
Clotho: Transparent Data Versioning
at the Block I/O Level

Michail D. Flouris
Department of Computer Science,

10 King’s College Road,
University of Toronto,

Toronto, Ontario M5S 3G4, Canada
Email: flouris@cs.toronto.edu

Angelos Bilas
Institute of Computer Science

Foundation for Research and Technology - Hellas
Science and Technology Park of Crete

P.O.Box 1385
GR 711 10 Heraklion, Crete, Greece

Email: bilas@ics.forth.gr

Abstract

Recently storage management has emerged as one of the main problems in building cost effective storage infras-

tructures. One of the issues that contribute to management complexity of storage systems is maintaining previous

versions of data. Up till now such functionality has been implemented by high-level applications or at the file sys-

tem level. However, many modern systems aim at higher scalability and do not employ such management entities as

filesystems.

In this paper we propose pushing the versioning functionality closer to the disk by taking advantage of mod-

ern, block-level storage devices. We present Clotho1, a storage block abstraction layer that allows transparent and

automatic data versioning at the block level. Clotho provides a set of mechanisms that can be used to build flexible

higher-level version management policies that range from keeping all data modifications to version capturing triggered

by timers or other system events.

Overall, we find that our approach is promising in offloading significant management overhead and complexity

from higher system layers to the disk itself and is a concrete step towards building self-managed storage devices. Our

specific contributions are: (i) We implement Clotho as a new layer in the block I/O hierarchy in Linux and demonstrate

that versioning can be performed at the block level in a transparent manner to all higher system layers and provide

simple techniques for capturing consistent versions during system operation. (ii) We investigate the impact on I/O

path performance overhead using both microbenchmarks as well as SPEC SFS V3.0 over two real filesystems, Ext2FS

and ReiserFS. We find that this can be negligible compared to non-versioned block devices, when there is no need

for version compaction. (iii) We examine techniques that reduce the memory and disk space required for metadata

information.

I. INTRODUCTION

Storage is currently emerging as one of the major problems in building tomorrow’s computing infrastructure.

Future systems will provide tremendous storage, CPU processing, and network transfer capacity in a cost-efficient

manner and they will be able to process and store ever increasing amounts of data. The cost of managing these

large amounts of stored data becomes the dominant complexity and cost factor for building, using, and operating

modern storage systems. Recent studies [9] show that storage expenditures represent more than 50% of the typical

server purchase price for applications such as OLTP (On-Line Transaction Processing) or ERP (Enterprise Resource

1Clotho, one of the Fates in ancient Greek mythology, spins the thread of life for every mortal.

2

Planning) and these percentages will keep growing. Furthermore, the cost of storage administration is estimated

at several times the purchase price of the storage hardware [11], [33], [1], [4], [35], [32], [6]. Thus, building self-

managed storage devices that reduce management-related overheads and complexity is of paramount importance.

One of the most cumbersome management tasks that requires human intervention is creating, maintaining, and

recovering previous versions of data for archival, durability, and other reasons. The problem is exacerbated as

the capacity and scale of storage systems increases. Today, backup is the main mechanism used to serve these

needs. However, traditional backup systems are limited in the functionality they provide. Moreover they usually

incur high access and restore overheads on magnetic tapes, they impose a very coarse granularity in the allowable

archival periods, usually at least one day, and they result in significant management overheads [27], [4]. Automatic

versioning, in conjunction with increasing disk capacities, has been proposed [27], [4] as a method to address these

issues. In particular, magnetic disks are becoming cheaper and larger and it is projected that disk storage will soon

be as competitive as tape storage [8], [4]. With the advent of inexpensive high-capacity disks, we can perform

continuous, real-time versioning and we can maintain online repositories of archived data.

Moreover, online storage versioning offers a new range of possibilities compared to simply recovering users’ files

that are available today only in expensive, high-end storage systems:

• Recovery from user mistakes. Accidentally deleted or modified data can be recovered by rolling-back to a

saved version. Online versioning allows frequent storage snapshots that reduce the amount of data lost com-

pared to traditional backup systems. Moreover, recovery can be performed by the users themselves without

administrator intervention.

• Recovery from system corruption. Online storage versioning can help with malicious attacks on computer

systems that may corrupt stored data, such as through viruses, trojan horses, or cracker intrusions. With online

versioning, system administrators can quickly and efficiently identify corrupted data as well as recover to a

previous, consistent system state [30], [28]. Ideally, a self-managed system could automatically recover to a

safe state when intrusion or corruption is detected.

• Historical analysis of data modifications. This can also be seen as storage auditing in cases where it is

necessary to understand how a piece of data has reached a certain state. This is a particularly useful concept,

for example when law imposes certain restrictions on data archival.

Our goal in this paper is to provide online storage versioning capabilities in commodity storage systems, in a

transparent and cost-effective manner. Storage versioning has been previously proposed and examined purely at

the filesystem level [26], [24] or at the block level [13], [17] but being filesystem aware. These approaches to

versioning were intended for large, centralized storage servers or appliances. We argue that to build self-managed

storage systems, versioning functionality should be pushed to lower system layers, closer to the disk to offload higher

system layers. This is made possible by underlying technologies that drive storage systems. Disk storage, network

bandwidth, processor speed, and main memory are reaching speeds and capacities that make it possible to build

cost-effective storage systems with significant processing capabilities [10], [12], [22], [8] that will be able to both

store vast amounts of information [16], [12] and to provide advanced functionality.

Our approach of providing online storage versioning is to provide all related functionality at the block level. This

3

approach has a number of advantages compared to other approaches that try to provide the same features either at

the application or the filesystem level. First, it provides a higher level of transparency and in particular is completely

filesystem agnostic. For instance, we have used our versioned volumes with multiple, third party, filesystems without

the need for any modifications. Data snapshots can be taken on demand and previous versions can be accessed online

simultaneously with the current version. Second, it reduces complexity in higher layers of storage systems, namely

the filesystem and storage management applications [14]. Third, it takes advantage of the increased processing

capabilities and memory sizes of active storage nodes and offloads expensive host-processing overheads to the disk

subsystem, thus, increasing the scalability of a storage archival system [14].

However, block-level versioning poses certain challenges as well: (i) Memory and disk space overhead: Because

we only have access to blocks of information, depending on application data access patterns, there is increased danger

for higher space overhead in storing previous versions of data and the related metadata. (ii) I/O path performance

overhead: It is not clear at what cost versioning functionality can be provided at the block-level. (iii) Consistency of

the versioned data when the versioned volume is used in conjunction with a filesystem. (iv) Versioning granularity:

Since versioning occurs at a lower system layer, information about the content of data is not available, as is, for

instance, the case when versioning is implemented in the filesystem or the application level. Thus, we only have

access to full volumes as opposed to individual files.

We design Clotho, a system that provides versioning at the block-level and addresses all above issues, demon-

strating that this can be done at minimal space and performance overheads. First, Clotho has low memory space

overhead and uses a novel method to avoid copy-on-write costs when the versioning extent size is larger than the

block size. Furthermore, Clotho employs off-line differential compression (or diffing) to reduce disk space overhead

for archived versions. Second, using advanced disk management algorithms, Clotho’s operation is reduced in all

cases to simply manipulating pointers in in-memory data structures. Thus, Clotho’s common-path overhead follows

the rapidly increasing processor-memory curve and does not depend on the much lower disk speeds. Third, Clotho

deals with version consistency by providing mechanisms that can be used by higher system layers to guarantee that

either all data is consistent or to mark which data (files) are not. Finally, we believe that volumes are an appropriate

granularity for versioning policies. Given the amounts of information that will need to be managed in the future,

specifying volume-wide policies and placing files on volumes with the appropriate properties, will result in more

efficient data management.

We implement Clotho as an additional layer (driver) in the I/O hierarchy of Linux. Our implementation approach

allows Clotho the flexibility to be inserted in many different points in the block layer hierarchy in a single machine,

a clustered I/O system or a SAN. Clotho works over simple block devices such as a standard disk driver or more

advanced device drivers such as volume managers or hardware/software RAIDs. Furthermore, our implementation

provides to higher layers the abstraction of a standard block device and thus, can be used by other disk drivers,

volume/storage managers, object stores or filesystems.

We evaluate our implementation with both microbenchmarks as well as real filesystems and the SPEC SFS 3.0

suite over NFS. The main memory overhead of Clotho for metadata is about 500 Kbytes per GByte of disk space and

can be further reduced by using larger extents. Moreover, the performance overhead of Clotho for I/O operations is

4

minimal, however, it may change the behavior of higher layers (including the filesystem), especially if they make

implicit assumptions about the underlying block device, e.g. the location of disk blocks. In such cases, co-design

of the two layers, or system tuning maybe necessary to not degrade system performance. Overall, we find that our

approach is promising in offloading significant management overhead and complexity from higher system layers to

the disk itself and is a concrete step towards building self-managed storage systems.

The rest of this paper is organized as follows. Section II presents our design and discusses the related challenges

in building block-level versioning systems. Section III presents our implementation. Section IV presents our exper-

imental evaluation and results. Section V discusses related work, while section VI presents limitations and future

work. Finally, Section VII draws our conclusions.

II. SYSTEM DESIGN

The design of Clotho is driven by the following high-level goals and challenges:

• Flexibility and transparency.

• Low metadata footprint and low disk space overhead.

• Low-overhead version and common I/O path operations.

• Consistent online snapshots.

Next we discuss how we address each of these challenges separately.

A. Flexibility and Transparency

Clotho provides to higher system layers versioned volumes. These volumes look similar to ordinary physical disks

that can, however, be customized, based on user-defined policies to keep previous versions of the data they store.

Essentially, Clotho provides a set of mechanisms that allow the user to add time as a dimension in managing data by

creating and manipulating volume versions. Every piece of data passing through Clotho is indexed based not only

on its location on the block device, but also on the time the block was written. When a new version is created, a

subsequent write to a block will create a new block preserving the previous version. Multiple writes to the same data

block between versions result in overwriting the same block. Using Clotho, device versions can be captured either

on demand or automatically at prespecified periods. The user can view and access all previous versions of the data

online, as independent block devices along with the current version. The user can compact and/or delete previous

volume versions. In this work we focus on the mechanisms Clotho provides and we only present simple policies we

have implemented and tested ourselves. We expect that systems administrators will further define their own policies

in the context of higher-level storage management tools.

Clotho provides a set of primitives (mechanisms) that higher-level policies can use for automatic version manage-

ment:

• CreateVersion() provides a mechanism for capturing the lower-level block device’s state into a version.

• DeleteVersion() explicitly removes a previously archived version and reclaims the corresponding volume

space.

• ListVersions() shows all saved version of a specific block device.

5

FS, Database, NFS, etc.

Disk DiskDisk Disk ...

Virtual Block Volume

DiskDisk

RAID Controller

Disk ...

FS, Database, NFS, etc.

Clotho (Versioning Layer)

Clotho (Versioning Layer)

Clotho (Versioning Layer)

FS, Database, NFS, etc.

Fig. 1. Clotho in the block device hierarchy.

• ViewVersion() enables creating a virtual device that corresponds to a specific version of the volume and is

accessible in read-only mode.

• CompactVersion() and UncompactVersion() provide the ability to compact and uncompact existing

versions for reducing disk space overhead.

Versions of a volume have the following properties: Each version is identified by a unique version number, which

is an integer counter starting from value 0 and increasing with each new version. Version numbers are associated

with timestamps for presentation purposes. All blocks of the device that are accessible to higher layers during a

period of time will be part of the version of the volume taken at that moment (if any) and will be identified by the

same version number. Each of the archived versions exists solely in read-only state and will be presented to the

higher levels of the block I/O hierarchy as a distinct, virtual, read-only block device. The latest version of a device

is both readable and writable, exists through the entire lifetime of the Clotho’s operation and cannot be deleted.

One of the main challenges in Clotho is to provide all versioning mechanisms at the block level in a transparent

and flexible manner. Clotho can be inserted arbitrarily in a system’s layered block I/O hierarchy. This stackable

driver concept has been employed to design other block-level I/O abstractions, such as software RAID systems or

volume managers, in a clean and flexible manner [17]. The input (higher) layer can be any filesystem or other block-

level abstraction or application, such as a RAID, volume manager, or another storage system. Clotho accepts block

I/O requests (read, write, ioctl) from this layer. Similarly, the output (lower) layer can be any other block device

or block-level abstraction. This design provides great flexibility in configuring a system’s block device hierarchy.

Figure 1 shows some possible configurations for Clotho. On the left part of Figure 1, Clotho operates on top of a

physical disk device. In the middle, Clotho acts as a wrapper of a single virtual volume constructed by a volume

manager, which abstracts multiple physical disks. In this configuration Clotho captures versions of the whole virtual

volume. On the right side of Figure 1, Clotho is layered on top of a RAID controller which adds reliability to the

system. The result is a storage volume that is both versioned and can tolerate disk failures.

Most higher level abstractions that are built on top of existing block devices assume a device of fixed size, with

few rare exceptions such as resizable filesystems. However, the space taken by previous versions of data in Clotho,

depends on the number and the amount of modified data between them. Clotho can provide both a fixed size block

device abstraction to higher layers, as well as dynamically resizable block device abstractions, if the higher layers

6

��Output Layer Capacity

����������������������������

Input Layer Capacity

M
et

ad
at

a Data Segment
Segment

Backup
Data

Primary

Fig. 2. Logical space segments in Clotho.

support it. At device initialization time Clotho reserves a configurable percentage of the available device space

for keeping previous versions of the data. This essentially partitions (logically not physically) the capacity of the

wrapped device into two logical segments as illustrated in Figure 2. The Primary Data Segment (PDS), which

contains the data of the current (latest) version and the Backup Data Segment (BDS), which contains all the data of

the archived versions. When BDS becomes full, Clotho simply returns an appropriate error code and the user has

to reclaim parts of the BDS by deleting or compacting previous versions, or by moving them to some other device.

These operations can also be performed automatically by a module that implements high-level data management

policies. The latest version of the block device continues to be available and usable at all times. Clotho enforces this

capacity segmentation by reporting as its total size to the input layer, only the size of the PDS. The space reserved

for storing versions is hidden from the input layer and is accessed and managed only through the API provided by

Clotho.

Finally, Clotho’s metadata need to be saved on the output device along with the actual data. Losing metadata used

for indexing extents would render the data stored throughout the block I/O hierarchy unusable. This is similar to

most block-level abstractions, such as volume managers, and software RAID devices. Clotho stores metadata to the

output device periodically. The size of the metadata depends on the size of the encapsulated device and the extent

size. In general, Clotho’s metadata are much less than the metadata of a typical filesystem and thus, saving them to

stable storage is not an issue.

B. Reducing Metadata Footprint

The three main types of metadata in Clotho are the Logical Extent Table (LXT), the Device Version List (DVL),

and the Device Superblock (DSB).

Logical Extent Table (LXT): Clotho presents to the input layer logical block numbers as opposed to the physical

block numbers provided by the wrapped device. Note that these block numbers need not directly correspond to

actual physical locations, if another block I/O abstraction, such as a volume manager (e.g. LVM [31]) is used as the

output layer. Clotho uses the LXT to translate logical block numbers to physical block numbers.

Device Version List (DVL): Clotho maintains a list of all versions of the output device and makes them available

to higher layers as separate block devices. For every existing version, it stores its version number, the virtual device

it may be linked to, the version creation timestamp, and a number of flags.

7

0 1 0 0

4−KByte extent

0 0 01

32−KByte extent with
4−KByte subextents

Valid subextent
bitmap

Device Block Size (input and output): 4 Kbytes

Fig. 3. Subextent addressing in large extents.

Device Superblock (DSB): The device superblock is a small table containing important attributes of the output

versioned device. It stores information about the capacity of the input and output layer, the space partitioning, size of

the extents, the output layer sector and block size, the current version counter, the total number of existing versions

and several other usage counters.

The LXT is the most demanding type of metadata and is conceptually an array indexed by block numbers. The

basic block size for most block devices varies between 512 Bytes (the size of a disk sector) and 8 KBytes. This

results in large memory requirements. For instance, for 1 TByte of disk storage with 4-KByte blocks, the LXT has

256M entries. In the current version of Clotho, every LXT entry is 128-bits (16 bytes). These include 32 bits for

block addressing and 32 bits for versions that allow for a practically unlimited number of versions. Thus, the LXT

requires about 4 GBytes per TByte of disk storage. Note that a 32-bit address space, with 4 KByte blocks, can

address 16 TBytes of storage.

To reduce the footprint of the LXT and at the same time increase the addressing range of LXT, we use extents

as opposed to device blocks as our basic data unit. An extent is a set of consecutive (logical and physical) blocks.

Extents can be thought as Clotho’s internal block size, which one can configure to arbitrary sizes, up to several

hundred KBytes or a few MBytes. Similarly to physical and logical blocks, we denote extents as logical (input)

extents or physical (output) extents. We have implemented and tested extent sizes ranging from 1 KByte to 64

KBytes. With 32-KByte extents and subextent addressing, we need only 500 MBytes of memory per TByte of

storage. Moreover with a 32-KByte extent size we can address 128 TBytes of storage.

However, large extent sizes may result in significant performance overhead. When the extent size and the operating

system block size for Clotho block devices are the same (e.g. 4KBytes), Clotho receives from the operating system

the full extent for which it has to create a full version. When using extents larger than this maximum size, Clotho

sees only a subset of the extent for which it needs to create a new version. Thus, it needs to copy the rest of the

extent in the new version, even though only a small portion of it written by the higher system layers. This copy can

significantly decrease performance in the common I/O path, especially for large extent sizes. However, large extents

are desirable for reducing metadata footprint. Given that operating systems support I/O blocks of up to a maximum

size (e.g. 4K in Linux), this may result in severe performance overheads.

To address this problem we use subextent addressing. Using a small (24-bit) bitmap in each LXT entry we need

not copy the whole extent in a partial update. Instead we just translate the block write to a subextent of the same size

and mark it in the subextent bitmap as valid, using just 1 bit. In a subsequent read operation we search for the valid

8

subextents in the LXT before translating the read operation. For a 32-Kbyte extent size, we need only 8 bits in the

bitmap for 4-KByte subextents.

Another possible approach to reduce memory footprint is to store only a part of the metadata in RAM and perform

swapping of active metadata from stable storage. However, this solution is not adequate for storage systems where

large amounts of data need to be addressed. Moreover it is orthogonal to subextent addressing and can be combined

with it.

C. Version Management Overhead

All version management operations can be performed at a negligible cost by manipulating in-memory data struc-

tures. Creating a new version in Clotho involves simply incrementing the current version counter and does not

involve copying any data. When CreateVersion() is called, Clotho stalls all incoming I/O requests for the time

required to flush all its outstanding writes to the output layer. When everything is synchronized on stable storage,

Clotho increases the current version counter, appends a new entry to the device version list, and creates a new virtual

block device that can be used to access the captured version of the output device, as explained later. Since each

version is linked to exactly one virtual device, the (OS-specific) device number that sends the I/O request can be

used to retrieve the I/O request’s version.

The fact that device versioning is a low-overhead operation makes it possible to create flexible versioning policies.

Versions can be created by external processes (user or admin) periodically or based on other system events. For

instance, the user processes can specify that it requires a new version every 1 hour, or whenever all files to the device

are closed or on every single write to the device. Some of the mechanisms to detect such events, e.g. if there are any

open files on a device, may be (and currently are) implemented in Clotho but could also be provided by other system

components.

In order to free backup disk space, Clotho provides a mechanism to delete volume versions. On a DeleteVer-

sion() operation, Clotho traverses the primary LXT segment and for every entry that has a version number equal

to the delete candidate, changes the version number to the next existing version number. It then traverses the backup

LXT segment and frees the related physical extents. As with version creation, all operations for version deletion are

performed in-memory adn can overlap with regular I/O. DeleteVersion() is provided to higher layer in order

to implement version cleaning policies. Since storage space is finite, such policies are necessary in order to continue

versioning without running out of backup storage. Finally, even if the backup data segment (BDS) is full, I/O to the

primary data segment and the latest version of data can continue without interruption.

D. Common I/O Path Overhead

We consider the common path for Clotho, as the I/O path to read and write to the latest (current) version of the

output block device, while versioning occurs frequently. Accesses to older versions are of less importance since

they are not expected to occur as frequently as current version usage. Accordingly, we divide read and write access

to volume versions in two categories, accesses to the current version and accesses to any previous version. The

main technique to reduce common path overhead is to divide the LXT in two logical segments, corresponding to

9

the primary and backup data segments of the output device as illustrated in Figure 2. The primary segment of the

LXT (mentioned as PLX in figures) has an equal number of logical extents as the input layer to allow a direct, 1-1

mapping between the logical extents and the physical extents of the current version on the output device. By using a

direct, 1-1 mapping, Clotho can locate a physical extent of the current version of a data block with a single lookup in

the primary LXT segment, when translating I/O requests to the current version of the versioned device. If the input

device needs to access previous versions of a versioned output device, then multiple accesses to the LXT maybe

required to locate the appropriate version of the requested extent.

To find the physical extent that holds the specific version of the requested block, Clotho first references the primary

LXT segment entry to locate the current version of the requested extent (a single table access). Then it uses the

linked list that represents the version history of the extent to locate the appropriate version of the requested block.

Depending on the type of each I/O request and the state of the requested block, I/O requests can be categorized as

follows:

Write requests can only be performed on the current version of a device, since older versions are read-only. Thus,

Clotho can locate the LXT entry of a current version extent with a single LXT access. Write requests can be one of

three kinds as shown in Figure 4:

a. Writes to new, unallocated blocks. In this case, Clotho calls its extent allocator module, which returns an

available physical extent of the output device, it updates the corresponding entry in the LXT, and forwards the

write operation to the output device. The extent allocation policy in our current implementation is a scan-type

policy, starting from the beginning of the PDS to its end. Free extents are ignored until we reach the end of the

device, when we rewind the allocation pointer and start allocating the free extents.

b. Writes to existing blocks that have been modified after the last snapshot was captured (i.e. their version number

is equal to the current version number). In this case Clotho locates the corresponding entry in the primary LXT

segment with a single lookup and translates the request’s block address to the existing physical block number

of the output device. Note that in this case the blocks are updated in place.

c. Writes to existing blocks that have not been modified since the last snapshot was captured (i.e. their version

number is lower than the current version number). The data in the existing physical extent must not be over-

written, but instead the new data should be written in a different location and a new version of the extent must

be created. Clotho allocates a new LXT entry in the backup segment and swaps the old and new LXT entries so

that the old one is moved to the backup LXT segment. The block address is then translated to the new physical

extent address, and the request is forwarded to the output layer. This “swapping” of LXT entries maintains

the 1-1 mapping of current version logical extents in the LXT which optimizes common-path references to a

single LXT lookup.

This write translation algorithm allows for independent, fine grain versioning at the extent level. Every extent in

the LXT is versioned according to its updates from the input level. Extents that are updated more often have more

versions than extents written less frequently.

Read request translation is illustrated in Figure 5. First Clotho determines the desired version of the device by the

virtual device name and number in the request (e.g. /dev/clt1-01 corresponds to version 1 and /dev/clt1-02 to version

10

Keep
Old PX

Allocate
New PX
& Write

���������������������������
���������������������

���
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

type (a) type (b)

Output
Physical
Extents

Extents

Input
Logical

Allocate
New PX

Overwrite

type (c)

& Link

& Write

WriteWriteWrite

Old PX

LXT

Old LX
Move

MappingDirect

Arbitrary Mapping

�
�

���
��

���������
������
���
��

��
�
��
�

���
��
���
�

���
��
���
�

���
�
���
�

��
�
��
�

Fig. 4. Translation path for write requests.

LXsBackup
���������
���
���
�

����������������������������
���������
���

!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"

Read request

Mapping

Direct

Read Physical
Extents (PXs)

Output
Physical
Extents

Extents

Input
Logical

LXT

Lookup

(Latest Version)
Read request

(Older Version)

Mapping
Arbitrary

#�##�##�#
#�#
$�$$�$$�$
$�$

%�%%�%&�&&�& '�''�''�'
'�'
(�((�((�(
(�(

Fig. 5. Translation path for read requests.

2). Then, Clotho traverses the version list on the LXT for the specific extent or subextent and locates the appropriate

physical block.

Finally, previous versions of a Clotho device appear as different virtual block devices. Higher layers, e.g. filesys-

tems, can use these devices to access old versions of the data. If the device id of a read request is different from the

normal input layer’s device id, the read request refers to an extent belonging to a previous version. Clotho determines

from the device id the version of the extent requested. Then, it traverses the version list associated with this extent

to locate the backup LXT entry that holds the appropriate version of the logical extent. This translation process is

illustrated in Figure 5.

E. Reducing Disk Space Requirements

Since Clotho operates at the block level, there is an induced overhead in the amount of space it needs to store data

updates. If an application for instance, using a file modifies a few consecutive bytes in the file, Clotho will create a

new version for the full block that contains the modified data. To reduce the space overhead in Clotho we provide a

differential, content-based compaction mechanism, which we describe next.

Clotho provides the user with the ability to compact device versions and still be able to transparently access them

online. The policy decision on when to compact a version is left to higher-layers in the system, similarly to all policy

decisions in Clotho. We use a form of binary differential compression (or diffing) to only store the data that has been

modified since the last version capture. When CompactVersion() is called, Clotho constructs a differential

encoding (or delta) between the blocks that belong to a given version with corresponding blocks in its previous

version. Although a lot of differential policies can be applied in this case, such as to compare the content of a

specific version with its next version, or both the previous and the next version, at this stage we only explore diffing

with the previous version. Furthermore, although versions can also be compressed independently of differential

compression using algorithms such as Lempel-Ziv encoding [36] or Wheeler-Burrows encoding [2], this is beyond

the scope of our work. We envision that such functionality can be provided by other layers in the I/O device stack.

11

Backup LXs

)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*))*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*))*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*))*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*))*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*++*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*++*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*++*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*++*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+

,*,*,*,*,*,*,*,*,*,*,*,*,,*,*,*,*,*,*,*,*,*,*,*,*,-*-*-*-*-*-*-*-*-*-*-*-*--*-*-*-*-*-*-*-*-*-*-*-*-
Direct
Mapping

Reading
Compact LX

Ancestor PX Compact PX
(stores multiple LXs)

Diff LX

Lookup

Output
Physical
Extents

Extents

Input
Logical

LXT

Arbitrary
Mapping

.*..*./
/

0*00*00*0
0*0
1*11*11*1
1*1

222
2
333
3

444
4
555
5

6*66*66*6
6*66*6
7*77*77*7
7*7

889
9

Fig. 6. Read translation for compact versions.

The differential encoding algorithm works as follows. When a compaction operation is triggered, the algorithm

runs through the backup data segment of the LXT and locates the extents that belong to the version under consider-

ation. If an extent does not have a previous version, it is not compacted. For each of the extents to be compacted the

algorithm locates its previous version, diffs the two extents, and writes the diffs to a physical extent on the output

device. If the diff size is greater than a threshold and diffing is not very effective, then Clotho discards this pair

and proceeds with the next extent of the version to be compacted. In other words, Clotho’s differential compression

algorithm works selectively on the physical extents, compacting only the extents that can be reduced in size. The

rest are left in their normal format to avoid performance penalties necessary for their reconstruction.

Since the compacted form of an extent requires less size than a whole physical extent, the algorithm stores multiple

diffs in the same physical extent, effectively, imposing a different structure on the output block device. Furthermore,

for compacted versions, multiple entries in the LXT may point to the same physical extent. The related entries in

the LXT and the ancestor extent are kept in Clotho’s metadata. Physical extents that are freed after compaction are

reused for storage. Figure 6 shows sample LXT mappings for a compacted version of the output layer.

Data on a compacted version can be accessed transparently online as data on uncompacted volumes (Figure 6).

Clotho follows the same path to locate the appropriate version of the logical extent in the LXT. To recreate the orig-

inal, full extent data we need the differential data of the previous version of the logical extent. With this information

Clotho can reconstruct the requested block and return it to the input driver. We evaluate the related overheads in

Section IV.

Clotho supports recursive compaction of devices. The next version of a compacted version can still be compacted.

Also, compacted versions can be uncompacted to their original state with the reverse process. A side-effect of the

differential encoding concept is that it creates dependences between two consecutive versions of a logical extent,

which affects the way versions are accessed, as explained next.

When deleting versions, Clotho checks for dependencies of compacted versions on a previous version and does

not delete extents that are required for un-diffing, even if their versions are deleted. These logical extents are marked

as "shadow" and are attached to the compacted version. It is left to higher-level policies to decide if keeping such

blocks around increases the space overhead and it would be better to uncompact the related version and delete any

12

shadow logical extents.

F. Consistency

One of the main issues in block device versioning at arbitrary times is consistency of the stored data. There are

three levels of consistency for online versioning:

System state consistency: This refers to consistency of system buffers and data structures that are used in the I/O

path. To deal with this, Clotho flushes all device buffers in the kernel as well as filesystem metadata before version

creation. This guarantees that the data and metadata on the block device correspond, let’s say, to a valid snapshot of

the filesystem at a point-in-time. That is, there are no consistency issues in internal system data structures.

Open file consistency: When a filesystem is used on top of a versioned device, certain files may be open at the

time of a snapshot. Clotho provides two mechanisms to deal with this issue. First, higher level layers can query

the system for open files on the particular device when creating a new version. This query is performed by Clotho’s

user-level module. Second, if a version is created when files are open, Clotho creates a special directory with links

to all open files and includes the directory in the archived version. Thus, when accessing older versions the user can

find out which files were open at versioning time. We have also designed, but not implemented yet, a mechanism for

merging subsequent volume versions to eliminate open files.

Application consistency: Applications using the versioned volume may have a specialized notion of consistency.

For instance, an application may be using two files that are both updated atomically. If a version is created after

the first file is updated and closed but before the second one is open and updated, then, although no files were open

during version creation, the application data may still be inconsistent. This type of consistency is not possible to deal

with transparently without application knowledge or support, and thus, is not addressed by Clotho.

III. SYSTEM IMPLEMENTATION

We have implemented Clotho as a block device driver module in the Linux 2.4 kernel and a user-level control

utility, in about 6,000 lines of C code. The kernel module can be loaded at runtime and configured for any output

layer device by means of an ioctl() command triggered by the user-level agent. After configuring the output

layer device, the user can manipulate the Clotho block device depending on the higher layer that they want to use.

For instance, the user can build a filesystem on top of a Clotho device with mkfs or newfs and then mount it as a

regular filesystem.

Our module adheres to the framework of block I/O devices in the Linux kernel and provides two interfaces to

user programs. An ioctl command interface, and a /proc interface for device information and statistics. All

operations described in the design section to create, delete, and manage version have been implemented through the

ioctl interface and are initiated by the user-level agent. The /proc interface provides information about each

device version through readable ASCII files. Clotho also uses this interface to report a number of statistics, including

the times of creation, a version’s time span, the size of modified data from the previous version and some specific

information to compacted versions, such as the compaction level and the number of shadow extents.

13

The Clotho module uses the zero-copy mechanism of the make request fn() fashion that is used by LVM [31].

With this mechanism Clotho is able to translate the device driver id (kdev t) and the sector address of a block

request (struct buffer head) and redirect it to other devices with minimal overhead. To achieve persistence

of metadata, Clotho uses a kernel thread created at module load time, which flushes the metadata to the output layer

at configurable (currently 30s) intervals, as well as when the module is unloaded.

The virtual device creation uses the partitionable block device concepts in the Linux kernel. A limit in the Linux

kernel minor numbering is that there can be at most 255 minor numbers for a specific device and thus only 255

versions can be seen simultaneously as partitions of Clotho. However, the number of partitions supported by Clotho

can be much larger. To overcome this limitation we have created a mechanism through an ioctl call that allows

the user to link and unlink on demand any of the available versions to any of the 255 minor number partitions of a

Clotho device. As mentioned, each of these partitions is read-only and can be used as a normal block device, e.g.

can be mounted to a mount-point.

IV. EXPERIMENTAL RESULTS

Our experimental environment consists of two identical PCs running Linux. Each system has two Pentium III 866

MHz CPUs, 768 MBytes of RAM, an IBM-DTLA-307045 ATA Hard Disk Drive with a capacity of 46116 MBytes

(2-MByte cache), and a 100MBps Ethernet NIC. The operating system is Red Hat Linux 7.1, with the 2.4.18 SMP

kernel. All experiments are performed on a 21-GByte partition of the IBM disk. With a 32-KByte extent, we need

only 10.5 MBytes of memory for our 21-GByte partition.

Although there is a number of system parameters worth investigation, at this stage of our work, we evaluate Clotho

with respect to two parameters: memory and performance overhead. We use two extent sizes, 4 and 32 KBytes.

Smaller extent sizes have higher memory requirements. For our 21-GByte partition, Clotho with 4-KByte extent

size uses 82 MBytes of in-memory metadata, the dirty parts of which are flushed to disk every 30 seconds. We eval-

uate Clotho using both microbenchmarks (Bonnie++ version 1.02 [3] and an in-house developed microbenchmark)

and real-life setups with production-level filesystems. The Bonnie++ benchmark is a publicly available filesystem

I/O benchmark [3]. For the real-life setup we run the SPEC SFS V3.0 suite on top of two well-known Linux filesys-

tems, Ext2FS, and the high-performance journaled ReiserFS [20]. In our results we use the label Disk to denote

experiments with the regular disk, without the Clotho driver on top.

A. Bonnie++

We use the Bonnie++ microbenchmark to quantify the basic overhead of Clotho. The filesystem we use in all

Bonnie++ experiments is the Ext2FS with a 4-KByte extent size. The size of the file to be tested is 2 GBytes with

block sizes ranging from 1 KByte to 64 KBytes. We measure accesses to the latest version of a volume with the

following operations:

• Block Write: A large file is created using the write() system call.

• Block Rewrite: Each block of the file is read with read(), dirtied, and rewritten with write(), requiring an

lseek().

14

2000

2500

3000

3500

4000

4500

5000

5500

6000

1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

)

Block Size (KBytes)

Bonnie++ I/O Performance - Write, Rewrite & Read

Disk Write
Clotho Write
Clotho Read

Disk Read
Disk Rewrite

Clotho Rewrite

Fig. 7. Bonnie++ throughput for write, rewrite, and read operations.

60
70
80
90

100
110
120
130
140
150
160
170

1 2 4 8 16 32 64

Se
ek

s/
se

c

Block Size (KBytes)

Bonnie++ I/O Performance - Seek

Disk
Clotho

Fig. 8. Bonnie “seek and read” performance.

• Block Read: The file is read using a read() for every block.

• Random Seek: Processes running in parallel are performing lseek() to random locations in the file and

read()ing the corresponding file blocks.

Figure 7 shows that the overhead in write throughput is minimal and the two curves are practically the same.

In the read throughput case, Clotho performs slightly better than the regular disk. We believe this is due to the

logging (sequential) disk allocation policy that Clotho uses. In the rewrite case, the overhead of Clotho becomes

more significant. This is due to the random “seek and read” operation overhead, as shown in Figure 8. Since the

seeks in this experiment are random, Clotho’s logging allocation has no effect and the overhead of translating I/O

requests and flushing filesystem metadata to disk dominates. Even in this case however, the overhead observed is at

most 7.5% of the regular disk.

B. SPEC SFS

We use the SPEC SFS 3.0 benchmark suite to measure NFS file server throughput and response time over Clotho.

We use one NFS client and one NFS server. The two systems that serve as client and server are connected with a

switched 100 MBit/s Ethernet network. We use the following settings: NFS version 3 protocol over UDP/IP, one

NFS exported directory, biod max read=2, biod max write=2, and requested loads ranging from 300 to

1000 NFS V3 operations/s with a 100 increment step. Both warm-up and run time are 300 seconds for each run and

the time for all the SPEC SFS runs in sequence is approximately 3 hours. As mentioned above, we report results for

the Ext2FS and ReiserFS (with -notail option) filesystems [20]. A new filesystem is created before every experiment.

We conduct four experiments with SPEC SFS for each of the two filesystems: Using the plain disk, using Clotho

over the disk without versioning, using Clotho and versioning every 5 minutes, and using Clotho with 10 minute

versioning. Versioning is performed throughout the entire 3 hour run of SPEC SFS. Figures 9 and 10 show our

throughput and latency results for 4-Kbyte extents, while Figures 11 and 12 show the results using 32-KByte extents

with subextent addressing.

Our results show that Clotho outperforms the regular disk in all cases except ReiserFS without versioning. The

15

1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (4KB Extents)

Clotho Reiser No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho Reiser 10min Ver.

Clotho Reiser 5min Ver.
Clotho Ext2 No Ver.

Clotho Ext2 10min Ver.
Clotho Ext2 5min Ver.

Fig. 9. SPEC SFS response time using 4-KByte extents.

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Measured Load (4KB Extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho Reiser 5min Ver.
Clotho RFS 10min Ver.

Disk Reiser FS
Disk Ext2 FS

Clotho Reiser No Ver.

Fig. 10. SPEC SFS throughput using 4-KByte extents.

1

1.5

2

2.5

3

3.5

4

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Response Time vs. Load (32KB /w sub-extents)

Clotho RFS No Ver.
Disk Ext2 FS

Disk Reiser FS
Clotho RFS 10min Ver.
Clotho RFS 5min Ver.

Clotho Ext2 No Ver.
Clotho Ext2 10min Ver.
Clotho Ext2 5min Ver.

Fig. 11. SPEC SFS response time using 32-Kbyte extents with subex-

tents (RFS denotes ReiserFS).

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
T

hr
ou

gh
pu

t (
O

pe
ra

tio
ns

/S
ec

)

Requested Load (NFS V3 operations/second)

SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

Clotho Ext2 5min Ver.
Clotho Ext2 10min Ver.

Clotho Ext2 No Ver.
Clotho RFS 5min Ver.

Clotho RFS 10min Ver.
Disk Reiser FS

Disk Ext2 FS
Clotho RFS No Ver.

Fig. 12. SPEC SFS throughput using 32-Kbyte extents with subextents

(RFS denotes ReiserFS).

higher performance is due to the logging (sequential) block allocation policy that Clotho uses. This explanation is

reinforced by the performance in the cases where versions are created periodically. In this case, frequent versioning

prevents disk seeks caused by overwriting of old data, which are now written to new locations on the disk in a

sequential fashion. Furthermore, we observe that the more frequent the versioning, the higher the performance.

The 32-KByte extent size experiments (Figures 11 and 12) show that even with much lower memory requirements,

subextent mapping offers almost the same performance as the 4-KByte case. We attribute this small difference to

the disk rotational latency, when skipping unused space to write subextents, while in the 4-KByte extent size, the

extents are written “back-to-back” in a sequential manner.

Finally, comparing the two filesystems, Ext2 and ReiserFS, we find that the latter performs worse on top of

Clotho. We attribute this behavior to the journaled metadata management of ReiserFS. While Ext2 updates metadata

in place, ReiserFS appends metadata updates to a journal. This technique in combination with Clotho’s logging disk

allocation appears to have a negative effect on performance in the SPEC SFS workload, compared to Ext2.

16

0

512

1024

2048

3072

1 2 4 8 16 32 64

R
ea

d
T

hr
ou

gh
pu

t (
K

B
yt

es
/s

ec
)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Throughput

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Fig. 13. Random “compact-read” throughput.

5

10

15

20

25

30

1 2 4 8 16 32 64A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
se

c/
op

er
at

io
n)

Read Buffer Size (KBytes)

Packed vs. Unpacked Snapshots -- Random Read Latency

100% Packed Snapshot
75% Packed Snapshot
50% Packed Snapshot
25% Packed Snapshot
0% Packed Snapshot

Fig. 14. Random “compact-read” latency.

C. Compact version performance

Finally, we measure the read throughput of compacted versions to evaluate the space-time tradeoff of diff-based

compaction. Since old versions are only accessible in read-only mode, we developed a microbenchmark that per-

forms only read operations. In the first stage, our microbenchmark writes a number of large files and captures

multiple versions of the data through Clotho. In writing the data the benchmark is also able to control the amount

of similarity between two versions, and thus, the percentage of space required by compacted versions. In the second

stage, we mount a compacted version and our benchmark performs 2000 random read operations on the files of the

compacted version. Before every run, the benchmark flushes the system’s buffer cache.

Figures 13 and 14 present latency and throughput results for different percentages of compaction. For 100%

compaction, the compacted version takes up minimal space on the disk, whereas in the 0% case compaction is not

space-effective at all. The difference in performance is mainly due to the higher number of disk accesses per read

operation required for compacted versions. Each such read operation requires two disk reads to reconstruct the

requested block. One read to fetch the block of the previous version and one to fetch the diffs. In particular, with

100% compaction, each and every read results in two disk accesses and thus, performance is about half of the 0%

compaction case.

V. RELATED WORK

A number of projects have highlighted the importance and issues in storage management [15], [22], [12], [35].

Our goal in this work is to define innovative functionality that can be used in future storage protocols and APIs to

reduce management overheads.

Block-level versioning was recently discussed and used in WAFL [13], a file system designed for Network Ap-

pliance’s NFS appliance. WAFL works in the block-level of the filesystem and can create up to 20 snapshots of a

volume and keep them available online through NFS. However, since WAFL is a filesystem and works in an NFS

appliance, this approach depends on the filesystem. In our work we demonstrate that Clotho is filesystem agnostic by

presenting experimental data with two production-level filesystems. Moreover, WAFL can manage a limited number

17

of versions (up to 20), whereas Clotho can manage a practically unlimited number. The authors in [13] mention

that WAFL’s performance cannot be compared to other general purpose file systems, since it runs on a specialized

NFS appliance and much of its performance comes from its NFS-specific tuning. The authors in [14] use WAFL

to compare the performance of filesystem- and block-level-based snapshots (within WAFL). They advocate the use

of block-level backup, due to cost and performance reasons. However, they do not provide any evidence on the

performance overhead of block-level versioned disks compared to regular, non-versioned block devices. In our work

we thoroughly evaluate this with both microbenchmarks as well as standard workloads. SnapMirror [23] is an ex-

tension of WAFL, which introduces management of remote replicas in WAFL’s snapshots to optimize data transfer

and ensure consistency.

Venti [27] is a block-level network storage service, intended as a repository for backup data. Venti follows a write-

once storage model and uses content based addressing by means of hash functions to identify blocks with identical

content. Instead, Clotho uses differential compression concepts. Furthermore, Venti does not supper versioning

features. Clotho and Venti are designed to perform complementary tasks, the former to version data and the latter

as a repository to store safely the archived data blocks over the network. Distributed block-level versioning support

was included in Petal [6]. Although the concepts are similar to Clotho, Petal also targets networks of workstations

as opposed to active storage devices.

Since backup and archival of data is an important problem, there are many products available that try to address the

related issues. However, specific information about these systems and their performance with commodity hardware,

filesystems, or well-known benchmarks are scarce. LiveBackup [29] captures changes at the file level on client

machines and sends modifications to a back-end server that archives previous file versions. EMC’s SnapView [7]

runs on the CLARiiON storage servers at the block level and uses a ”copy-on-first-write” algorithm. However, it

can capture only up to 8 snapshots and its copy algorithm does not use logging block allocation to speed up writes.

Instead, it copies the old block data to hidden storage space on every first write, overwriting another block. Veritas’s

FlashSnap [34] software works inside the Veritas File System, and thus, unlike Clotho, is not filesystem agnostic.

Furthermore it supports only up to 32 snapshots of volumes. Sun’s Instant Image [17] works also at the block-level

in the Sun StorEdge storage servers. Its operation appears similar to Clotho. However, it is used through drivers and

programs in the Sun’s StorEdge architecture, which runs only through the Solaris architecture and is also filesystem

aware.

Each of the above systems, especially the commercial ones, uses proprietary customized hardware and system

software, which makes comparisons with commodity hardware and general purpose operating systems difficult.

Moreover, these systems are intended as standalone services within centralized storage appliances, whereas Clotho

is designed as a transparent autonomous block-lever layer for active storage devices and appropriate for pushing

functionality closer to the physical disk. In this direction, Clotho categorizes the challenges of implementing block-

level versioning and addresses the related problems.

The authors in [5] examine the possibility of introducing an additional layer in the I/O device stack to provide

certain functionality at lower system layers, which also affect the functionality that is provided by the filesystem.

Other efforts in this direction, mostly include work in logical volume management and storage virtualization that

18

try to create a higher level abstraction on-top of simple block devices. The authors in [31] present a survey of such

systems for Linux. Such systems usually provide the abstraction of a block-level volume that can be partitioned,

aggregated, expanded, or shrunk on demand. Other such efforts [18] add RAID capabilities to arbitrary block

devices. Our work is complementary to these efforts and proposes adding versioning capabilities to the block-device

level.

Other previous work in versioning data has mostly been performed either at the filesystem layer or at higher layers.

The authors in [26] propose versioning of data at the file level, discussing how the filesystem can transparently

maintain file versions as well as how these can be cleaned up. The authors in [19] try to achieve similar functionality

by providing mount points to previous versions of directories and files. They propose a solution that does not require

kernel-level modification but relies on a set of user processes to capture user requests to files and to communicate

with a back-end storage server that archives previous file versions. Other, similar efforts [21], [24], [25], [30],

[28] approach the problem at the filesystem level as well and either provide the ability for checkpointing of data or

explicitly manage time as an additional file attribute.

Self-securing storage [30] and its filesystem, CVFS [28] target secure storage systems and operate at the filesystem

level. Some of the versioning concepts in self-securing storage and CVFS are similar to Clotho, but there are

numerous differences as well. The most significant one is that self-securing storage policies are not intended for

data archiving and thus, retain versions of data for a short period of time called detection window. No versions

are guaranteed to exist outside this window of time and no version management control is provided for specifying

higher-level policies. CVFS introduces certain interesting concepts for reducing metadata space, which however,

are also geared towards security and are not intended for archival purposes. Since certain concepts in [30], [28] are

similar to Clotho, we believe that a block-level self-secure storage system could be based on Clotho, separating the

orthogonal versioning and security functionalities in different subsystems.

VI. LIMITATIONS AND FUTURE WORK

The main limitation of Clotho is that it cannot be layered below abstractions that aggregate multiple block devices

in a single volume. and cannot be used with shared block devices transparently. If Clotho is layered below a volume

abstraction that performs aggregation and on top of the block devices that are being aggregated in a single volume,

policies for creating versions need to perform synchronized versioning accross devices to ensure data consistency.

However, this may not be possible in a transparent manner to higher system layers. The main issue here is that it

is not clear what are the semantics of versioning parts of a “coherent”, larger volume. Furthermore, when multiple

clients have access to a shared block device, as is usually the case with distributed block devices [6], [32], Clotho

cannot be layered on top of the shared volume in each client, since internal metadata will become inconsistent accross

Clotho instances. Solutions to these problems are interesting topics for future work.

Another limitation of Clotho is that it imposes a change in the block layout from the input to the output layer.

Clotho acts as a filter between two block devices, transferring blocks of data from one layer to the next. Although

this does not introduce any new issues with wasting space due to fragmentation (e.g. for files if a filesystem is used

with Clotho), it alters significantly the data layout. Thus, it may affect I/O performance, if free blocks are scattered

19

over the disk or if higher layers rely on a specific block mapping, e.g. block 0 being the first block on the disk, block

1 the second, etc. However, this is an issue not only with Clotho, but with any layer in the I/O hierarchy that performs

block remapping, such as RAIDs and some volume managers. Moreover, as I/O subsystems become more complex

and provide more functionality, general solutions to this problem may become necessary. Since this is beyond the

scope of this work, we do not discuss this any further here.

VII. CONCLUSIONS

Storage management is an important problem in building future storage systems. Online storage versioning can

assist reduce these costs directly, by addressing data archival and retrieval costs and indirectly, by providing novel

storage functionality. In this work we propose pushing versioning functionality closer to the disk and implementing

it at the block-device level. This approach takes advantage of technology trends in building active self-managed

storage systems to address issues related to backup and version management.

We present a detailed design of our system, Clotho, that provides versioning at the block-level. Clotho imposes

small memory and disk space overhead for version data and metadata management by using large extents, sub-extent

addressing and diff-based compaction. It imposes minimal performance overhead in the I/O path by eliminating

the need for copy-on-write even when the extent size is larger than the disk-block size and by employing logging

(sequential) disk allocation. It provides mechanisms for dealing with data consistency and allows for flexible policies

for both manual and automatic version management.

We implement our system in the Linux operating system and evaluate its impact on I/O path performance with

both microbenchmarks as well as the SPEC SFS standard benchmark on top of two production-level file systems,

ExtFS and ReiserFS. We find that the common path overhead is minimal for read and write I/O operations when

versions are not compacted. For compact versions, the user has to pay the penalty of double disk accesses for each

I/O operation that accesses a compact block.

Overall, we believe that our approach is promising in offloading significant management overhead and complexity

from higher system layers to the disk itself and is a concrete step towards building self-managed storage devices.

VIII. ACKNOWLEDGMENTS

We thankfully acknowledge the support of Natural Sciences and Engineering Research Council of Canada, Canada

Foundation for Innovation, Ontario Innovation Trust, the Nortel Institute of Technology, Communications and Infor-

mation Technology Ontario, and Nortel Networks.

REFERENCES

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch. Hippodrome: Running Circles Around Storage Administration.
In Proceedings of the FAST ’02 Conference on File and Storage Technologies (FAST-02), pages 175–188, Berkeley, CA, Jan. 28–30 2002.
USENIX Association.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report 124, 1994.
[3] R. Coker. Bonnie++. http://www.coker.com.au/bonnie++.
[4] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making Backup Cheap and Easy. In Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI-02), Berkeley, CA, Dec. 9–11 2002. The USENIX Association.
[5] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical Disk: A New Approach to Improving File Systems. In Proc. of 14th SOSP,

pages 15–28, 1993.
[6] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed Virtual Disks. In Proceedings of ASPLOS VII, Oct. 1996.
[7] EMC. Snapview data sheet. http://www.emc.com/pdf/ products/ clariion/SnapView2 DS.pdf.

20

[8] S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner, M. Mansuripur, and D. A. Thompson. Wtec panel report on the future of data storage
technologies. 4501 North Charles Street, Baltimore, Maryland 21210-2699, June 1999. International Technology Research Institute. World
Technology (WTEC) Division.

[9] GartnerGroup. Total Cost of Storage Ownership – A User-oriented Approach, Sept. 2000.
[10] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A Cost-Effective,

High-Bandwidth Storage Architecture. In Proc. of the 8th ASPLOS, Oct. 1998.
[11] G. A. Gibson and J. Wilkes. Self-managing network-attached storage. ACM Computing Surveys, 28(4es):209–209, Dec. 1996.
[12] J. Gray. What Next? A Few Remaining Problems in Information Technology (Turing Lecture). In ACM Federated Computer Research

Conferences (FCRC), May 1999.
[13] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server Appliance. In Proceedings of the Winter 1994 USENIX

Conference, pages 235–246, 1994.
[14] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz, S. Kleiman, and S. O’Malley. Logical vs. Physical File System Backup.

In Proc. of the 3rd USENIX Symposium on Operating Systems Design and Impl. (OSDI99), Feb. 1999.
[15] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.

OceanStore: An Architecture for Global-scale Persistent Storage. In Proceedings of ACM ASPLOS, November 2000.
[16] M. Lesk. How Much Information Is There In the World? http://www.lesk.com/ mlesk/ ksg97/ ksg.html, 1997.
[17] S. Microsystems. Instant image white paper. http://www.sun.com/ storage/ white-papers/ ii soft arch.pdf.
[18] Miguel de Icaza and Ingo Molnar and Gadi Oxman. The linux raid-1,-4,-5 code. In LinuxExpo, Apr. 1997.
[19] J. Moran, B. Lyon, and L. S. Incorporated. The Restore-o-Mounter: The File Motel Revisited. In Proc. of USENIX ’93 Summer Technical

Conference, June 1993.
[20] Namesys. Reiserfs. http://www.namesys.com.
[21] M. A. Olson. The design and implementation of the inversion file system. In Proc. of USENIX ’93 Winter Technical Conference, Jan. 1993.
[22] D. Patterson. The UC Berkeley ISTORE Project: bringing availability, maintainability, and evolutionary growth to storage-based clusters.

http://roc.cs.berkeley.edu, January 2000.
[23] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara. SnapMirror: File-System-Based Asynchronous Mirroring

for Disaster Recovery. In Proceedings of FAST ’02. USENIX, Jan. 28–30 2002.
[24] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from bell labs. In Proc. of the Summer UKUUG Conference, 1990.
[25] W. D. Roome. 3dfs: A time-oriented file server. In Proceedings of USENIX ’92 Winter Technical Conference, Jan. 1992.
[26] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir. Deciding When to Forget in the Elephant File System.

In Proceedings of 17th SOSP, Dec. 1999.
[27] Sean Quinlan and Sean Dorward. Venti: A New Approach to Archival Data Storage. In Proceedings of FAST ’02, pages 89–102. USENIX,

Jan. 28–30 2002.
[28] C. A. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata Efficiency in Versioning File Systems. In Proceedings of the FAST

’03 Conference on File and Storage Technologies (FAST-03), Berkeley, CA, Apr. 2003. The USENIX Association.
[29] Storactive. Delivering real-time data protection & easy disaster recovery for windows workstations. http://www.storactive.com/files/ Storac-

tive Whitepaper.doc, Jan. 2002.
[30] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R. Ganger. Self-Securing Storage: Protecting Data in Compromised

Systems. In Proceedings of the 4th Symposium on Operating Systems Design and Implementation (OSDI-00), pages 165–180, Berkeley,
CA, Oct. 23–25 2000. The USENIX Association.

[31] D. Teigland and H. Mauelshagen. Volume managers in linux. In Proceedings of USENIX 2001 Technical Conference, June 2001.
[32] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable Distributed File System. In Proceedings of the 16th Symposium on

Operating Systems Principles (SOSP-97), volume 31,5 of Operating Systems Review, pages 224–237, New York, Oct. 5–8 1997. ACM
Press.

[33] A. C. Veitch, E. Riedel, S. J. Towers, and J. Wilkes. Towards Global Storage Management and Data Placement. In IEEE, editor, Eighth
IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII). May 20–23, 2001, Schloss Elmau, Germany, pages 184–184, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. IEEE Computer Society Press.

[34] Veritas. Flashsnap. http://eval.veritas.com/ downloads/ pro/ fsnap guide wp.pdf.
[35] J. Wilkes. Traveling to rome: Qos specifications for automated storage system m anagement. In Proc. of the Int. Workshop on QoS

(IWQoS’2001). Karlsruhe, Germany, June 2001.
[36] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory, 23:337–343,

May 1977.

