
Design for All: Computer Assisted Design of

User Interface Adaptation

CONSTANTINE STEPHANIDIS
1,2

, MARGHERITA ANTONA
1
, ANTHONY SAVIDIS

1,2
,

NIKOLAOS PARTARAKIS
1
, KONSTANTINA DOULGERAKI

1
, ASTERIOS LEONIDIS

1

1
Institute of Computer Science

Foundation for Research and Technology - Hellas (FORTH)

Heraklion, Crete, GR-70013 GREECE

cs@ics.forth.gr

2
Department of Computer Science

University of Crete, Greece

Table of Contents

1 Introduction .. 2

2 Design for All: Overview of approaches, methods and techniques 3

2.1 Reactive vs. proactive strategies .. 4

2.2 Accessibility Guidelines and de facto Standards ... 7

2.3 Design for All as User Interface Adaptation Design 8

3 Unified User Interfaces .. 11

4 Tools for the design of user interface adaptations ... 14

4.1 Decision Making Specification Language ... 14

4.2 MENTOR tool for user interface adaptation ... 15

4.3 Interaction toolkits ... 18

4.3.1 EAGER .. 18

4.3.2 JMorph ... 20

4.4 Adaptive user interface prototyping... 23

5 Prototype applications and case studies ... 25

5.1 AVANTI and PALIO ... 25

5.2 EDeAN web Portal .. 29

5.3 Applications of the JMorph Library .. 30

6 Conclusions .. 31

Acknowledgments.. 34

References .. 35

Figures.. 39

1 Introduction

The increased importance of user interface design methodologies, techniques and

tools in the context of the development and evolution of the Information Society has

been widely recognised in the recent past in the light of the profound impact that

interactive technologies are progressively acquiring on everybody’s life and activities,

and of the difficulty in developing usable and attractive interactive services and

products (e.g., Winograd, 2001). As the Information Society further develops, the

issue of Human-Computer Interaction (HCI) design becomes even more prominent

when considering the notions of universal access (Stephanidis, 2001a) and universal

usability (Shneiderman, 2000), aiming at the provision of access to anyone, from

anywhere and at anytime, through a variety of computing platforms and devices, to

diverse products and services. Design for Universal Access in the Information Society

has often been defined as design for diversity, based on the consideration of the

several dimensions of diversity that emerge from the broad range of user

characteristics, the changing nature of human activities, the variety of contexts of use,

the increasing availability and diversification of information, the variety of knowledge

sources and services, and the proliferation of diverse technological platforms that

occur in the Information Society.

These issues imply an explicit design focus to systematically address diversity, as

opposed to afterthoughts or ad hoc approaches, as well as an effort towards

reconsidering and redefining the concept of Design for All in the context of HCI

(Stephanidis, 2001a). In the emerging Information Society, therefore, Universal

Access becomes predominantly an issue of design, and the question arises of how it is

possible to design systems that take into account diversity and satisfy the variety of

implied requirements. Research work in the past two decades has highlighted a shift

of perspective and reinterpretation of HCI design, in the context of Universal access,

from current artifact-oriented practices towards a deeper and multidisciplinary

understanding of the diverse factors shaping interaction with technology, such as

users’ characteristics and requirements and contexts of use, and has proposed methods

and techniques that enable to proactively take into account and appropriately address

diversity in the design of interactive artifacts (Stephanidis, 2001a). In the framework

of such efforts, the concept of design for has been reinterpreted and redefined in the

domain of HCI. One of the main concepts proposed in such a context as a solution for

catering for the needs and requirements of a diverse user population in a variety of

context of use is that of automatic user interface adaptation (Stephanidis, 2001b).

Despite the progress that has been made, however, the practice of designing for

diversity remains difficult, due to intrinsic complexity of the task, the current limited

expertise of designers and practitioners in designing interfaces capable of automatic

adaptation, as well as the current limited availability of appropriate supporting tools.

The rationale behind this Chapter is that the wider practice and adoption of an

appropriate design method, supported through appropriate tools, has the potential to

contribute overcoming the above difficulties. Towards this end, this Chapter, after

highlighting the main issues involved in the effort of designing for diversity, briefly

describes a design method, the Unified User Interface design method, which has been

developed in recent years to facilitate the design of user interfaces with automatic

adaptation behaviour (Savidis & Stephanidis, 2009a). Subsequently, the Chapter

discusses a series of tools and components which have been developed and applied in

various development projects. These tools are targeted to support the design and

development of user interfaces capable of adaptation behaviour, and more in

particular the conduct and application of the Unified User Interface development

approach. Over the years, these tools have demonstrated the technical feasibility of

the approach, and have contributed to reducing the practice gap between traditional

user interface design and design for adaptation. They have been applied in a number

of pilot applications and case studies.

2 Design for All: Overview of approaches, methods
and techniques

Universal Access implies the accessibility and usability of Information Society

Technologies by anyone, anywhere, anytime, with the aim to enable equitable access

and active participation of potentially all citizens in existing and emerging computer-

mediated human activities, by developing universally accessible and usable products

and services, which are capable of accommodating individual user requirements in

different contexts of use and independently of location, target machine, or run-time

environment. The origins of the concept of Universal Access are to be identified in

early approaches to accessibility, mainly targeted towards providing access to

computer-based applications by users with disabilities.

Subsequently, accessibility related methods and techniques have been generalised and

extended towards more generic and inclusive approaches. HCI design approaches

targeted to support Universal Access are often grouped under the term of Design for

All.

2.1 Reactive vs. proactive strategies

Accessibility in the context of Human Computer Interaction (HCI) refers to the access

by people with disabilities to Information and Communication Technologies (ICT).

Interaction with ICT may be affected in various ways by the user’s permanent,

temporary or contextual individual abilities or functional limitations. For example,

someone with limited seeing functions will not be able to use an interactive system

which only provides visual output, while some one with limited bone or joint mobility

or movement functions which affect the upper limbs will encounter difficulties in

using an interactive system which only accepts input through the standard keyboard

and mouse. Accessibility in the context of HCI aims to overcome such barriers by

making the interaction experience of people with diverse functional or contextual

limitations as near as possible to that of people without such limitations.

In traditional efforts to improve accessibility, the main direction followed has been to

enable disabled users to access interactive applications originally developed for able-

bodied users through appropriate adaptations.

Two main technical approaches to adaptation have been followed. The first is to treat

each application separately, and take all the necessary implementation steps to arrive

at an alternative accessible version - product-level adaptation. Product-level

adaptation practically often implies redevelopment from scratch. Due to the high costs

associated with this strategy, it is considered as the least favourable option for

providing alternative access. The second alternative is to “intervene” at the level of

the particular interactive application environment (e.g., MS-Windows) in order to

provide appropriate software and hardware technology so as to make that

environment alternatively accessible (environment-level adaptation). The latter option

extends the scope of accessibility to cover potentially all applications running under

the same interactive environment, rather than a single application.

The above approaches have given rise to several methods for addressing accessibility,

including techniques for the configuration of input / output at the level of the user

interface, and the provision of Assistive Technologies. Popular Assistive

Technologies include screen readers and Braille displays for blind users, screen

magnifiers for users with low vision, alternative input and output devices for motor

impaired users (e.g., adapted keyboards, mouse emulators, joystick, binary switches),

specialized browsers, and text prediction systems).

Despite progress, the prevailing practices aiming to provide alternative access

systems, either at the product- or environment-level, have been criticized for their

essentially reactive nature (Emiliani, 2009). Although the reactive approach to

accessibility may be the only viable solution in certain cases, it suffers from some

serious shortcomings, especially when considering the radically changing

technological environment, and, in particular, the emerging Information Society

Technologies. The critique is grounded on two lines of argumentation. The first is that

reactive solutions typically provide limited and low quality access.

The second line of critique concerns the economic feasibility of the reactive approach

to accessibility. Reactive approaches, based on a posteriori adaptations, though

important to partially solve some of the accessibility problems of people with

disabilities, are not viable in sectors of the industry characterized by rapid

technological change. By the time a particular access problem has been addressed,

technology has advanced to a point where the same or a similar problem re-occurs.

The typical example that illustrates this state of affairs is the case of blind people’s

access to computers. Each generation of technology (e.g., DOS environment,

windowing systems and multimedia) caused a new ‘generation’ of accessibility

problems to blind users, addressed through dedicated techniques, such as text-to-

speech translation for the DOS environment, off-screen models, and filtering for the

windowing systems.

In some cases, adaptations may not be possible without loss of functionality. For

example, in the early versions of windowing systems, it was impossible for the

programmer to obtain access to certain window functions, such as window

management. In subsequent versions, this shortcoming was addressed by the vendors

of such products allowing certain adaptations on interaction objects on the screen.

Finally, adaptations are programming-intensive, and, therefore, are expensive and

difficult to implement and maintain. Minor changes in product configuration, or the

user interface, may require substantial resources to re-build the accessibility features.

From the above, it becomes evident that the reactive paradigm to accessible products

and services does not suffice to cope with the rapid technological change and the

evolving human requirements. At the same time, the proliferation of interactive

products and services in the Information Society, as well as of technological platforms

and access devices, brought about the need to reconsider the issue of access under a

proactive perspective, resulting in more generic solutions. This entails an effort to

build access features into a product starting from its conception, throughout the entire

development life-cycle. In the context of the emerging Information Society, therefore,

Universal Access becomes predominantly an issue of design, and the question arises

of how it is possible to design systems that permit systematic and cost-effective

approaches to accommodating all users. Towards this end, the concept of Design for

All has been revisited in the context of HCI (Stephanidis et al., 1998; Stephanidis et

al., 1999).

In the context of Universal Access, Design for all in the Information Society has been

defined as a general framework catering for conscious and systematic efforts to

proactively apply principles, methods and tools, in order to develop IST products and

services that are accessible and usable by all citizens, thus avoiding the need for a

posteriori adaptations, or specialized design. Design for All, or Universal Design, is

well known in several engineering disciplines, such as, for example, civil engineering

and architecture, with many applications in interior design, building and road

construction. In the context of Universal Access, Design for All either subsumes, or is

a synonym of, terms such as accessible design, inclusive design, barrier-free design,

universal design, etc., each highlighting different aspects of the concept. Through the

years, the concept of Design for All has assumed various main connotations:

 Design of interactive products, services and applications, which are suitable

for most of the potential users without any modifications. Related efforts

mainly aim to formulate accessibility guidelines and standards in the context

of international collaborative initiatives (see Section 2.2).

 Design of products which have standardized interfaces, capable of being

accessed by specialized user interaction devices (Zimmermann et al., 2002).

 Design of products which are easily adaptable to different users by

incorporating adaptable or customizable user interfaces (Stephanidis, 2001b).

This entails an effort to build access features into a product starting from its

conception, throughout the entire development life-cycle.

2.2 Accessibility Guidelines and de facto Standards

Guidelines play a key role in the adoption of web accessibility and usability by

industries and society. In essence, they constitute a rapidly evolving medium for

transferring established and de facto knowledge (know-how) to various interested

parties.

Concerning accessibility, a number of guidelines collections have been developed

(Vanderheiden et al., 1996; Pernice & Nielsen, 2001). In particular, the Web Content

Accessibility Guidelines (WCAG) (W3C, 1999) explains how to make Web content

accessible to people with disabilities. Web "content" generally refers to the

information in a Web page or Web application, including text, images, forms, sounds,

etc. WCAG 1.0 provides 14 guidelines that are general principles of accessible

design. Each guideline has one or more checkpoints that explain how the guideline

applies in a specific area. WCAG foresees 3 levels of compliance, A, AA and AAA.

Each level requires a stricter set of conformance guidelines, such as different versions

of HTML (Transitional vs. Strict) and other techniques that need to be incorporated

into code before accomplishing validation. Further to WCAG 1.0, in December 2008,

the W3C announced a new version of the guidelines, targeted to help Web designers

and developers to create sites that better meet the needs of users with disabilities and

older users. Drawing on extensive experience and community feedback, WCAG 2.0

(W3C, 2008) improves upon WCAG 1.0 and applies to more advanced technologies.

In general, for a website to comply with accessibility guidelines, it should have at

least the following characteristics:

 (X)HTML Validation from the W3C for the pages content

 CSS Validation from the W3C for the pages layout

 At least WAI-AA (preferably AAA) compliance with the WAI's WCAG

 Compliance with all guidelines from Section 508 of the US Rehabilitation Act

 Access keys built into the HTML

 Semantic Web Markup

 A high contrast version of the site for individuals with low vision

 Alternative media for any multimedia used on the site (video, flash, audio,

etc).

The usage of guidelines is today the most widely adopted process by web authors for

creating accessible web content. This approach has proven valuable for bridging a

number of barriers faced today by people with disabilities.

Additionally, guidelines constitute de facto standards, as well as the basis for

legislation and regulation related to accessibility in many countries (Kemppainen,

2009).

For example, the US government Section 508 of the US Rehabilitation Act

(Rehabilitation Act Amendments, 1998), provides a comprehensive set of rules

designed to help web designers make their sites accessible.

Unfortunately, however, many limitations arise in the use of guidelines due to a

number of reasons. These include the difficulty in interpreting and applying

guidelines, which require extensive training. Additionally, the process of using, or

testing conformance to, widely accepted accessibility guidelines is complex and time

consuming. To address this issue, several tools have been developed enabling the

semi automatic checking of html documents. Such tools make easier the development

of accessible web content especially due to the fact that the checking of conformance

does not rely solely on the expertise of developers. Developers with limited

experience in web accessibility can use such tools for evaluating web content and

without the need to go through a large number of check – lists.

As a final consideration, guidelines provide a ‘one-size-fits-all’ approach to

accessibility, which, while ensuring a basic level of accessibility for users with

various types of disabilities, does not support personalization and improved

interaction experience.

2.3 Design for All as User Interface Adaptation Design

In the light of the above, it appears that single artifact-oriented design approaches

offer limited possibilities of addressing the requirements posed by Universal Access.

A critical property of interactive artifacts becomes, therefore, their capability for

automatic adaptation and personalization (Stephanidis, 2001b).

Methods and techniques for user interface adaptation meet significant success in

modern interfaces. Some popular examples include the desktop adaptations in

Microsoft Windows XP, offering, for example, the ability to hide or delete unused

desktop items. Microsoft Windows Vista and Seven (7) also offer various

personalization features of the desktop based on personal preferences of the user, by

adding helpful animations, transparent glass menu bars, live thumbnail previews of

open programs and desktop gadgets (like clocks, calendars, weather forecast, etc.).

Similarly, Microsoft Office applications offer several customizations, such as toolbars

positioning and showing/hiding recently used options. However, adaptations

integrated into commercial systems need to be set manually, and mainly focus on

aesthetic preferences. In terms of accessibility and usability, for instance to people

with disability or older people, only a limited number of adaptations are available,

such as keyboard shortcuts, size and zoom options, changing color and sound settings,

automated tasks, etc.

On the other hand, research efforts in the past two decades have elaborated more

comprehensive and systematic approaches to user interface adaptations in the context

of Universal Access and Design for All. The Unified User Interfaces methodology

was conceived and applied (Savidis & Stephanidis, 2009a) as a vehicle to efficiently

and effectively ensure, through an adaptation-based approach, the accessibility and

usability of UIs to users with diverse characteristics, supporting also technological

platform independence, metaphor independence and user-profile independence. In

such a context, automatic UI adaptation seeks to minimize the need for a posteriori

adaptations and deliver products that can be adapted for use by the widest possible

end user population (adaptable user interfaces). This implies the provision of

alternative interface manifestations depending on the abilities, requirements and

preferences of the target user groups, as well as the characteristics of the context of

use (e.g., technological platform, physical environment). The main objective is to

ensure that each end-user is provided with the most appropriate interactive experience

at run-time.

The scope of design for diversity is broad and complex, since it involves issues

pertaining to context-oriented design, diverse user requirements, as well as adaptable

and adaptive interactive behaviors. This complexity arises from the numerous

dimensions that are involved, and the multiplicity of aspects in each dimension. In

this context, designers should be prepared to cope with large design spaces to

accommodate design constraints posed by diversity in the target user population and

the emerging contexts of use in the Information Society. Therefore, designers need

accessibility knowledge and expertise. Moreover, user adaptation must be carefully

planned, designed and accommodated into the life-cycle of an interactive system,

from the early exploratory phases of design, through to evaluation, implementation

and deployment.

Therefore, a need arises of providing computational tools which can support the

design of user interface adaptation. In the past, the availability of tools was an

indication of maturity of a sector and a critical factor for technological diffusion. As

an example, Graphical User Interfaces became popular once tools for constructing

them became available, either as libraries of reusable elements (e.g., toolkits), or as

higher-level systems (e.g., user interface builders and user interface management

systems). As design methods and techniques for addressing diversity are anticipated

to involve complex design processes and have a higher entrance barrier with respect

to more traditional artifact-oriented methods, it is believed that the provision of

appropriate design tools can contribute overcoming some of the difficulties that

hinder the wider adoption of design methods and techniques appropriate for Universal

Access, both in terms of quality and cost, by making the complex design process less

resource-demanding. The main objective in this respect is to offer tools which reduce

the difference in practice between conventional user interface development and

development for adaptation.

Finally, another prominent challenge in the context of Universal Access has been

identified as the need of developing large-scale case study applications providing

instruments for further experimentation and ultimately improving the empirical basis

of the field by collecting knowledge on how design for diversity may be concretely

practiced. Such case studies should not only aim to demonstrate technical feasibility,

but also to assess the benefits of the overall approach, as well as of the applied

methods and tools.

3 Unified User Interfaces

The Unified User Interface Development methodology provides a complete

technological solution for supporting universal access of interactive applications and

services, through a principled and systematic approach towards coping with diversity

in the target user requirements, tasks and environments of use (Savidis & Stephanidis,

2009a). A unified user interface comprises a single (unified) interface specification

that exhibits the following properties:

1. It embeds representation schemes for user- and usage-context- parameters and

accesses user- and usage-context- information resources (e.g., repositories,

servers), to extract or update such information.

2. It is equipped with alternative implemented dialogue artifacts appropriately

associated to different combinations of values for user- and usage-context-

related parameters. The need for such alternative dialogue patterns is identified

during the design process, when, given a particular design context, for differing

user- and usage-context- attribute values, alternative design artifacts are deemed

as necessary to accomplish optimal interaction.

3. It embeds design logic and decision making capabilities that support activating,

at run-time, the most appropriate dialogue patterns according to particular

instances of user- and usage-context- parameters, and is capable of interaction

monitoring to detect changes in parameters.

As a consequence, a unified user interface realizes:

 User-adapted behavior (user awareness), i.e., the interface is capable of

automatically selecting interaction patterns appropriate to the particular user.

 Usage-context adapted behavior (usage context awareness), i.e., the interface is

capable of automatically selecting interaction patterns appropriate to the particular

physical and technological environment.

From a user perspective, a unified user interface can be considered as an interface

tailored to personal attributes and to the particular context of use, while from the

designer perspective it can be seen as an interface design populated with alternative

designs, each alternative addressing specific user- and usage-context- parameter

values. Finally, in an engineering perspective, a unified user interface is a repository

of implemented dialogue artifacts, from which the most appropriate according to the

specific task context are selected at run-time by means of an adaptation logic

supporting decision-making.

At run-time, the adaptations may be of two types:

a) adaptations driven from initial user- and context- information known prior to

the initiation of interaction, and

b) adaptations driven by information acquired through context and interaction

monitoring.

The former behavior is referred to as adaptability (i.e., initial automatic adaptation)

reflecting the interface’s capability to automatically tailor itself initially to each

individual end-user in a particular context. The latter behavior is referred to as

adaptivity (i.e., continuous automatic adaptation), and characterizes the interface’s

capability to cope with the dynamically changing or evolving user and context

characteristics.

The concept of unified user interface is supported by a specifically developed

architecture (Savidis & Stephanidis, 2009b). This architecture consists of independent

communicating components, possibly implemented with different software methods

and tools (see Figure 1). Briefly, a user interface capable of adaptation behavior

includes: (i) information regarding user and context characteristics (user and context

profile), (ii) a decision making logic and (iii) alternative interaction widgets and

dialogues.

INSERT FIGURE 1

The storage location, origin and format of user-oriented information may vary. For

example, information may be stored in profiles indexed by unique user identifiers,

may be extracted from user-owned cards, may be entered by the user in an initial

interaction session, or may be inferred by the system through continuous interaction

monitoring and analysis. Additionally, usage-context information, e.g., user location,

environment noise, network bandwidth, etc, is normally provided by special-purpose

equipment, like sensors, or system-level software. In order to support optimal

interface delivery for individual user and usage-context attributes, it is required that

for any given user task or group of user activities, the implementations of the

alternative best-fit interface components are appropriately encapsulated.

At design time, the design space is captured through a task hierarchy representation

which allows for explicitly assigning alternative designs to node elements, called

polymorphic task hierarchy (see figure 2). Alternatives designs, call styles, can affect

the syntactic level (i.e., alternative task decompositions) or the lexical level (i.e.,

alternative (i.e., alternative physical designs, such as layout appearances and widgets).

Adaptation relations are established among alternative design styles for each node in

the hierarchy. These relations define the run-time adaptation behaviour of the user

interface, thus providing the adaptation decision-making logic. They include

exclusion (two styles are never active at the same time), compatibility (two styles may

be active at the same time), substitution (one style is deactivated and the second one is

activated), and augmentation (the second style is activated keeping also the first

active).

INSERT FIGURE 2

Upon start-up and during runtime, the software interface relies on the particular user

and context profiles to assemble the user interface on the fly, collecting and gluing

together the constituent interface components required for the particular end-user and

usage-context. In this context, runtime adaptation-oriented decision-making is

engaged, so as to select the most appropriate interface components for the particular

user and context profiles, for each distinct part of the user interface. The role of the

decision-making in UI adaptation is to effectively drive the interface assembly

process by deciding which interface components need to be selectively activated. The

interface assembly process has inherent software engineering implications on the

software organization model of interface components. For any component (i.e., part of

the interface to support a user activity or task) alternative implemented incarnations

may need to coexist, conditionally activated during runtime due to decision-making.

In other words, there is a need to organize interface components around their

particular task contexts, enabling them to be supported in different ways depending on

user and context parameters. This contrasts with traditional non-adapted interfaces in

which all components have singular implementations.

The unified user interface development method is not prescriptive regarding how each

component is to be implemented (Savidis & Stephanidis, 2009c). For example, the

alternative ways of representing user-oriented information and decision-making

mechanisms may be employed. Also, the method does not affect the way designers

will create the necessary alternative artifacts (e.g., through prototyping).

Since its beginning, the Unified User Interface development methodology has been

accompanied by tools targeted to facilitate its employment. Early tools developed in

this context are discussed in details in (Stephanidis, 2001a). The next sections of this

Chapter focus on more recent tools which have been applied in a variety of case

studies and have proved to contribute towards a more effective and efficient

application of the unified user interface concept, with particular focus on design.

4 Tools for the design of user interface adaptations

Tools developed in recent years to support user interface adaptation design include

facilities for specifying decision-making rules, adaptation design tools, adaptable

widget toolkits for various interaction platforms, and user interface prototyping

facilities.

4.1 Decision Making Specification Language

The role of decision-making in user interface adaptation is to effectively drive the

interface assembly process by deciding which interface components need to be

selectively activated. The Decision Making Specification Language (DMSL) (Savidis

et al., 2005) is a rule-based language specifically designed and implemented for

supporting the specification of adaptations. DMSL supports the effective

implementation of decision-making, and has been purposefully elaborated to be easier

for designers to directly assimilate and deploy, in comparison to programming-based

approaches using logic-based or imperative-oriented programming languages.

In DMSL, the decision-making logic is defined in independent decision

“if…then…else” blocks, each uniquely associated to a particular dialogue context.

The individual end-user and usage-context profiles are represented in the condition

part of DMSL rules using an attribute values notation. Three types of design

parameters values are allowed: (i) enumerated, i.e., values belong to a list of (more

than two) strings specified by the designer; (ii) boolean, i.e., values True or False; and

(iii) integer, which are specified by supplying minimum and maximum bounds of an

integer range allowed as a value. Value ranges define the space of legal values for a

given attribute. The language is equipped with three primitive statements: (a)

dialogue, which initiates evaluation for the rule block corresponding to dialogue

context value supplied; (b) activate, which triggers the activation of the specified

component(s); and (c) cancel, which, similarly to activate, triggers the cancellation of

the specified component(s). These rules are compiled in a tabular representation that

is executed at run-time. Figure 3 provides an example of DMSL rule. The

representation engages simple expression evaluation trees for the conditional

expressions.

INSERT FIGURE 3

The decision-making process is performed in independent sequential decision

sessions, and each session is initiated by a request of the interface assembly module

for execution of a particular initial decision block. In such a decision session, the

evaluation of an arbitrary decision block may be performed, while the session

completes once the computation exits from the initial decision block. The outcome of

a decision session is a sequence of activation and cancellation commands, all of which

are directly associated to the task context of the initial decision block. Those

commands are posted back to the interface assembly module as the product of the

performed decision-making session.

4.2 MENTOR tool for user interface adaptation

The Unified User Interface design is recognised to require a higher initial effort and

investment than traditional HCI design approaches, as it involves the identification of

relevant design parameters, the design of alternative interface instances, and the

delivery of an interface adaptation logic. MENTOR (Antona et al., 2006)) is a support

tool for the process of Unified User Interface design, which has been developed in

order to address the following objectives:

 Provision of practical integrated support for all phases of Unified User

Interface Design, by appropriately guiding the process and structuring the

outcomes of creative design steps through appropriate editing facilities.

 Provision of practical support for a “smooth transition” from design to

development of Unified User Interfaces through availability of automated

verification mechanisms for the designed adaptation logic, as well as the

automated generation of “ready-to-implement” interface specifications,

including the adaptation logic.

 Provision of support for re-using and extending (parts of) past design cases.

MENTOR targets the community of interface designers and do not assume deep

knowledge of the Unified User Interface design method or particular HCI modeling

techniques, while, on the other hand, also support designers more experienced in

adaptation design in effectively performing their work.

Figure 4 depicts the overall interactive environment of MENTOR, comprising four

main editing environments:

INSERT FIGURE 4

- Design Parameters Editor (Figure 4.1). The Design Parameters Editor supports

the encoding of design parameters attributes and related value spaces. These

constitute the “vocabulary” for defining the “adaptation space” of user

interface under design. Parameters can belong to the user domain (i.e., user

characteristics), or to the context domain (i.e., characteristics of the context of

use and of the interactive platform). The Editor also supports importing

existing design parameters, applying the necessary consistency checking.

- Profile Editor (Figure 4.2). User and context profiles can be defined by setting

design parameters values in the Profile Editor. Existing profiles can be

imported if consistent with current design case.

- Polymorphic Task Hierarchy Editor (Figure 4.3). The Polymorphic Task

Hierarchy editor allows designers to perform polymorphic task decomposition

and encode the results in a hierarchy. The Editor guides the decomposition

process through decomposition steps.

- Properties Editor (Figure 4.4). This Editor allows assigning specific properties

to the artifacts in the polymorphic hierarchy. Different categories of artifacts

involve different properties. The most important piece of information to be

attached to styles concerns the user and context parameter instantiations that

define the style appropriateness at run-time. Style conditions in MENTOR, are

formulated in the condition fragment of DMSL. For polymorphic artifacts,

adaptation relations between children styles also need to be specified

(selecting among incompatibility, compatibility, augmentation and

substitution).

Automated verification facilities for DMSL conditions are also included in

MENTOR. These include the verification of the lexical and syntactic correctness, as

well as the verifiability of each DMSL expression separately. Additionally,

hierarchical relations among styles in the polymorphic task hierarchy are also

checked. MENTOR also supports verifying that the conditions on two styles related

through a particular relation are compatible with the type of the relation. For example,

if two styles are defined as incompatible, their conditions must not be consistent.

These verification facilities ensure that the resulting run-time adaptation logic is

semantically sound, and does not contain ambiguities which could cause problems

when applying adaptations.

MENTOR also produces textual documentation of designs which can be used for

several purposes, such as reviewing and evaluation, interface documentation, and,

most importantly, implementation. The design report contains the project’s design

parameters and defined profiles, a textual representation of the polymorphic task

hierarchy, the properties of each designed artifact, and the designed adaptation logic,

in the form of DMSL rules automatically produced by the tool. The DMSL rules

produced by MENTOR can be directly embedded in the decision-making component

of the designed user interface.

MENTOR has been validated in a number of design case studies, including the design

of a unified user interface in the context of a Health Telematics scenario, as well as

the design of a shopping cart (Antona et al., 2006). These case studies have confirmed

its overall usefulness, and its advantages compared to “paper-based” adaptation

design. The designers involved in the case studies were able to rapidly acquire

familiarity with the Unified User Interface design method and with the tool itself, and

expressed the opinion that the tool appropriately reflects and complements the

method, and significantly simplifies the conduct of polymorphic task decomposition.

The verification facilities have also been found particularly effective in helping the

designer to detect and correct inconsistencies or inaccuracies in the style conditions.

Furthermore, the tool has been considered as particularly useful in providing the

automatic generation of the DMSL adaptation logic, which, in the case of the

Shopping Cart case study, has been directly integrated in the prototype

implementation of the component.

4.3 Interaction toolkits

User interface adaptation necessitates alternative versions of interaction artifacts to be

created and coexist in the eventual design space. At the lexical level of interaction this

can be achieved through software toolkits capable to dynamically deliver an interface

instance that is lexically adapted to a specific user in a specific context of use. Such

toolkits are essentially software libraries encompassing alternative versions of

interaction elements and common dialogues, each version designed in order to address

particular values of the user- and usage-context- parameters. The runtime adaptation-

oriented selection of the most appropriate version, according to the end-user and

usage-context profiles, is the key element in supporting a wide range of alternative

interactive incarnations. It should be noted that the presence and management of the

alternative versions is fully transparent to toolkit clients. The latter provides the

behavior of a smart toolkit capable to adaptively deliver its interaction elements so as

to fit the current usage profile.

4.3.1 EAGER

In order to support Unified Web User-Interfaces, the combination of user-centered

design, user-interface prototyping and design guidelines is applied together with

Unified User-Interface Design. The proposed methodology (Partarakis et al, 2010a) is

derived from the Unified User-Interface Software Architecture and is instantiated in

the EAGER software toolkit. In particular, EAGER integrates a Design repository of:

 alternative primitive UI elements with enriched attributes (e.g., buttons, links,

radios, etc.)

 alternative structural page elements (e.g., page templates, headers, footers,

containers, etc.)

 fundamental abstract interaction dialogues in multiple alternative styles (e.g.,

navigation, file uploaders, paging styles, text entry).

The EAGER Designs Repository is an extensible collection of implemented and

ready-to-use alternative interaction elements which are organized around a

Polymorphic Task Hierarchy (Savidis & Stephanidis, 2009a). Each alternative

element version, called a style following the terminology of (Savidis & Stephanidis,

2009a), is purposefully designed to address the requirements of specific user and

context parameter values. Alternative styles have been designed following typical

user-centered design, user-interface prototyping and adoption of design guidelines.

Additionally, EAGER design alternatives not only integrate current accessibility

guidelines, but also provide a suitable approach to personalized accessibility. In this

respect, the EAGER Designs Repository can be viewed as encompassing consolidated

adaptation design knowledge, thus greatly facilitating designers in the choice of

suitable adaptations according to user-related or context-related parameters.

The Designs Repository component of EAGER provides the designs of alternative

dialogues controls in a form of abstract interaction objects and task-level

polymorphism. For each alternative version, the respective adaptation rationale is also

recorded, including the profile parameters which are adaptively addressed.

An example is provided by images. Blind or low vision users are not interested in

viewing images, but only in reading the alternative text that describes the image. In

order to facilitate blind and low vision users, two design alternatives were produced

which are presented in Figure 5.

INSERT FIGURE 5

The text representation of the image simply does not present the image, but only a

label with the prefix ‘Image:’ and followed by the alternative text of the image. The

second representation, targeted to users with visual impairments, is same as the first

with the difference that, instead of a label, a link is included that leads to the specific

image giving the ability of saving the image. In particular, a blind user may not wish

to view an image but may wish to save it to a disk and use it properly. In addition to

the above, another design was produced that can be selected as a preference by web

portal users in which the images are represented as thumbnail bounding the size that

holds on the web page. A user who wishes to view the image in normal size may click

on it. In Table 1, the design rationale of the alternative images design is presented,

including its adaptation logic.

INSERT TABLE 1

EAGER allows Microsoft® .NET developers to create interfaces that conform to the

World Wide Web Consortium accessibility guidelines (W3C, 1999), and which are

able to adapt to the interaction modalities, metaphors and user interface elements most

appropriate to each individual user, according to profile information (user and

context). The process of employing EAGER is significantly less demanding in terms

of time, experience and skills required from the developer than the typical process of

developing Web interfaces for the “average” user. The benefits gained by using the

EAGER toolkit lie on a number of dimensions, including:

 The time required for designing a web application and the detail of design

information needed.

 The time required for designing the front end of the application to be used by

end users.

 The developer effort for setting up the application.

Through EAGER, the complexity of the UI design effort is radically reduced due to

the flexibility provided by the toolkit for designing interfaces at an abstract task-

oriented level. Therefore, designers are not required to be aware of the low level

details introduced in representing interaction elements, but only of the high level

structural representation of a task and its appropriate decomposition into sub tasks,

each of which represents a basic UI and system function.

On the other hand, the process of designing the actual front end of the application

using a mark-up language is radically decreased in terms of time, due to the fact that

developers initially have to select among a number of interface components each of

which represents a far more complex facility. Additionally, developers do not have to

spend time for editing the presentation characteristics of the high level interaction

element, due to the internal styling behavior.

The actual process of transforming the initial design into the final Web application

using traditional UI controls introduces a lot of coding. On the contrary, when using

EAGER the amount of code required is significantly reduced due to the fact that

developer has the option to use a number of plug and play controls each of which

represent a complex user task. These controls are contained in the advance UI library

of EAGER consisting of a total number of 55K pure code lines. Furthermore, the

incorporation of EAGER’s higher level elements make the code more usable, more

readable and especially safe, due to the fact that each interaction component

introduced is designed separately, developed and tested introducing a high level of

code reuse, efficiency and safety.

4.3.2 JMorph

The JMorph adaptable widget library (Leonidis et al., 2010) is another example of

toolkit inherently supporting the adaptation of user interface components. It contains a

set of adaptation-aware widgets designed to satisfy the needs of various target devices

–Swing-based components for PC, AWT-based components for Windows Mobile

devices. Adaptation is completely transparent to developers, who can use the widgets

as typical UI building blocks.

JMorph instantiates a common look and feel across the applications developed using

it. The implemented adaptations are meant to address the interaction needs of older

users (Leuteritz et al., 2009), and follow specific guidelines which have been encoded

into DMSL rules (Savidis et al., 2005). This approach is targeted to novice developers

of adaptable user interfaces, as relieves developers from the task of re-implementing

or modifying their applications to integrate adaptation-related functionality.

The developed widgets are built in a modular way that facilitates their further

evolution, by offering the necessary mechanism to support new features addition and

modifications. Therefore, more experienced developers can use their own adaptation

rules to modify the adaptation behavior of the interactive widgets.

The library’s implementation using the Java programming language ensures the

development of portable UIs that can run unmodified with the same look regardless of

the underlying Operating System. Apart from OS independence, the proposed

framework offers a solution that targets mobile devices running Windows Mobile.

The JMorph library provides the necessary mechanisms to support alternative look

and feels either for the entire environment (i.e., skins) or for individual applications.

For that to be achieved, every widget initially follows the general rules to ensure that

the common look and feel invariant will be met, and then applies any additional

presentation directives declared as “custom” look and feel rules. A “custom” rule

could affect either an individual widget (e.g., the OK button that appears in the

confirmation dialog of a specific application) or a group of widgets; therefore, entire

applications can be fully skinned since their widgets inherently belong to a group

defined by the application itself (e.g., all the buttons that belong to a specific

application). The look and feel implementation of JMorph is based on the Synth

technology (Sun Microsystems, 2010a).

Every adaptable widget in JMorph extends the relevant primitive Java component

(i.e., AdaptableButton extends Java’s Swing JButton) to provide its typical

functionality, while the adaptation-related functionality is exposed via a

straightforward API, the AdaptableWidget API. The API declares one main and two

auxiliary methods: the adapt and the get(/set)Function methods. Application

developers can apply adaptation by simply calling the adapt method. The notion of the

Adapt method and the augmented Set / Get attributes methods has been originally

proposed and implemented in the context of the PIM language-based generator of

multiplatform adaptable toolkits (Savidis et al., 1997). This zero-argument method is

the key method of the whole API, as it encapsulates the essential adaptation

functionality and every adaptation-aware widget implements it accordingly. The

global adaptation process includes firstly the evaluation of the respective DMSL rules

that define the appropriate style and size, and then their application through Synth’s

region matching mechanism.

For a local look and feel to be applied, the adapt method additionally utilizes the

function getter method. The function attribute can be set manually by the

designer/developer, and is used on the one hand to decide whether and which

transformations should be applied, and on the other hand define the group (i.e., all the

buttons appear in the Main Navigation bar) or the exact widget (i.e., the OK button in

a specific application) where they should be applied utilizing Synth’s name matching

mechanism.

The adaptable widgets currently implemented in JMorph include label, button, check

box, list, scrollbar, textbox, text area, drop-down menu, radio button, hyperlink,

slider, spinner, progress bar, tabbed pane, menu bar, menu, menu item, and tooltip.

Complex widgets such as date and time entry have also been developed. Adaptable

widget attributes include background color/image, widget appearance and dimensions,

text appearance, cursor’s appearance on mouse over, highlighting of currently

selected items or options, orientation options (vertical or horizontal), explanatory

tooltips, etc.

Figure 6 shows some of the available widgets. Adaptable attributes for each widget

are summarized in Table 2. All widgets in the library also include a text description

which allows easy interoperation with speech-based interfaces, thus offering also the

possibility to deploy a non visual instance of the developed interfaces.

INSERT FIGURE 6

INSERT TABLE 2

4.4 Adaptive user interface prototyping

Popular user interface builders provide graphical environments for user interface

prototyping, usually following a WYSIWYG (“What You See Is What You Get”)

design paradigm. Available WYSIWYG editors offer graphical editing facilities that

allow designers to perform rapid prototyping visually. Such editors may be standalone

or embedded in integrated environments (IDEs), i.e., programming environments

which allow developing application functionality for the created prototypes directly.

Commonly used IDEs are Microsoft Visual Studio, NetBeans, and Eclipse. IDEs are

very popular in application development because they greatly simplify the transition

from design to implementation, thus speeding up considerably the entire process.

However, no currently available tools integrate adaptable widgets, nor provide any

support for developing user interface adaptations. Therefore, prototyping alternative

design solutions for different needs and requirements using prevalent prototyping

tools may become a complex and difficult task if the number of alternatives to be

produced is large and no specific support is provided for structuring and managing the

design space. In order to facilitate the employment of the JMorph adaptable widget

library described in the previous section towards rapid development of adaptable UIs,

it has been integrated into the NetBeans GUI Builder (version 8.0, see Figure 7). The

result is claimed to be the first and so far unique tool which supports rapid

prototyping of adaptable user interfaces, with the possibility of immediately preview

adaptation results.

INSERT FIGURE 7

The choice of NetBeans was based on a thorough survey to identify the most suitable

available IDEs candidates to incorporate the Adaptable Widget Library into their GUI

Builders. NetBeans was preferred to Eclipse, which offers almost equivalent facilities,

because it is better supported and more extensible, as its GUI Builder offers the

essential mechanisms that facilitate the integration of custom widgets. The library’s

integration into the NetBeans built-in tool offers prototyping functionalities such as

live “UI” preview, as well as automatic application of specific sizing directives

according to the OASIS styleguide. Moreover, NetBeans facilitates the

implementation of the application’s logic associated with the UI, thus offering not

only a prototyping tool but a complete framework supporting the entire application

development life cycle (design, development and maintenance).

The NetBeans GUI Builder contains a Palette that displays all the available widgets,

initially only Java’s built-in widgets, while the designers/developers, experienced or

not, are familiar with its straightforward ‘drag and drop’ functionality to add widgets

on a “screen”. The Palette can only contain widgets that adhere to the JavaBean

specification (Sun Microsystems, 2010b). JavaBeans are reusable software

components for Java that can be manipulated visually in a builder tool. Practically,

they are classes written in the Java programming language conforming to a particular

convention.

They are used to encapsulate many objects into a single object (the bean), so that they

can be passed around as a single bean object instead of as multiple individual objects.

The integration of JMorph into NetBeans was achieved by implementing every AWL

widget as a JavaBean.

To prototype a user interface, the designer will create the application’s main window,

and will add the common containers (e.g., menu panels, status bar, header) by placing

AdaptivePanels where appropriate. The necessary widgets (e.g., menu buttons, labels,

text fields) will then be dragged from the Palette and dropped into the design area of

the builder.

To customize widgets, the typical process is to manually set the relevant attributes for

each widget using the designer’s “property sheets”. To apply the same adjustment to

other widgets, one can either copy/paste them or iteratively set them manually. In the

adaptation-enabled process, using the function attribute, the process is slightly

different. First, one needs to set the function attribute, then define the required style

(e.g., colors, images, fonts), and finally to define the rule (in a separate rule file) that

maps the newly added style to the specific function. Whenever the same style should

be applied, it is sufficient to simply set the function attribute respectively (CSS-like).

In some cases, more radical adaptations are required with respect to widget

customization, as the same physical UI design cannot be applied ‘as is.

In these cases, alternative dialogues can be designed by creating a container to host

the different screens. The JMorph library offers the means to dynamically load

different UI elements on demand, providing the functionality through adaptation

rules, and utilizing Java’s reflection (introspection) capabilities.

The drag and drop selection and placement of widgets follow a conventional

WYSIWYG approach. However, in the specific case, What You See Is One Instance

of What You Get, as all adaptation alternatives can be produced in the preview mode

if the builder by simply setting some user-related variables (e.g., selecting a profile).

During preview, a set of sizing rules are automatically applied to ease the design

process. The obtained prototypes can easily be used for testing and evaluation

purposes.

The result is a tool which offers the possibility of prototyping adaptable interfaces

following standard practices, without the need of designing customized widget

alternatives, which are included in the adaptable widgets, or to specify adaptation

rules (which are predefined). Through the prototyping tool, it is also possible to

preview how adaptations are applied for the defined user profiles. However, more

expert designers can easily modify the DMSL adaptation rules, which are stored in a

separate editable file, and experiment with new adaptations and varying look and

feels. Finally, besides appearance adaptations, the overall approach allows to

implement more complex forms of adaptation (e.g., dialogue adaptation) by

prototyping alternative dialogues and introducing the respective adaptation logic.

5 Prototype applications and case studies

The methods and tools described in the previous sections have been employed over

the years in the development of several prototype applications and services in various

domains. These efforts demonstrate both the technical feasibility of the adaptation-

based approach, and the progress achieved towards simplifying and improving

development practices of user interface adaptation.

5.1 AVANTI and PALIO

The AVANTI universally accessible web browser
1
 and the PALIO tourist information

system
2
 (Stephanidis et al., 2010) constitute the first large applications applying the

concepts and methods of Unified User Interfaces (see section 3), as well as the first

applications of the DMSL language for the implementation of the decision-making

component in their architectures (see section 4.1). While AVANTI constituted an

adaptable and adaptive content viewing application that can view any type of content,

1
 The AVANTI web browser has been developed in the context of the ACTS AC042 – AVANTI

project (see Acknowledgments).
2
 The PALIO tourist information system has been developed in the context of the IST-1999-20656 –

PALIO project (see Acknowledgments).

adapted or not, PALIO supported the creation of adaptable and adaptive content that

can be viewed with any kind of browser. Thus, the two complemented each other.

The AVANTI browser provides an accessible and usable interface to a range of user

categories, irrespective of physical abilities or technology expertise. Moreover it

supports various differing situations of use. The end-user groups targeted in

AVANTI, in terms of physical abilities, include: (i) “able-bodied” people, assumed to

have full use of all their sensory and motor communication “channels”; (ii) blind

people; and, (iii) motor-impaired people, with different forms of impairments in their

upper limbs, causing different degrees of difficulty in employing traditional computer

input devices, such as a keyboard and/or a mouse. In particular, in the case of motor-

impaired people, two coarse levels of impairment were taken into account: “light”

motor impairments (i.e., users have limited use of their upper limps but can operate

traditional input devices or equivalents with adequate support) and “severe” motor

impairments (i.e., users cannot operate traditional input devices at all). Furthermore,

since the AVANTI system was intended to be used both by professionals (e.g., travel

agents) and by general public (e.g., citizens, tourists), the users’ experience in the use

of, and interaction with, technology was another major parameter that was taken into

account in the design of the user interface. Thus, in addition to the conventional

requirement of supporting novice and experienced users of the system, two new

requirements were put forward: (a) supporting users with any level of computer

expertise; and (b) supporting users with or without previous experience in the use of

web-based software.

In terms of usage context, the system was intended to be used both by individuals in

their personal settings (e.g., home, office), and by the population at large through

public information terminals (e.g., information kiosks at a railway station, airport).

Furthermore, in the case of private use, the front end of AVANTI was intended to be

appropriate for general web browsing, allowing users to make use of the accessibility

facilities beyond the context of a particular information system.

Users were also continuously supported as their communication and interaction

requirements changed over time, due to personal or environmental reasons (e.g.,

stress, tiredness, or system configuration). This entailed the capability, on the part of

the system, to detect dynamic changes in the characteristics of the user and the

context of use (either of temporary or of permanent nature) and cater for these

changes by appropriately modifying itself.

The above requirements dictated the development of a new experimental front-end,

which would not be based on existing web browser technology, nor designed

following traditional techniques oriented to the “typical user”. In fact, the accessibility

requirements posed by the user categories addressed in AVANTI could not be met

either by existing customizability features supported by commercial web browsers, or

through the use of third-party assistive products.

The Unified User Interface development approach was adopted to address the above

requirements, as it provides appropriate methodologies and tools to facilitate the

design and implementation of user interfaces that cater for the requirements of

multiple, diverse end-user categories and usage contexts.

Following the Unified User Interface design method, the design of the user interface

followed three main stages: (a) identification of different design alternatives to cater

for the particular requirements of the users and the context of use; (b) integration of

the designed alternatives into a polymorphic task hierarchy; and (c) development and

documentation of the adaptation logic that drives the run-time selection between the

available alternatives.

AVANTI also constituted the first application of the DMLS language. Figure 7 shows

an example adaptation decision block in the context of AVANTI. Such decision block

is targeted to selecting the best alternative interface components for the “link” task

context. The interface design relating to this adaptation decision logic is provided in

Figure 8.

INSERT FIGURE 8

INSERT FIGURE 9

Building on the results and findings of AVANTI, PALIO set out to address the issue

of access to community-wide services by anyone, from anywhere, by proposing a

hypermedia development framework supporting the creation of Adaptive Hypermedia

Systems. PALIO supported the provision of tourist services in an integrated, open

structure, while it constituted an extension of previous efforts, as it accommodated a

broader perspective on adaptation and covered a wider range of interactive encounters

beyond desktop access, and advanced the current state of affairs by considering novel

types of adaptation based on context and situation awareness. The PALIO framework

was based on the concurrent adoption of the following concepts: (a) integration of

different wireless and wired telecommunication technologies to offer services through

both fixed terminals in public places and mobile personal terminals (e.g., mobile

phones, PDAs, laptops); (b) location awareness to allow the dynamic modification of

information presented (according to user position); (c) adaptation of the contents to

automatically provide different presentations depending on user requirements, needs

and preferences; (d) scalability of the information to different communication

technologies and terminals; and (e) interoperability between different service

providers in both the envisaged wireless network and the World Wide Web.

In the context of PALIO, DMSL has been effectively employed not only for user

interface adaptation, but also for adaptable information delivery over mobile devices

to tourist users. The decision-making process was based on parameters such as

nationality, age, location, interests or hobbies, time of day, visit history, and group

information (i.e., family, friends, couple, colleagues, etc.). The information model

reflected a typical relational database structure, while content retrieval was carried out

using XML-based SQL queries. In this context, in order to enable adapted information

delivery, instead of implementing hard-coded SQL queries, query patterns have been

designed, with specific polymorphic placeholders filled in by dynamically decided

concrete sub-query patterns. For instance, as seen in Figure 10, particular data

categories or even query operations may be left “open”, with multiple alternatives,

depending on runtime content-adaptation decision making.

INSERT FIGURE 10

The experience gained in the development of AVANTI and PALIO has demonstrated

the effectiveness of the use of adaptation-based methodologies, techniques and tools

towards the achievement of access to the World Wide Web by a wide range of user

categories, irrespective of physical abilities or technology expertise, in a variety of

contexts of use and through a variety of access devices, going far beyond previous

approaches that rely on assistive or dedicated technologies.

Both AVANTI and PALIO make it possible to adopt a stepwise introduction of

adaptation, at different stages of development, thus enabling the progressive

introduction of complex accessibility features and facilitating the incorporation of

new user groups with distinct requirements in terms of accessibility.

5.2 EDeAN web Portal

The portal of the European Design for All e-Accessibility Network (EDeAN)
3

(Partarakis et al., 2010b) was developed as a proof-of-concept by means of the

EAGER toolkit (see section 4.3.). As this was the redevelopment of an existing portal,

it provided the opportunity to identify and compare the advantages of using EAGER,

both at the developer’s site, in terms of developer’s performance, as well as at the

end-user site, in terms of user-experience improvement.

The new EDeAN portal disseminates information about the scope, objectives and

outcomes of the EDeAN networking activities. Through the portal public area (Figure

11) a number of facilities can be accessed, such as information about EDeAN,

resources from a dedicated resource centre, news and announcements, frequently

Asked Questions, statistics regarding the networking activities and surveys for

collecting user feedback. The portal area for subscribed users is intended to support

the actual networking activities, and therefore provides a number of communication

and collaboration facilities.

INSERT FIGURE 11

The users of the portal have the option to access the portal settings and alter them in

order to match their personal characteristics and the characteristics of the context of

use. A number of parameters can be set, such as Language, Device & display

resolution, Assistive technology, Input Device, Disability and Web familiarity.

Additionally, in order to allow users to quickly alter their settings, the quick settings

option can be used, offering a number of predefined user profiles.

Adaptations can also take place based in interaction preferences. More specifically,

interaction preferences settings can alter the interaction elements used for performing

fundamental operations, such as browsing content and images or uploading files. The

changes made to these settings are propagated to all portal modules. By manually

altering these setting the default adaptation logic that occurs based on the user basic

setting is enriched.

Finally, adaptations can take place based on accessibility preferences. Custom

accessibility includes all the settings that can be altered to enhance the accessibility

characteristics of the final user interface. Although each user interface is already

3
 The EDeAN portal has been developed in the context of the IST-CA-033838 - DfA@eInclusion

project (see Acknowledgments).

compliant with the W3C accessibility guidelines, theses settings can further enhance

the actual system accessibility and the perceived quality of interaction.

5.3 Applications of the JMorph Library

The JMorph adaptable widget library (see section 4.3.2) has been used in the context

of a number of development projects, through which it is continuously refined and

enhanced.

The first such example was the ASK-IT Home Automation Application
4
, which

facilitates remote overview and control of home devices through the use of a portable

device. The user interface of the application has the ability to adapt itself according to

user needs (vision and motor impairments), context of use (alternative display types

and display devices) and presence of assistive technologies (alternative input devices).

Figure 12 presents an example of adaptation in the screen of the application which

supports room selection on a PDA device. In the left part of the figure, the interface

displays a color combination, while in the right part a greyscale is used for enhanced

contrast.

INSERT FIGURE 12

The version of JMorph used to develop this application included simple graphics and

adaptation rules, and the widgets needed to be used programmatically.

Subsequently, the library has been enriched with more simple and complex widgets

specifically designed for older users (Leuteritz et al., 2009). Currently, JMorph is

being used in the development of the OASIS service suite (Bekiaris & Bonfiglio,

2009), comprising 12 services in three main domains addressing the quality of life of

the elderly, namely Independent Living Applications, Autonomous Mobility, and

Smart Workplaces Applications
5
. These applications are intended to be available

through three different technological platforms, namely tablet PC, PDA and mobile

phone. One of such applications is a 5 cards poker game for older users, which can

adapt to three different age and visual acuity profiles, as well as to different levels of

expertise in poker playing. In this context, the JMorph library has been distributed to a

4
 The ASK-IT Home Automation Application has been developed in the context of the IST-2003-

511298 - ASK-IT project (see Acknowledgments).
5
 The OASIS services are currently being developed by various partners in the FP7-ICT-215754 -

OASIS project (see Acknowledgments).

pool of universities, research institutions and companies who are in charge of

developing the applications.

Another application currently under development is the REMOTE calendar for older

users
6
, offering functionalities such as to-do-list, medication reminder, nutrition

suggestions, daily activities schedule, and other notifications. Figure 12 presents a

preliminary prototype of the calendar to-do-list developed using JMorph in the

NetBeans IDE.

INSERT FIGURE 13

6 Conclusions

Recent progress in the field of Universal Access and Design for All, i.e., access by

anyone, anywhere and anytime to interactive products and services in the Information

Society, has highlighted a shift of perspective and reinterpretation of HCI design,

from current artifact-oriented practices towards a deeper and multidisciplinary

understanding of the diverse factors shaping interaction with technology, such as

users’ characteristics and requirements and contexts of use, and has proposed

solutions for methods, techniques, and codes of practice that enable to proactively

take into account and appropriately address diversity in the design of interactive

artifacts.

As a consequence, user interface design methodologies, techniques and tools acquire

increased importance of in the context of Universal Access, and strive towards

approaches that support design for diversity, based on the consideration of the several

dimensions of diversity that emerge from the broad range of user characteristics, the

changing nature of human activities, the variety of contexts of use, the increasing

availability and diversification of information, the variety of knowledge sources and

services, and the proliferation of diverse technological platforms that occur in the

Information Society. Two main dimensions of such a perspective are its user-oriented

focus, targeted towards capturing and collecting the requirements of a diversity of

users in a diversity of usage context, and its adoption of intelligent interface

adaptation as a technological basis, viewing design as the organisation and structuring

6
 The REMOTE calendar is currently being developed in the context of the AAL - 2008-1-147 -

REMOTE project (see Acknowledgments).

of an entire design space of alternatives to cater for diverse requirements. In a

Universal Access perspective, adaptation needs to be “designed into” the system

rather than decided upon and implemented a posteriori.

Unified User Interface design has been proposed in recent years as a method to

support the design of user interfaces which automatically adapt to factors that impact

on their accessibility and usability, such as the abilities and characteristics of different

user groups, but also factors related to the context of use and the access technological

platforms. Despite progress, however, the practice of designing for diversity remains

difficult, due to intrinsic complexity of the task and the current limited expertise of

designers and practitioners. Towards overcoming such a difficulty, tool support is

required for supporting and facilitating adaptation design.

This Chapter has discussed a series of tools and components developed over a period

of more than a decade to support and facilitate the conduct of user interface adaptation

design. These include:

- A language for the specification of adaptation decision-making (DMSL, see

section 4.1)

- An interactive design environment for user interface adaptation (MENTOR,

see section 4.2)

- A toolkit supporting the development of adaptable web-based user-interfaces

for the .NET platform (EAGER, see section 4.3.1)

- A toolkit of platform-adaptable interaction widgets, implemented in Java,

supporting the development of applications for PCs and mobile devices

(JMorph, see section 4.3.2).

- A prototyping solution for adaptable user interfaces within the NetBeans IDE

(see section 4.4).

Such tools are claimed to have a significant role to play towards widening and

improving the practice of Design for All, and ensuring a more effective transition

from the design to the implementation phase. They have been used in practice in a

series of case studies involving different types of applications for different purposes,

contexts and interaction platforms. These extensive case studies have demonstrated

the technical feasibility of the overall adaptation-based approach to Universal Access.

Additionally, these developments have provided hands-on experience towards

improving the usefulness and effectiveness of the developed tools in different phases

of the user interface development lifecycle, and in particular design. During these

developments, it has progressively become clear that user interface adaptation can be

adopted in practice as a result of reducing the gap with mainstream design practices.

Ultimately, this amounts to providing transparent solutions which do not require

specific adaptation knowledge and support prototyping. Therefore, more recent

solutions have gone into the direction of providing ready to use widget toolkits that

integrate all the required adaptation knowledge and logic, as well as supporting the

view of alternative designs in mainstream development environments. Obviously,

however, such solutions, while achieving the objective of simplifying the design of

adaptation as far as alternative widget instances are concerned, still require

specialized knowledge and mastering of user interface adaptation mechanisms for

designing dialogue adaptation at a syntactic or semantic level, as well as for creating

new or modifying existing adaptable widgets.

The tools discussed in this Chapter have also proved their usefulness for educational

purposes. In particular, DMSL, MENTOR and, more recently, the JMorph library

with its accompanying prototyping solution have been used in the context of an

advanced Human Computer Interaction course at the University of Crete, with the

objective of introducing post-graduate students to the basics of developing self-

adapting user interfaces.

As the Information Society further develops, the issue of efficiently designing user

interfaces capable of automatic adaptation behavior becomes even more prominent in

the context of the next anticipated technological generation, that of Ambient

Intelligence environments (see Chapter ++ of this Handbook). Ambient Intelligence

provides a vision of the Information Society where humans are surrounded by

intelligent intuitive interfaces that are embedded in all kinds of objects and an

environment that is capable of recognizing and responding to the presence of different

individuals in a seamless, unobtrusive and often invisible. Clearly, Ambient

Intelligence environments are intrinsically based on adaptation, and user- and context-

awareness, as well as adaptation decision making, become fundamental. Therefore,

current research efforts are targeted towards providing tools and facilities to support

user interface adaptation design in Ambient Intelligence environments.

Acknowledgments
The work reported in this Chapter has been partially conducted in the context of the

following research projects funded by the European Commission:

ACTS AC042 - AVANTI “Adaptive and Adaptable Interactions for Multimedia

Telecommunications Applications” (1/9/1995 - 31/8/1998)

IST-1999-20656 - PALIO “Personalised Access to Local Information and Services for

Tourists” (1/11/2000 - 30/4/2003)

IST-2003-511298 - ASK-IT “Ambient Intelligence System of Agents for Knowledge-

based and Integrated Services for Mobility Impaired users” (1/10/2004 - 31/12/2008)

IST-CA-033838 - DfA@eInclusion “Design for All for eInclusion” (1/1/2007 -

31/12/2009)

FP7-ICT-215754 - OASIS “Open architecture for Accessible Services Integration and

Standardisation” (1/1/2008 - 31/12/2011)

AAL - 2008-1-147 - REMOTE “REMOTE” (1/6/2009 - 31/5/2012)

References

Antona, M., Savidis, A., & Stephanidis, C. (2006). A Process–Oriented Interactive

Design Environment for Automatic User Interface Adaptation. International

Journal of Human Computer Interaction, 20 (2), 79-116.

Bekiaris, E., Bonfiglio, S. (2009). The OASIS Concept. In C. Stephanidis (Ed.)

Universal Access in Human-Computer Interaction. Volume 6 of the Proceedings

of the 13th International Conference on Human-Computer Interaction (HCI

International 2009), San Diego, CA, USA, 19-24 July, pp. 202–209. Berlin

Heidelberg: Springer, LNCS.

Emiliani, P.L. (2009). Perspectives on Accessibility: From Assistive Technologies to

Universal Access and Design for All. In C. Stephanidis (Ed.), The Universal

Access Handbook (pp. 2-1 – 2-18). Boca Raton, FL: Taylor & Francis (ISBN:

978-0-8058-6280-5, 1.034 pages).

Leonidis, A., Antona, M., & Stephanidis, C. (2010, to appear). Rapid Prototyping of

Adaptable User Interfaces.

Leuteritz, J.-P., Widlroither, H., Mourouzis, A., Panou, M., Antona, M., Leonidis, S.

(2009). Development of Open Platform Based Adaptive HCI Concepts for

Elderly Users. In C. Stephanidis, (Ed.), Universal Access in Human-Computer

Interaction - Intelligent and Ubiquitous Interaction Environments. – Volume 6

of the Proceedings of the 13th International Conference on Human-Computer

Interaction (HCI International 2009), San Diego, CA, USA, 19-24 July, pp. 684-

693. Berlin Heidelberg: Lecture Notes in Computer Science Series of Springer

(LNCS 5615, ISBN: 978-3-642-02709-3).

Kemppainen, E., Kemp, J.D., & Yamada, H. (2009). Policy and Legislation as a

Framework of Accessibility. In C. Stephanidis, (Ed.) The Universal Access

Handbook (pp 53-1 – 53-16). Boca Raton, FL: Taylor & Francis (ISBN: 978-0-

8058-6280-5, 1.034 pages).

Partarakis, N., Doulgeraki, C., Antona, M. & Stephanidis, C. (2010a). Designing

Web-based Services. In G. Salvendy & W. Karwowski (Eds), Introduction to

Service Engineering (pp. 447-487). Hoboken, NJ, USA: John Wiley.

Partarakis, N., Doulgeraki, C., Antona, M. & Stephanidis, C. (2010b). The

Development of Web-based Services. In G. Salvendy & W. Karwowski (Eds),

Introduction to Service Engineering (pp. 502-532). Hoboken, NJ, USA: John

Wiley.

Pernice, K., J, Nielsen (2001). Beyond ALT Text: Making the Web Easy to Use for

Users with Disabilities. Nielsen Norman Group Report.

http://www.nngroup.com/reports/accessibility

Savidis, A., Stephanidis, C., Akoumianakis, D. (1997). Unifying Toolkit

Programming Layers: a Multi-Purpose Toolkit Integration Module. In

Proceedings of the Fourth International Eurographics Workshop on Design,

Specification and Verification of Interactive Systems (DSV-IS), 1997, (pp. 177-

192), Springer

Savidis, A., & Stephanidis, C. (2009a). Unified Design for User Interface Adaptation.

In C. Stephanidis (Ed.), The Universal Access Handbook (pp. 16-1 – 16-17).

Boca Raton, FL: Taylor & Francis (ISBN: 978-0-8058-6280-5, 1.034 pages).

Savidis, A., & Stephanidis, C. (2009b). A Unified Software Architecture for User

Interface Adaptation. In C. Stephanidis (Ed.), The Universal Access Handbook

(pp. 21-1 – 21-17). Boca Raton, FL: Taylor & Francis (ISBN: 978-0-8058-6280-

5, 1.034 pages).

Savidis, A., & Stephanidis, C. (2009c). Software Requirements for Inclusive User

Interfaces. In C. Stephanidis (Ed.), The Universal Access Handbook (pp. 18-1 –

18-25). Boca Raton, FL: Taylor & Francis (ISBN: 978-0-8058-6280-5, 1.034

pages).

Savidis, A., Antona, M., Stephanidis, C. (2005). A Decision-Making Specification

Language for Verifiable User-Interface Adaptation Logic. International Journal

of Software Engineering and Knowledge Engineering, 15 (6), 1063-1094.

Shneiderman, B., (2000). Pushing human-computer interaction research to empower

every citizen. Universal Usability. Communication of the ACM, May 2000/Vol.

43, No. 5, 85-91.

Stephanidis, C., Paramythis, A., & Savidis, A. (2010, to appear). Developing

Adaptive Interfaces for the Web. In R. Proctor & K. Vu (Eds.), Handbook of

Human Factors in Web Design (2nd edition), Chapter 14. CRC Press.

Stephanidis, C. (2001a). User Interfaces for All: New perspectives into Human-

Computer Interaction. In C. Stephanidis (Ed.), User Interfaces for All -

http://www.nngroup.com/reports/accessibility

Concepts, Methods, and Tools (pp. 3-17). Mahwah, NJ: Lawrence Erlbaum

Associates (ISBN 0-8058-2967-9, 760 pages).

Stephanidis, C. (2001b). Adaptive techniques for Universal Access. User Modelling

and User Adapted Interaction International Journal, 10th Anniversary Issue, 11

(1/2), 159-179.

Stephanidis, C. (Ed.), Salvendy, G., Akoumianakis, D., Arnold, A., Bevan, N.,

Dardailler, D., Emiliani, P.L., Iakovidis, I., Jenkins, P., Karshmer, A., Korn, P.,

Marcus, A., Murphy, H., Oppermann, C., Stary, C., Tamura, H., Tscheligi, M.,

Ueda, H., Weber, G., and Ziegler, J. (1999). Toward an Information Society for

All: HCI challenges and R&D recommendations. International Journal of

Human-Computer Interaction, 11 (1), 1-28.

Stephanidis C. (Ed.), Salvendy, G., Akoumianakis, D., Bevan, N., Brewer, J.,

Emiliani, P.L., Galetsas, A., Haataja, S., Iakovidis, I., Jacko, J., Jenkins, P.,

Karshmer, A., Korn, P., Marcus, A., Murphy, H., Stary, C., Vanderheiden, G.,

Weber, G., & Ziegler, J. (1998). Toward an Information Society for All: An

International R&D Agenda. International Journal of Human-Computer

Interaction, 10 (2), 107-134.

Sun Microsystems. (2010a). The Synth Architecture.

http://java.sun.com/docs/books/tutorial/uiswing/lookandfeel/synth.html

Sun Microsystems (2010b). JavaBeans Concept.

http://java.sun.com/docs/books/tutorial/javabeans/whatis/index.html

The Rehabilitation Act Amendments, Section 508 (1998). http://www.section508.gov/

Winograd, T. (2001). From Programming Environments to Environments for

Designing. In C. Stephanidis (Ed.), User Interfaces for All - Concepts, Methods,

and Tools (pp. 165-181). Mahwah, NJ: Lawrence Erlbaum Associates (ISBN 0-

8058-2967-9, 760 pages).

Vanderheiden, G., Chisholm, W., and Ewers, N. (1996). Design of HTML pages to

increase their accessibility to users with disabilities, Strategies for today and

tomorrow. Technical Report, Trace R&D Centre, University of Wisconsin -

Madison, May 1996.

W3C. Web Content Accessibility Guidelines 1.0, W3C Recommendation, May 1999.

http://www.w3.org/TR/WCAG10/.

W3C. Web Content Accessibility Guidelines 2.0, W3C Recommendation, December

2008. http://www.w3.org/TR/WCAG20/

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG20/

Zimmermann, G., Vanderheiden, G., & Gilman, A. (2002). Universal Remote

Console -Prototyping for the Alternate Interface Access Standard. In N.

Carbonell & C. Stephanidis (Eds.), Universal Access: Theoretical Perspectives,

Practice and Experience - Proceedings of the 7th ERCIM UI4ALL Workshop

(pp. 524-531). Berlin, Heidelberg: Springer.

Figures

Figure 1. The Unified User Interface Architecture

User
Information

Server

Context
Information

Server

Decision
Making

Component

Dialogue
Patterns

Component

User
and context

parameters and
profiles

Adaptation logic

Interaction
dialogue,

physical designs

Figure 2. An example of polymorphic task hierarchy

Modal
dialogue

Delete
File

Direct
Manipulation

Select
File

Select
Delete

Select
File

Select
Delete

Confirm
Delete

before before before

Modal

dialogue

Modal

dialogue

Delete

File

Delete

File

Direct

Manipulation

Direct

Manipulation

Select

File

Select

File Select

Delete

Select

Delete

Select

File

Select

File Select

Delete

Select

Delete Confirm

Delete

Confirm

Delete

before before before

scanning visual n
o

n
-v

is
u

a
l

li
s

tb
o

x

style 1
style 1 style nstyle n

Task 1
Task 1

polymorphism

Task 11 1
Task 11 1 Task 1n 1

Task 1n 1

decomposition

Modal

dialogue

Modal

dialogue

Delete

File

Delete

File

Direct

Manipulation

Direct

Manipulation

Select

File

Select

File Select

Delete

Select

Delete

Select

File

Select

File Select

Delete

Select

Delete Confirm

Delete

Confirm

Delete

before before before

scanning visual n
o

n
-v

is
u

a
l

li
s

tb
o

x

Modal

dialogue

Modal

dialogue

Delete

File

Delete

File

Direct

Manipulation

Direct

Manipulation

Select

File

Select

File Select

Delete

Select

Delete

Select

File

Select

File Select

Delete

Select

Delete Confirm

Delete

Confirm

Delete

before before before

scanning visual n
o

n
-v

is
u

a
l

li
s

tb
o

x

style 1
style 1 style nstyle n

Task 1
Task 1

polymorphism

Task 11 1
Task 11 1 Task 1n 1

Task 1n 1

decomposition

style 1
style 1 style nstyle n

Task 1
Task 1

polymorphism

Task 11 1
Task 11 1 Task 1n 1

Task 1n 1

decomposition

1 If

[Elderly user’s age = 1 or 2 or 3] or [Elderly user’s life situation = 2 or 3] or

[Elderly user’s computer literacy level = 0] or [Vision impairment = 1 or 2 or 3]

 Then

Resolution 640*480 pixels

2 If

[Elderly user’s life situation =1] or

[Elderly user’s computer literacy level = 1]

 Then Resolution 800*600 pixels

Figure 3. An example of DMSL rule

Figure 4. The overall MENTOR interactive environment: (1) Design Parameters Editor; (2) Profile

Editor; (3) Polymorphic Task Hierarchy Editor; (4) Properties Editor

1 2

3

4

Figure 5. Alternative image hierarchy in EAGER (from Partarakis et al., 2010a)

Figure 6. Examples of adaptable widgets

Check button

Listbox

Progress bar

Radio button

Slider

Spinner

Textbox

Text field

Figure 7. Using the Adaptable Widget Library integrated in the NetBeans IDE

taskcontext link [

 evaluate linktargeting;

 evaluate linkselection;

 evaluate loadconfirmation;

]

taskcontext linktargeting [

 if (user.abilities.pointing == accurate) then

 activate “manual pointing”;

 else

 activate “gravity pointing”;

]

taskcontext linkselection [

 if (user.webknowledge in {good, normal}) then

 activate “underlined text”;

 else

 activate “push button”;

]

taskcontext loadconfirmation [

 if (user.webknowledge in {low, none} or context.net==low) then

 activate “confirm dialogue”;

 else

 activate “empty”;

]

Figure 8. DMSL decision block for adaptation of links in the AVANTI browser (from Savidis et al.,

2005)

Figure 9. Link adaptation design in AVANTI (from Savidis et al., 2005)

query

pattern

polymorphic

query pattern

candidate

sub-patterns

e.g. scientific

documents

e.g. celebrity

magazines

e.g. deciding

“gossip category”

e.g. deciding

“awards category”

e.g. computer

science

e.g. deciding

“recent achievements category”

e.g. The

Oscars e.g. Golden

Globe

e.g. Youth

Movie

query

pattern

polymorphic

query pattern

candidate

sub-patterns

e.g. scientific

documents

e.g. celebrity

magazines

e.g. deciding

“gossip category”

e.g. deciding

“awards category”

e.g. computer

science

e.g. deciding

“recent achievements category”

e.g. The

Oscars e.g. Golden

Globe

e.g. Youth

Movie

Figure 10. Query adaptation using DMSL in PALIO (from Savidis et al., 2005)

Figure 11. The main page of the EDeAN web portal (from Partarakis et al., 2010b)

Figure 12. The main page of the EDeAN web portal

Figure 13. Example of widget adaptation in the ASK-IT Home Automation Application

Figure 14. To-do-list in the REMOTE calendar application

Tables

Table 1. The design rationale of alternative image styles (from 0)

TASK: DISPLAY IMAGE

Style: Image As text As link
Resizable
thumbnail

Targets: -

Facilitate
screen reader
and low vision
users in order
not to be in
difficulties with
image viewing

Facilitate screen
reader and low
vision users in
order not to be in
difficulties with
image viewing but
with the capability
to save or view an
image

Viewing images in
small size in order not
to hold large size on
the web page with the
capability to enlarge
the image to normal
size when it is
necessitated.

Parameters:
User
(Default)

User (Blind or
Low vision)

User (Blind or Low
vision) and user
preference)

User (preference)

Properties:
View
image

Read image
alternative text

Read image
alternative text or
and select linked
named as the
image alternative
text to save or view
the image

View image
thumbnail and select
it to view it in normal
size

Relationships: Exclusive Exclusive Exclusive Exclusive

Table 2. Adaptation features of widgets in the Adaptable Widget Library

Buttons Associated icon when idle, mouse over it, clicked or disabled

Shortcut key
Text
Status (Enabled, Disabled)
Tooltip's text and colors (foreground and background)
Border
Background and foreground color when clicked or idle
Button's font
Cursor appearance on mouse over i(e.g. hand cursor)
Access key
Vertical and horizontal text alignment
Free space (gap) between button's icon and text

Check Box Associated icon when enabled and checked, enabled and unchecked, disabled and checked or
disabled and unchecked
Shortcut key to check/uncheck the checkbox
Text
Status (Enabled, Disabled)
Tooltip's text and colors (foreground and background)
Border
Background and foreground color
Checkbox's font
Cursor appearance on mouse over (e.g., hand cursor)
Access Key
Vertical and horizontal text alignment

Drop down
menu

Background and foreground color of available and highlighted choices
Choices' font

List List orientation (vertical or horizontal)
Background and foreground color of available and highlighted choices
Choices' font
Border around list component
Tooltip text either one common for the list itself, or a different one for each choice
Cursor appearance on mouse over (e.g. hand cursor)
Access Key

Text Box Text
Maximum number of characters per line
Text’s font
Background color when this component is on or out of focus
Border around text box
Foreground color of the text when either enabled or disabled
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Access Key that facilitates traversal using keyboard (e.g. right arrow instead of Tab)
Status (Enabled, Disabled)
Editable status, whether the user can alter the contents of this text box
Tooltip's text and colors (foreground and background)
Highlight text color when selected by mouse or due to search facility

Password Text
Box

Text
Maximum number of characters per line
Text’s font
Background color when this component is on or out of focus
Border around text box
Foreground color of the text when either enabled or disabled
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Access Key that facilitates traversal using keyboard (e.g. right arrow instead of Tab)
Status (Enabled, Disabled)
Editable status, whether the user can alter the contents of this text box
Tooltip's text and colors (foreground and background)
Highlight text color when selected by mouse or due to search facility

Text Area Text
Maximum number of characters per line
Text's Font
Background (focused, not focused)
Border around text box
Foreground color of the text when either enabled or disabled
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Access Key that facilitates traversal using keyboard (e.g. right arrow instead of Tab)
Status (Enabled, Disabled)
Editable status, whether the user can alter the contents of this text box
Tooltip's text and colors (foreground and background)
Highlight text color when selected by mouse or due to search facility
Maximum number of lines
Type of text wrapping when text area is not wide enough

Radio Buttons Text

 Background and foreground color when selected or not
Border around radio button
Radio button's text Font
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Status (Enabled, Disabled)
Tooltip's text and colors (foreground and background)
Foreground color when disabled
Associated Icon when enabled and selected, enabled and unselected, disabled and selected or
disabled and unselected
Shortcut key to select the radio button
Foreground and Background color when radio button is on or off focus

Hyperlink / Label Text
Foreground color when Enabled
Background Color (inherited by parent container)
Hyperlink's Font
Tooltip's text and colors (foreground and background)
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Border around Hyperlink
Status (Enabled, Disabled)

Table Row height and margin between rows
Foreground and Background color of currently selected cell
Show grid (horizontal, vertical lines)
Column width
Border around Table Cells
Background Color of Table Cell
Tooltips' text and colors (foreground and background)
Background and foreground color of the table
Text's Font

Slider Slider's Orientation (Horizontal or Vertical)
Minimum and maximum value that user could select using slider
Label for each discrete slider value (e.g. Start - End, 0 - 100 etc.)
Visibility status of labels, major and minor ticks
Background color of slider component
Status (Enabled, Disabled)
Border around slider component
Tooltip's text and colors (foreground and background)
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Major and minor tick spacing (e.g. every fifth tick should be large - major-, while any other
should be small -minor)
Foreground color of ticks (little vertical lines below slider)
Visibility status of the track
Invert start with end (e.g. on vertical orientation start is the top of the slider while end is the
bottom)
Snap to ticks (limit user's selection only to ticks, e.g. when user slides cursor to 4.6, cursor
should automatically be "attracted" to 5

Spinner Background and Foreground Color
Border around spinner
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Status (Enabled, Disabled)
Text's Font
Tooltip's text and colors (foreground and background)

Menu bar Background color
Menu Background color (inherited from menu bar)

Foreground color
Text
Border around menu
Associated icon when menu is opened and closed or enabled and disabled

Menu Item Background and foreground color of each menu item
Associated con when component is enabled or disabled, or when user hover its mouse over it

Progress Bar Background and Foreground Color
Progress's text font
Border around bar
Status (Enabled, Disabled)
Tooltip's text and colors (foreground and background)
Minimum and maximum value of the bar
Progress bar's orientation (horizontal or vertical)
Progress's text visibility status

Tooltips Background and foreground color
Text
Text's Font
Border around tooltip
Cursor appearance when user hovers mouse over it (e.g. hand cursor)
Status (Enabled, Disabled)

Tabs Tab Layout Policy
Tab placement

Border around tab
Tab's label Font
Cursor appearance on mouse over (e.g., hand cursor)
Mnemonic (visible and functional per tab)
Status (Enabled, Disabled) either for all tabs or for a specific one
Tooltip's text and colors (foreground and background)
Associated icon with each tab when enabled or disabled, or when selected or unselected
Tab's color when selected or not

