉

E-Create
〈DB, pc, create table〉 → 〈(DB, ∅), pc, ()〉

E-Insert
T ′k = Tk, (v, pc)〈

T1, . . . , Tk, . . . Tn, pc, insert v
l into k

〉
→

〈T1, . . . , T ′k, . . . Tn, pc, ()〉

E-Select
Tn ∈ DB (v, l2) ∈ {(v, l) | (v, l) ∈ Tn ∧ l v pc}〈

DB, pc, select vl1 from n
〉
→

〈
DB, pc, vl2

〉
E-Taint1

e1 → e′1
〈DB1, pc, taint e1 with e2〉 → 〈DB1, pc, taint e

′
1 with e2〉

E-Taint2 e→ e
〈DB, pc, taint v with e〉 → 〈DB, pc, taint v with e′〉

E-Taint3
l = labelof(n) lab(n, l t pc)

〈DB, pc, taint n with l〉 → 〈DB, pc, l〉

E-Elevate1
〈DB,>, elevate e〉 → 〈DB,>, elevate e′〉
〈DB, pc, elevate e〉 → 〈DB, pc, elevate e′〉

E-Elevate2
〈DB, pc, elevate l〉 → 〈DB, l, ()〉

E-App
(λx.e)v → e[v/x]

E-App1
e1 → e′1

e1 e2 → e′1 e2

E-App2
e2 → e′2

v1 e2 → v1 e
′
2

26

B The Language
PHPsec is a functional language designed to resemble PHP and our changes for
information flow. Our language includes a database for persistent storage.

B.1 Semantics
New Create a new label.

Create Create a new table. From the programmer’s perspective each table has
only one column, thus each row contains only one piece of data. Internally,
our engine augments the table with one extra column to hold the label for
each piece of data is stored in the table.

Select Select the elements from the table with label no more restrictive than the
current pc.

Insert Insert a piece of data into the table. Internally, the label of the data is
stored in a hidden column in the same row as the data.

Taint Taint a piece of data with the label. The new label is appended to the labels
that the data already have.

Elevate Elevate upgrades the pc of the current session.Elevate executes an ap-
plication specific code that authenticates the user with the application and
returns its credential. The credential is the most restrictive label that the
user can access. Elevate upgrades the pc to >, so that the authentication
code can have full access to all data. In the end Elevate updates the current
pc to the credential of the user.

C Formal Proofs
Lemma 1. For each label l generated by newlabel the following conditions al-
ways hold:

1. ⊥ @ l @ >

2. l v l′,∀l′ ∈ L − {⊥}

27

Lemma 2 (Table Similarity). Let tables T1, T2 ⊆ N × L. We say that T1 and T2
are similar up to l and write (T1 =l T2), if ∀l′ v l, v (v, l′) ∈ T1 ⇔ (v, l′) ∈ T2.

The only difference between T1 and T2 is for data with label more restrictive
than l.

Lemma 3. Let databases DB1 = {T1, . . . , Tn} and DB2 = {T ′1, . . . , T ′k}. The
two databases have the same schema iff n = k.

Since each table consists of only one column and the is only a single type of
data. Two databases have the same schema if they contain the same number of
tables.

Lemma 4 (Database Similarity). Let databasesDB1 = {T1, . . . , Tn} andDB2 =
{T ′1, . . . , T ′k}. We say that DB1 and DB2 are similar up to l and write DB1 =l

DB2 if:

1. n = k, thus the databases have the same schema.

2. ∀i ∈ (1, n), Ti ∈ DB1, T
′
i ∈ DB2 ⇒ Ti =l T

′
i

Two databases are similar up to l if the have the same schema and each table
Ti in DB1 is similar up to l with T ′i in DB2.

Theorem 2. Assume e is an expression without any elevate e terms, l and pc are
labels, and DB1, DB2 are databases with DB1 ∼l DB2. Then executing e un-
der the two different databases with input labeled l will yield the same results:
〈DB1, pc, e〉 →∗ 〈DB′1, pc, v〉 if and only if 〈DB2, pc, e〉 →∗ 〈DB′2, pc, v〉 More-
over, it will be DB′1 ∼l DB

′
2.

Proof. By induction, on the derivations of e. We will show that executing each
derivation of e, with pc and label l for eachd database will return the same result.

Base Cases For following cases the theorem holds trivially:

value v

label l

unit ()

function λx.e

28

Induction Assuming that the theorem holds for an expression e we are going to
prove that it holds for e′.

newlabel Assume e = newlabel then the rule [E-NEW] applies:

〈DB1, pc, newlabel〉 → 〈DB1, pc, l〉 (1)

〈DB2, pc, newlabel〉 → 〈DB2, pc, l〉 (2)

Both (1) and (2) return the same result.

taint if e = taint e1 with e2. There are three cases to consider:

1. If e1 can step then rule [E-Taint1] applies:

〈DB1, pc, taint e1 with e2〉 → 〈DB1, pc, taint e
′
1 with e2〉 (3)

〈DB2, pc, taint e1 with e2〉 → 〈DB2, pc, taint e
′
1 with e2〉 (4)

2. If e2 can step then rule [E-Taint2] applies.

〈DB1, pc, taint v with e2〉 → 〈DB1, pc, taint v with e′2〉 (5)

〈DB2, pc, taint v with e2〉 → 〈DB2, pc, taint v with e′2〉 (6)

3. If e1 = v and e2 = l then by [E-Taint3].

〈DB1, pc, taint v with l〉 → 〈DB1, pc, l〉 (7)

〈DB2, pc, taint v with l〉 → 〈DB2, pc, l〉 (8)

create Assume e = create table then rule [E-Create] applies:

〈DB1, pc, create table〉 → 〈DB1, ∅, pc, ()〉 (9)

〈DB2, pc, create table〉 → 〈(DB2, ∅), pc, ()〉 (10)

insert Let DB1 = {T11, . . . , T1n} and DB2 = {T21, . . . , T2n}. If e =
insert vl into k and e can take a step then the rule [E-INSERT] ap-
plies:

〈
{T11, . . . , T1k, . . . , T1n}, pc, insert vl into k

〉
→ 〈{T11, . . . , T ′1k, . . . , T1n}, pc, ()〉

(11)

29

〈
{T21, . . . , T2k, . . . , T2n}, pc, insert vl into k

〉
→ 〈{T21, . . . , T ′2k, . . . , T2n}, pc, ()〉

(12)
We need to prove that DB1 =l DB2 still holds after the insert. We
start by proving that T ′1k =l T

′
2k.

T ′1k = T1k ∪ {(v, l)} (13)

T ′2k = T2k ∪ {(v, l)} (14)

Since T1k =l T2k holds follows that T ′1k =l T
′
2k. By lemma 4 follows

that DB1 =l DB2 holds.

select If e = select k from n the rule [E-Select] applies:

〈DB1, pc, select k from n〉 → 〈DB1, pc, v1k〉 (15)

〈DB2, pc, select k from n〉 → 〈DB2, pc, v2k〉 (16)

We will show that v1k = v2k. By the premises of the [E-Select] infer-
ence rule we know that:

v1k = {(v, l) | (v, l) ∈ n1 ∧ l v pc} (17)

v2k = {(v, l) | (v, l) ∈ n2 ∧ l v pc} (18)

Since table n inDB1 and table n inDB2 contain the same elements up
to pc and vik will only retrive elements up to pc folows that v1k = v2k.

e · e If e = e1 · e2, we have three subcases to consider.

1. If e1 can make an evaluation step then the rule [E-App1] applies:

〈DB1, pc, e1 · e2〉 → 〈DB1, pc, e
′
1 · e2〉〉 (19)

〈DB2, pc, e1 · e2〉 → 〈DB2, pc, e
′
1 · e2〉〉 (20)

2. If e1 is a value and e2 can make an evaluation step then the rule
[E-App2] applies:

〈DB1, pc, e1 · e2〉 → 〈DB1, pc, e1 · e′2〉 (21)

〈DB2, pc, e1 · e2〉 → 〈DB2, pc, e
′
1 · e2〉 (22)

30

3. If e1 = λx.e is a value and e2 = v is a value then the rule [E-APP]
applies:

〈DB1, pc, (λx.e)v〉 → 〈DB1, pc, e[v/x]〉 (23)

〈DB2, pc, (λx.e)v〉 → 〈DB2, pc, e[v/x]〉 (24)

References
[1] BANERJEE, A., AND NAUMANN, D. A. Secure information flow and pointer confinement

in a java-like language. In CSFW (2002).

[2] BRUMLEY, D., AND BONEH, D. Remote timing attacks are practical. In USENIX Security
(2003), pp. 1–1.

[3] CHEN, S., WANG, R., WANG, X., AND ZHANG, K. Side-Channel Leaks in Web Applica-
tions: A Reality Today, a Challenge Tomorrow. In SOSP (Washington, DC, USA, 2010), SP
’10, IEEE Computer Society, pp. 191–206.

[4] CHINIS, G., PRATIKAKIS, P., ATHANOSOPOULOS, E., AND IOANNIDIS, S. Practical
information flow for legacy web applications. Tech. Rep. 428-Apr-2012, Foundation for
Research and Technology - Hellas, Apr. 2012.

[5] CORCORAN, B. J., SWAMY, N., AND HICKS, M. Cross-tier, label-based security enforce-
ment for web applications. In SIGMOD (July 2009).

[6] DAVIS, B., AND CHEN, H. Dbtaint: Cross-application information flow tracking via
databases. In WebApps (2010).

[7] FEDERAL TRADE COMMISSION. Facebook settles ftc charges that it deceived con-
sumers by failing to keep privacy promises. http://www.ftc.gov/opa/2011/11/
privacysettlement.shtm, November 2011.

[8] FOSTER, J. S., JOHNSON, R., KODUMAL, J., AND AIKEN, A. Flow-Insensitive Type
Qualifiers. TOPLAS 28, 6 (November 2006), 1035–1087.

[9] HALDAR, V., CHANDRA, D., AND FRANZ, M. Dynamic taint propagation for java. In
ACSAC (2005).

[10] KAMBALYAL, C. 3-tier architecture. http://channukambalyal.tripod.com/
NTierArchitecture.pdf, 2010.

[11] L.A TIMES. Bank of america data leak destroys trust. http://articles.latimes.
com/2011/may/24/business/la-fi-lazarus-20110524, May 2011.

[12] LI, P., AND ZDANCEWIC, S. Practical information-flow control in web-based information
systems. In CSFW (2005).

31

[13] LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabilities in java applications
with static analysis. In USENIX Security (2005).

[14] MEDIAWIKI.ORG. Security issues with authorization extensions. http:
//www.mediawiki.org/wiki/Security_issues_with_authorization_
extensions, August 2011.

[15] MYERS, A. C. Jflow: practical mostly-static information flow control. In POPL (1999).

[16] MYERS, A. C., AND LISKOV, B. Protecting privacy using the decentralized label model.
ToSEM 9 (2000), 2000.

[17] MYERS, A. C., NYSTROM, N., ZHENG, L., , AND ZDANCEWIC, S. Jif: Java information
flow. http://www.cs.cornell.edu/jif, July 2001. Software Release.

[18] NADJI, Y., SAXENA, P., AND SONG, D. Document Structure Integrity: A Robust Basis for
Cross-site Scripting Defense. In NDSS (2009).

[19] NANDA, S., LAM, L., AND CHIUEH, T. Dynamic Multi-Process Information Flow Tracking
for Web Application Security. In Middleware (2007).

[20] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., SHIRLEY, J., AND EVANS, D. Auto-
matically Hardening Web Applications Using Precise Tainting. In IFIP SEC (2005), pp. 372–
382.

[21] SEKAR, R. An Efficient Black-box Technique for Defeating Web Application Attacks. In
NDSS (San Diego, CA, Feb. 8-11, 2009).

[22] STRUB, P.-Y., SWAMY, N., FOURNET, C., AND CHEN, J. Self-certification: Bootstrapping
certified typecheckers in F* with Coq. In POPL (2012).

[23] SUH, G., LEE, J., ZHANG, D., AND DEVADAS, S. Secure program execution via dynamic
information flow tracking. In SIGPLAN Not. (2004), vol. 39, pp. 85–96.

[24] SWAMY, N., CHEN, J., AND CHUGH, R. Enforcing stateful authorization and information
flow policies in fine. In ESOP (2010).

[25] SWAMY, N., CORCORAN, B., AND HICKS, M. Fable: A language for enforcing user-
defined security policies. In SOSP (2008).

[26] VENEMA, W. Taint support for PHP, April 2011. https://wiki.php.net/rfc/
taint. Last visited on January 2012.

[27] VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E., KRUEGEL, C., AND VIGNA, G.
Cross-Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In NDSS
(2007).

[28] WALL, L., CHRISTIANSEN, T., AND ORWANT, J. Prog. Perl, 3 ed. O’Reilly, 2000.

[29] XU, W., BHATKAR, E., AND SEKAR, R. Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks. In USENIX Security (2006), pp. 121–136.

[30] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F. Improving application
security with data flow assertions. In SOSP (2009), pp. 291–304.

32

[31] ZDANCEWIC, S., AND MYERS, A. C. Secure information flow and CPS. In ESOP (2001).

[32] ZHANG, K., LI, Z., WANG, R., WANG, X., AND CHEN, S. Sidebuster: automated de-
tection and quantification of side-channel leaks in web application development. In CCS
(2010), pp. 595–606.

33

