
On Storing Voluminous RDF Descriptions:

The case of Web Portal Catalogs�

So�a Alexaki Vassilis Christophides Greg Karvounarakis Dimitris Plexousakis

ICS-FORTH, Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece

falexaki, christop, gregkar, dpg@ics.forth.gr

1 Introduction

The academic, corporate and industrial interest in information systems such as corporate memories, vertical

aggregators, infomediaries, etc. enabling to select, classify and access, in a useful and meaningful way, various

information resources (e.g., sites, documents, data) for diverse target audiences has been increasing over the

last few years. These systems, termed Community Web Portals, rely on a Catalog holding descriptions,

i.e., metadata, about the available resources on corporate intranets or the Web [6]. In order to e�ectively

disseminate community knowledge, Portal Catalogs assimilate and organize information in a multitude of

ways, which are far more
exible and powerful than those provided by standard (object, relational) or XML

databases [3, 1]. Recent Web standards such as the W3C Resource Description Framework (RDF) [8, 5] are

proved to be more suitable for creating and exchanging resource descriptions between Community Webs.

In this paper, we address storage issues of voluminous RDF metadata using an object-relational DBMS

(ORDBMS) and the catalog of the Open Directory Portal exported in RDF as test metadata.

RDF [8] provides i) a Standard Representation Language for metadata based on directed labeled graphs

in which nodes are called resources (or literals) and edges are called properties, and ii) an XML syntax

for expressing metadata in a form that is both humanly readable and machine understandable. The most

distinctive RDF feature is its ability to support superimposed descriptions for the same Web resources,

enabling content syndication - and hence, automated processing - in a variety of application areas (e.g.,

administration, recommendation, content rating, intellectual property rights, site maps, push channels, etc.).

To interpret these descriptions within or across communities, RDF allows for the de�nition of schemas [5]

i.e., vocabularies of labels for graph nodes (i.e., classes) and edges (i.e., properties) that can be used to

describe and query RDF description bases. Many content providers (e.g., ABCNews, CNN, Time Inc.), Web

Portals (e.g., Open Directory, CNET, XMLTree1), browsers (e.g., Netscape 6.0, W3C Amaya), as well as,

emerging application standards for Web data and services syndication (e.g., the RDF Site Summary [4],

Dublin Core [15], or the Web Service Description Language [16]) have already adopted RDF. In a nutshell,

the growing number of Web resources and the proliferation of description services lead nowadays to large

volumes of RDF metadata (e.g., the Open Directory Portal of Netscape comprises over 170M of Subject

Topics and 700M of indexed URIs).

Storing Web data, such as RDF schema and resource descriptions, in an ORDBMS is not a novel issue.

However, existing database representations and benchmarks [7, 13, 12, 14] need to be reassessed in our setting,

since: a) RDF has a di�erent data model featuring labels on both nodes and edges, as well as, taxonomies of

labels (see Section 2), and, hence, demands a di�erent querying functionality than in semistructured or XML

databases [1]; b) our test metadata contain a signi�cantly larger volume of schema information than that

used in previous testbeds (i.e., XML elements, attributes). In this paper, we use PostgreSQL to compare the

performance of two well-known database representations (generic versus speci�c), adapted to the peculiarities

of RDF. More precisely, the schema-speci�c representation outperforms the generic representation both in

the required storage volume and in query execution time. The performance of the two representations has

been evaluated with a series of tests involving queries on schema, data or a combination thereof.

2 RDF by Example: The Open Directory Portal
In this section, we brie
y recall the main modeling primitives proposed in the Resource Description Frame-

work (RDF) Model & Syntax and Schema (RDFS) speci�cations [8, 5], using as example the catalog of

Internet Portals, like Open Directory or Yahoo!. These catalogs use huge hierarchies of topics to semanti-

cally classify Web resources (e.g., in 15 out of ODP's 16 hierarchies 252825 topics are used and 1,770,781 sites

are indexed). Additionally, various administrative metadata (e.g., titles, modi�cation dates) of resources are

usually created using a Dublin-Core like schema [15]. Then, users can either navigate through the topics of

�This work was partially supported by the EC project C-Web (IST-1999-13479) and Mesmuses (IST-2000-26074).
1www.dmoz.org, home.cnet.com, www.xmltree.com respectively.

1

Integer

String

String

Ext.Resource Date
last_modified

title

description

file_size

r1: http://www.sunscale.com/france/paris
r2: http://www.hotelpulitzer.com

r3: http://www.hotel-bedford.fr/index/hotel.htm
r4: http://www.disneylandparis.com

typeOf (instance)

subClassOf (isA)

SunScale

Regional Recreation

Lodging

Hotel Directories

Hotel related

Class
property

ns1:www.dmoz.org/topics.rdfs ns2:www.oclc.org/dublincore.rdfs

rdf:www.w3.org/1999/02/22-rdf-syntax-ns rdfs:www.w3.org/TR/2000/CR-rdf-schema-20000327

P
or

ta
l S

ch
em

as
R

D
F

/S

Travel Vacation
-Rentals

Paris

Ile-de-France

title

Disneyland
title

Site officiel de
Disneyland Paris

description

Official site of
Disneyland Paris

description

BedfordPulitzer Opera

P
or

ta
l r

es
ou

rc
e

de
sc

ri
pt

io
ns

titletitle

&r2

&r4

&r3

&r1

Figure 1: Modeling in RDF the Catalog of the Open Directory Portal

the catalog to locate resources of interest or issue a full-text query on topic names as well as the URIs and

the titles of the resources. Portal Catalogs can be then easily and e�ectively represented using RDF/S.

The middle part of Figure 1 depicts the two schemas employed by ODP: the �rst is intended to cap-

ture the semantics of web resources while the second is intended for Portal administrators. The scope

of the declarations is determined by the corresponding namespace de�nition of each schema, e.g., ns1

(www.dmoz.org/topics.rdfs) and ns2 (www.oclc.com/dublincore.rdfs). For simplicity, we will here-

forth omit the namespaces as well as the paths from the root of the topic hierarchies pre�xing class and

property names (since topics have non-unique names). In the ODP topics schema, we can see two out of

the sixteen hierarchies, namely, Regional and Recreation whose topics are represented as RDF classes (see

the RDF/S default namespaces in the upper part of Figure 1). Various semantic relationships exist between

these classes, either within a topic hierarchy (e.g., subtopics), or across hierarchies (e.g., related topics). The

former, is represented using the RDF subclass relationship (e.g., Travel is a, not necessarily direct, subclass

of Paris) and the latter using an RDF property named related (e.g., between the classes Ile-de-France and

Hotel). Finally, the ODP administrative metadata schema contains various literal RDF properties such as

title, mime-type, last modi�ed, de�ned on class ExtResource. Note that properties can also be organized in

taxonomies in a manner similar to the organization of classes.

Using these schemas, we can see in the lower part of Figure 1, the descriptions created for four sites

(resources &r1-&r4). For instance, &r4 is a resource classi�ed under both the classes Ile-de-France and

ExtResource and has three associated literal properties: a title property with value \Disneyland" and two

description properties with values \O�cial site of Disneyland Paris" and \Site o�ciel de Disneyland Paris"

respectively. In the RDF jargon, a speci�c resource (i.e., node) together with a named property (i.e., edge)

and its value (i.e., node) form a statement. Each statement can be represented by a triple having a subject,

a predicate, and an object (e.g., &r4, title, and \Disneyland " respectively). The subject and object should

be of a class compatible (under specialization) with the domain and range of the predicate (e.g., &r4 is an

ExtResource). In the rest of the paper, the term description base will be used to denote a set of RDF

statements. Although not illustrated in Figure 1, RDF also supports structured values called containers

(i.e., bag, sequence) for grouping statements, as well as, higher-order statements (i.e., rei�cation). Finally,

both RDF graph schemas and descriptions can be serialized in XML using forests of XML trees.

We can observe that properties are unordered (e.g., the property title can be placed before or after the

property description), optional (e.g., the property �le size is not used), can be multi-valued (e.g., we have

two description properties), and they can be inherited (e.g., to subclasses of ExtResource), while resources

2

Figure 2: Two Relational Representations of RDF Description Bases

can be multiply classi�ed (e.g., &r4). These modeling primitives provide all the
exibility we need to

represent superimposed descriptions of Web resources for di�erent syndication purposes (e.g., administration,

retrieval), while preserving a conceptually uni�ed view of the Portal Catalog (i.e., description base) through

one or the union of all related schemas. Thus, community members can query resources described according

to their preferred schema, while discover, in the sequel, how the same resources are also described using

another (sub-)community schema. This is quite useful especially when di�erent Community Web Portals

need to exchange descriptions about their resources.

3 The RDF Storage System: Design and Performance
In order to load RDF metadata in a ORDBMS, we consider two basic representations: a Speci�c Represen-

tation (i.e., depending on the used RDF schemas) and a Generic Representation (i.e., for all RDF schemas).

Both representations preserve the
exibility of RDF in re�ning schemas and/or enriching descriptions at any

time. In the former representation (similar to the attribute-based approach for storing XML data [7]), called

SpecRepr, the core RDF/S model is represented by four tables (see Figure 2-A), namely, Class, Property,

SubClass and SubProperty which capture the class and property hierarchies de�ned in an RDF schema.

Although not illustrated in Figure 2-A, we also consider a table NameSpace holding the namespaces of the

RDF Schemas stored in the ORDBMS. The main goal of SpecRepr is the separation of the RDF schema

from data information, as well, as the distinction between unary and binary relations holding the instances of

classes and properties. More precisely, class tables store the URIs of resources while property tables store the

URIs of the source and target nodes of the property. Indices (i.e., B-trees) are constructed on the attributes

URI, source and target of the above tables, the attributes lpart, nsid and id of the tables Class and

Property and on the attribute subid of the tables SubClass and SubProperty.

The latter representation (see Figure 2-B) has been proposed in [10, 9] and relies on a monolithic approach

to represent RDF metadata under the form of triples. It is a generic representation (similar to the edge-based

approach for storing XML data [7]), called GenRepr, in which both RDF schemas and resource descriptions

are captured by two tables: Resources and Triples. The former table represents each resource (including

schema classes and properties) by a unique id whereas the latter represents the statements made about

the resources (including classes and properties) under the form of predicate-subject-object triples (captured

by predid, subid and objid respectively). Note that in table Triples we distinguish between properties

representing attributes (i.e., objvalue with literal values) and those relationships between resources (i.e.,

objid with URI object values). Indices are constructed for all table attributes.

Compared to GenRepr, our SpecRepr is
exible enough to allow the customization of the representation

of RDF metadata in the underlying ORDBMS. This is important since no representation is good for all

purposes and in most real-scale RDF applications variations of a basic representation are required to take

into account the peculiarities of the employed schema classes and properties. Our aim here is to reduce the

total number of created instance tables. This is justi�ed by the fact that some commercial ORDBMSs (and

not PostgreSQL) permit only a limited number of tables. Furthermore, numerous tables (e.g., the ODP

catalog implies the creation of 252840 tables, i.e., one for each topic) have a signi�cant overhead on the

response time of all queries (i.e., to �nd and open a table, its attributes, etc.). One of the possible variations

we have experimented for the ODP catalog is the representation of all class instances by a unique table

Instances (see dashed rectangular in Figure 2-A). This table has two attributes, namely uri and classid,

for keeping the uri's of the resources and the id's of the classes in which resources belong. The bene�ts of

3

this SpecRepr variation are illustrated in the sequel given that most ODP classes (i.e., topics) have few or no

instances at all (more than 90% of the ODP topics contain less than 30 URIs). Another alternative variation

to our basic SpecRepr could be the representation of properties with range a literal type, as attributes of the

tables created for the domain of this property. Consequently, new attributes will be added to the created class

tables. The tables created for properties with range a class will remain unchanged. The above representation

is applicable to RDF schemas where attribute-properties are single-valued and they are not specialized.

For our performance study we used as testbed the RDF dump of the Open Directory Catalog (version

of 16-01-2001). Experiments have been carried out on a Sun with two UltraSPARC-II 450MHz processors

and 1 GB of main memory, using PostgreSQL (Version 7.0.2) with Unicode con�guration. We have loaded

15 ODP hierarchies with a total number of 252825 topics contained in 51MB of RDF/XML �les2. For these

hierarchies, we have also loaded the corresponding descriptions of 1770781 resource URIs (672MB).

We have measured the database size required to load the ODP schema and resource descriptions in terms

of triples in SpecRepr and GenRepr. In both representations the size of the DBMS scales linearly with

the number of schema and data triples. The tests show that, in SpecRepr, each schema triple requires on

average 0.086KB versus 0.1582KB in GenRepr. This is mainly attributed to the space saved in SpecRepr

due to the Namespace table, as well as to the fact that for each class de�nition in GenRepr three tuples are

stored: one in table Resources and two tuples in table Triples for the class itself and its unique superclass

(i.e., 252825 extra tuples). The average time for loading a schema triple is about 0.0021 sec and 0.0025

sec respectively in the two representations. The time required to store a schema triple is larger in GenRepr

because of extra tuples stored. When indices are constructed, the average storage volumes per schema

triple become 0.1734KB (SpecRepr) and 0.3062KB (GenRepr) and the average loading times become 0.0025

sec and 0.00317 sec respectively. The average space required to store a data triple is 0.123KB in both

representations. This should not appear as a surprise since the extra space required in SpecRepr for storing

the URIs of resources in the property tables compensates for the extra tuples (1770781) stored (one in table

Resources and one in Triples) for each resource description in GenRepr. Note that we could obtain better

storage volumes in SpecRepr by encoding the resource URIs as integers, as we did in GenRepr, but as we

will see in the sequel this solution comes with extra loading and join costs (between the class and property

tables) for the retrieval of the URIs. The tests also show that the average time for loading a data triple is

about 0.0033 sec and 0.0039 sec respectively in the two representations. When indices are constructed, the

average storage volumes per data triple become 0.2566KB (SpecRepr) and 0.2706KB (GenRepr) while the

average loading time become 0.0043 sec and 0.00457 sec respectively. Despite the use of integer ids, the

indices in GenRepr take up more space because of: a) the extra tuples stored b) the index constructed on

the predid attribute for which there is no corresponding index in SpecRepr.

To summarize, after loading the entire ODP catalog, the size of tables in GenRepr is 545MB for Triples

(5835756 tuples), 202MB for Resources (2022869 tuples) and the total size of indexes on these tables is

900MB. In SpecRepr, the size is 32MB for Class (252825 tuples), 8KB for Property (5 tuples), 11MB for

SubClass (252825 tuples) and 0MB for SubProperty, and the total size of indexes on these tables is 44MB.

The size of table Instances is 150MB (1770781 tuples) whereas that of the indices created on it is 140 MB.

Table 1 describes the RDF query templates that we used for our experiments, as well as their respective

algebraic expressions in the two representations (capital letters abbreviate the table names of Figure 2).

This benchmark illustrates the desired querying functionality for RDF description bases, namely: a) pure

schema queries on class and property de�nitions (Q1-Q4); b) queries on resource descriptions using available

schema knowledge (Q5-Q9); and c) schema queries for speci�c resource descriptions (Q10, Q11). These query

templates exploit the advanced modeling features of RDF and they are useful in a variety of Community

Web Portal applications. As a matter of fact, they depict the core functionality of our declarative query

language for RDF, called RQL3. For example, using RQL we can express queries against the ODP catalog,

such as: "Find the topics under the hierarchy Regional (i.e., schema query), containing resources for hotels

in Paris whose title matches "*Opera*" (i.e., data query using schema information). In this context, the

most frequently asked queries for Portals like ODP are: Q2,Q3,Q5,Q8 and Q9. For the sake of accuracy, we

carried out all benchmark queries several times: one initially to warm up the database bu�ers and then

nine times to get the average execution time of a query. Table 2 illustrates the obtained execution time (in

sec) for both representations in up to three di�erent result cases per query. The main observation is that

2This is the volume of the pure ODP schema, produced when properties attributed to the classes are removed.
3See http://139.91.183.30:9090/RDF for further details.

4

Query Description Algebraic Expression Algebraic Expression

in GenRepr in SpecRepr

Q1 Find the range (or domain) �predid=9^subjid=propid(T) �id=propid(P)

of a property

Q2 Find the direct subclasses �predid=6^objid=clsid(T) �superid=clsid(SC)

of a class

Q3 Find the transitive sub- repeat Wi (Wi�1 repeat Wi (Wi�1

classes of a class >�id=subjid(�predid=6(T)))�Wi�1 >�id=superidSC)�Wi�1

until Wi =Wi�1 until Wi =Wi�1

Q4 Check if a class is a repeat Wi (Wi�1 repeat Wi (Wi�1

subclass of another class >�id=objid(�predid=6(T)))�Wi�1 >�id=subidSC)�Wi�1

until Wi =Wi�1 _ clsid 2 Wi until Wi =Wi�1 _ clsid 2Wi

Q5 Find the direct extent of (�predid=5^objid=clsid(T)) �id=clsid(I)

a class (or property) >�subjid=idR

Q6 Find the transitive extent [
clsid2Q3((�predid=5^objid=clsid(T)) [

clsid2Q3(�id=clsid(I))

of a class (or property) >�subjid=idR)

Q7 Find if a resource is (�predid=5^objid=clsid(T)) �URI=r^id=clsid(I)

an instance of a class 1subjid=id (�URI=r(R))

Q8 Find the resources having (�predid=propid^objvalue=val(T)) �target=val(tpropid)

a property with a speci�c 1subjid=id R

(or range of) value(s)

Q9 Find the instances of a class (�predid=5^objid=clsid(T)) (�id=clsid(I)) >�source=URI

that have a given property >�subjid=subjid(�predid=propid(T)) (tpropid)

>�subjid=id(R)

Q10 Find the properties of a (�URI=r(R)) 1id=subjid [propid2P (�source=r(tpropid))

resource and their values (�predid6=5(T)) 1predid=id (R)

Q11 Find the classes under which (�URI=r(R)) >�id=subjid�predid=6(T) �URI=r(I)

a resource is classi�ed

Table 1: Benchmark Query Templates for RDF Description Bases

SpecRepr outperforms GenRepr for all types of queries considered. The deviation in performance is more

apparent in the cases where self-join computations on the large Triples table are required.

GenRepr and SpecRepr exhibit comparable performance in queries Q1, Q2, Q5, Q7, Q10 and Q11, with

SpecRepr outperforming GenRepr by a factor of up to 3.73 approximately. In Q1 one tuple is selected from

both table Triples (selectivity 1,7e-5%) and Property (selectivity 20%) using index and sequential scans

respectively. In Q2, we can see that the time required to �lter a table in both representations depends on

the number of tuples in the query results: we have experimented with classes having 1, 30, 314 subclasses

which represent in GenRepr (SpecRepr) selectivities of 1.7e-5% (3.955e-4%), 5.14e-4% (1,19e-2%) and 5.38e-

3% (0.124%) for table Triples (SubClass) in the three cases respectively. The (semi-)joins involved in the

evaluation of queries Q5, Q7 and Q11 incur an additional cost for GenRepr, whereas in Q10 the join cost (for

GenRepr) is comparable to the cost of evaluating set union (for SpecRepr). Queries Q3, Q4 and Q6 involve

a transitive closure computation (using a variation of the �-wavefront algorithm [11]) over the subclass

hierarchy. SpecRepr outperforms GenRepr by a factor of up to 2.8. In Q3 and Q6, we use the same three

classes having 3, 30 and 3879 subclasses and a total of 2, 20 and 9049 instances respectively. The execution

times in these three cases depend on the sizes of intermediate results (i.e., the costs of joins involving the

tables Triples or SubClass) as well as, the number of iteration steps of the algorithm (i.e., the length of the

longest path from the given class to its leaves, called depth). In Q4, for the same root class, we have checked

for subclasses residing at depth 3, 5 and 7 respectively. The di�erence in the obtained times between Q3,

Q6 and Q4 is due to the di�erent evaluation method used: "top-down" for the former (i.e., from the sub-tree

root to the leaves) and "bottom-up" for the latter.

In the case of queries Q8 and Q9 SpecRepr exhibits a much better performance than GenRepr. GenRepr

reaches its limits when table Triples needs to be self-joined whereas in SpecRepr, a join between two small

tables su�ces to be evaluated. Speci�cally, SpecRepr outperforms GenRepr by a factor ranging from 1753 up

5

Query Generic Speci�c

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

0.0015

0.0017 0.0028 0.02

0.0460 0.082 344.91

0.033 0.0415 0.0662

0.0043 0.008 0.04

0.0573 0.315 627.43

0.0034 0.0034 0.0034

124.20 365.73 675.42

110.58 117.68 185.7

0.0072 0.0072 0.0072

0.0035 0.0043 0.0056

0.0012

0.0012 0.0022 0.0124

0.0463 0.0612 341.98

0.0333 0.0415 0.0662

0.0015 0.0028 0.027

0.0508 0.1118 482.45

0.0016 0.0016 0.00174

0.0013 0.0069 0.0466

0.031 0.0338 0.1059

0.0071 0.0071 0.0076

0.0013 0.0015 0.0015

Table 2: Execution Time of RDF Benchmark Queries

to 95538. Note that GenRep will su�er similar performance limitations in the evaluation of queries involving

complex path expressions which will essentially result in a number of self-joins of table Triples. Query Q8

has been tested for value ranges returning 1, 10 and 40 resources respectively. In SpecRepr, its evaluation

involves index scans on the property table, whereas in GenRepr di�erent evaluation plans are executed in

each case. Q9 has been tested for three properties with 6292, 52029 and 1770584 instances respectively. To

summarize, SpecRepr outperforms GenRepr, which pays a severe performance penalty for maintaining large

tables. We argue that the performance of SpecRepr can be further improved by employing an appropriate

encoding system (e.g., Dewey, post�x, pre�x, etc.) that preserves the taxonomic relationships of schema

labels. In this way, checking subclass relationships can be done in constant time. We believe that this

approach will prove to be quite useful, not only for RDF, but for tree-structured data, such as XML [2].

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data and XML. Morgan

Kaufmann, 1999.

[2] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries. In 12th Symposium on Discrete

Algorithms, 2001.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[4] G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D. Galbraith, R. Guha, E. Miller, and E. van

der Vlist. RSS 1.0 Speci�cation Protocol. (http://purl.org/rss/1.0), August 2000.

[5] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Speci�cation 1.0, W3C Recommendation.

Technical Report CR-rdf-schema-20000327, W3C, (http://www.w3.org/TR/rdf-schema), March 27, 2000.

[6] C. Finkelstein and P. Aiken. Building Corporate Portals using XML. McGraw-Hill, 1999.

[7] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping schemes for storing xml data in a

relational database. Technical Report 3680, INRIA Rocquencourt, France, May 1999. (http://www-caravel.inria.fr/-

dataFiles/GFSS00.ps).

[8] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Speci�cation. Technical report, W3C,

February 1999. (http://www.w3.org/TR/REC-rdf-syntax).

[9] J. Liljegren. Description of an rdf database implementation. Available at http://WWW-DB.stanford.edu/~melnik/rdf/-

db-jonas.html.

[10] S. Melnik. Storing rdf in a relational database. Available at http://WWW-DB.stanford.edu/~melnik/rdf/db.html.

[11] G. Qadah, L. Henschen, and J. Kim. E�cient Algorithms for the Instantiated Transitive Closure Queries. IEEE Trans-

actions on Software Engineering, 17(3):296{309, 1991.

[12] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer, and Florian Waas. E�cient relational storage and retrieval of

xml documents. In WebDB'00, pages 47{52, 2000.

[13] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, and J.F. Naughton. Relational databases for querying

xml documents: Limitations and opportunities. In VLDB'99, pages 302{314, Edinburgh, Scotland, September 1999.

[14] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of Alternative XML Storage

Strategies. Technical report, Universiy of Wisconsin, 2000.

[15] S. Weibel, J. Miller, and R. Daniel. Dublin Core. In OCLC/NCSA metadata workshop report, 1995.

[16] Web Service Description Language. (http://www-106.ibm.com/developerworks/library/ws-rdf), 2000.

6

