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ABSTRACT
We consider the problem of efficient string-based signature
matching for Network Intrusion Detection Systems (NID-
Ses). String matching computations dominate in the overall
cost of running a NIDS, despite the use of efficient general-
purpose string matching algorithms. Aiming at increasing
the efficiency and capacity of NIDSes, we have designed
ExB, a string matching algorithm tailored to the specific
characteristics of NIDS string matching. We have imple-
mented ExB insnort and present experiments comparing
ExB with the current best alternative solution. Our prelimi-
nary experiments suggest that ExB offers improvements in
overall system performance by as much as a factor of three.
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1 Introduction

Network Intrusion Detection Systems (NIDSes) are receiv-
ing considerable attention as a mechanism of last resort for
shielding computer systems and networks against attack-
ers [2]. The typical function of a NIDS is based on a set
of signatures (or rules), each describing one known intru-
sion threat. A NIDS examines network traffic and deter-
mines whether any signatures indicating intrusion attempts
are matched. To detect such activity, NIDSes often need
to inspect the payload of incoming packets for such signa-
tures.

The simplest and most common form of inspection
is brute-force string matching against the packet payload.
For instance, consider the (simplified) signature shown in
Figure 1, taken fromsnort , a widely-used open-source
NIDS [13]. This signature matches all TCP/IP packets
originating from computers outside the monitored domain
(i.e., the$EXTERNALNET), destined to the web servers of
the monitored domain (i.e., the$HTTP SERVERSat port
80 ), and containing the string “/usr/bin/perl ” in the
payload. If the NIDS determines that a packet matches
this rule, it infers that a malicious client may be trying
to make the web server execute the perl interpreter, hop-
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ing to gain unauthorized access. To decide whether a
packet matches the signature, the NIDS needs to check
the (TCP/IP) packet header for the specified values (i.e.,
$EXTERNALNET, $HTTP SERVERS, 80). In addition,
the NIDS needs to check whether the payload contains the
string “/usr/bin/perl ”.

String matching is generally expensive: finding a sin-
gle pattern in an input string imposes computation which
is at least linear to the size of the input string [12], and
NIDS rule-sets often contain hundreds of such strings.
Most known NIDS implementations use general-purpose
string matching algorithms that are known to perform well.
The computational burden of string matching using those
algorithms is significant: recent measurements on a pro-
duction network suggest thatsnort spends roughly 30%
of its total processing time in string matching, while for
Web-intensive traffic, this cost is increased to as much as
80% [6]. Furthermore, NIDSes need to be highly efficient
to keep up with increasing link speeds. For instance, a
10 Gbit/s network link delivers roughly one byte every 0.8
nanoseconds. Considering a state-of-the-art processor op-
erating at 2 GHz, this allows for no more than roughly 1.6
instructions for each incoming byte. Finally, as the number
of potential threats (and associated signatures and rules) is
expected to grow, the string matching workload is likely to
increase even further.

In this paper, we present ExB, a multiple-string
matching algorithm designed specifically for NIDSes. The
basic idea is to determine if the input (e.g., each packet
received) containsall fixed-size bit-strings of the signa-
ture string,withoutconsidering if the bit-strings appear in-
sequence, as done by existing algorithms. If at least one
bit-string of the signature does not appear in the packet,
then ExB determines that the signature does not match.
The small size of the input ensures that ExB matches cor-
relate well with actual matches. This approach also al-
lows for a straightforward and efficient implementation:
for each packet, ExB first creates an occurrence bitmap
marking each fixed-size bit-string that exists in the packet.
The bit-strings for each signature are then matched against
the occurrence bitmap. As packets are rarely expected
to match any signature, ExB performs better in the com-
mon case compared to existing algorithms. In the case
of false matches (e.g., when all fixed-size bit-strings show
up, but in arbitrary positions within the input), ExB falls



alert tcp $EXTERNAL_NET any ->
$HTTP_SERVERS 80 (content:‘‘/usr/bin/perl’’)

Figure 1: A simple intrusion detection rule.

back to standard algorithms (such as the Boyer-Moore al-
gorithm [3]).

To validate our approach, we have implemented ExB
in snort . Experiments using full packet traces show that
the rate of false matches is reasonably small, and that ExB
offers significant performance benefits; in certain cases,
ExB makessnort up to three times faster.

The rest of the paper is organized as follows. In Sec-
tion 2 we review previous work and place our algorithm in
context, and in Section 3 we informally describe our algo-
rithm. Section 4 presents experiments with ExB as imple-
mented insnort and compares its performance with the
current best alternative. Finally, Section 5 outlines open
issues for further investigation, and Section 6 summarizes
our results.

2 Previous work

The general problem of designing algorithms for string
matching is well-researched. The most widely used algo-
rithm is due to Boyer and Moore [3]. The Boyer-Moore
algorithm compares the string with the input starting from
the rightmost character of the string. This allows the use of
two heuristics that may reduce the number of comparisons
needed for string matching (compared to the naive algo-
rithm). Both heuristics are triggered on a mismatch. The
first heuristic, called thebad character heuristic, works as
follows: if the mismatching character appears in the search
string, the search string is shifted so that the mismatching
character is aligned with the rightmost position at which the
mismatching character appears in the search string. If the
mismatching character does not appear in the search string,
the search string is shifted so that the first character of the
pattern is one position past the mismatching character in
the input. The second heuristic, called thegood suffixes
heuristic, is also triggered on a mismatch. If the mismatch
occurs in the middle of the search string, then there is a
non-empty suffix that matches. The heuristic then shifts
the search string up to the next occurrence of the suffix in
the string.

Horspool improved the Boyer-Moore algorithm with
a simpler and more efficient implementation that uses only
the bad-character heuristic[8].

Aho and Corasick provide an algorithm for concur-
rently matching multiple strings [1]. The set of strings is
used to construct an automaton which is able to search for
all strings concurrently. The automaton consumes the in-
put one character at-a-time and keeps track of patterns that
have (partially) matched the input. Algorithms based on
Aho-Corasick are widely used in current compiler tech-
nology, and several improvements have been presented

[5, 9, 15].
Fisk and Varghese were the first to consider the de-

sign of NIDS-specific string matching algorithms. They
proposed an algorithm called Set-wise Boyer-Moore-
Horspool [6], adapting the Boyer-Moore algorithm to si-
multaneously match a set of rules. This algorithm is
shown to be faster than both Aho-Corasick [1] and Boyer-
Moore[3] for medium-size pattern sets. Their experiments
suggest triggering a different algorithm depending on the
number of rules: Boyer-Moore-Horspool if there is only
one rule; Set-wise Boyer-Moore-Horspool if there are be-
tween 2 and 100 rules, and Aho-Corasick for more than
100 rules. This heuristic has been incorporated insnort
and provides the baseline for our comparison in Section 4.

Independently of Fisk and Varghese, Coitet al.[4]
implemented a similar algorithm insnort , adapt-
ing Boyer-Moore for simultaneously matching multiple
strings, derived from the exact set matching algorithm of
Gusfield[7].

NIDSes are unlikely to be able to track increasing
network speeds, regardless of whether more efficient al-
gorithms can be designed, as the cost of string matching
appears to be orders of magnitude higher than the cost of
IP forwarding. A straightforward approach for scaling such
systems is to consider distributed architectures, such as the
one examined by Kruegelet al.[10]. The architecture splits
incoming traffic into several Intrusion Detection Sensors
that work in parallel to identify intrusion attempts [10].
Such efforts are orthogonal to improving string matching
– better algorithms will require less sensors in a distributed
NIDS architecture.

3 ExB: Exclusion-based string matching

We present an informal description of ExB, first in its sim-
plest and most intuitive form and then in its more general
form. ExB is based on the following simple reasoning:

Suppose that we want to check whether a small
input I contains a strings. Then, if there is at
least one character ins that is not inI, thens is
not in I.

This can be used to determine when a given strings
doesnotappear in the input stringI. If, on the other hand,
every character ofs belongs toI, then we use a standard
string searching algorithms (e.g., Boyer-Moore-Horspool)
to confirm whethers is a substring ofI. This is needed in
case offalse matches, e.g., cases where every character of
s is in I, but not in the sequence they appear ins. This
simplifies the matching problem, since we can efficiently
determine whether a characterc belongs toI by means of
anoccurrence bitmap. Specifically, we firstpre-processthe
input I, and, for each characterc that appears in stringI,
we mark the corresponding element on the (256-element)
bitmap. After pre-processing, we know that stringI con-
tains thejth character only if thejth element of the bitmap
is marked. The pseudo-code for pre-processinginput



boolean exists[256];

pre_process(char *input, int len)
{

bzero(exists, 256/8); // clear array

for (int idx = 0 ; idx < len ; idx++) {
exists[input[idx]] = 1;

}
}
search(char *s, char *input, int len_s, int len)
{

for (int idx = 0 ; idx < len_s ; idx++) {
if (exists[ s[idx] ] == 0)

return DOES_NOT_EXIST ;
}
return boyer_moore(s, len_s, input, len);

}

Figure 2: Pseudo-code for ExB pre-processing and search.

and for matching a strings on input is presented in Fig-
ure 2.

The algorithm can be generalized forpairs of char-
acters, with the intention of reducing the probability of
false matches. Instead of recording the occurrence of sin-
gle characters in stringI, it is possible to record the ap-
pearance of eachpair of consecutive characters in string
I. In the matching process, instead of determining whether
each character ofs appears inI, the algorithm then checks
whether each pair of consecutive characters ofs appears in
I. If a pair is found that does not appear inI, ExB knows
thats is not inI.

Generalizing further, ExB can use bit-strings of arbi-
trary length, instead of just 8-bit characters. That is, ExB
records all (byte-aligned) bit-strings of lengthx. The size
of the bit-string exposes a trade-off: larger bit-strings are
likely to result in fewer false matches, but also increase
the size of the occurrence bitmap, which could, in turn, in-
crease capacity misses and degrade performance. For most
of our experiments we shall usex = 13 which our exper-
imental analysis has shown to maximize performance (in
the particular experiment setup).

4 Experimental evaluation

We evaluate the performance of ExB against the Fisk-
Varghese heuristic (denoted as FVh in the rest of this paper)
as implemented insnort , using trace-driven execution.

4.1 Environment

All experiments were run on a PC with a Pentium 4 proces-
sor running at 1.7 GHz, with a L1 data cache of 8 KB and
L2 cache of 256 KB, and 512 MB of main memory. The
measured memory latency is 1 ns for the L1 data cache,

0

20

40

60

80

100

8 9 10 11 12 13 14 15 16

fr
ac

tio
n 

of
 fa

ls
e 

m
at

ch
es

bit-string length (bits)

Figure 3: Fraction of false matches vs. bit-string length.

10.9 ns for the L2 cache and 170.4 ns for the main mem-
ory (measured usinglmbench [11]). The host operating
system is Linux (kernel version 2.4.17, RedHat 7.3).

We usesnort version 1.9.0 compiled withgcc ver-
sion 2.96 (optimization flagsO2 – results withO3 were
found to be similar). Each packet is checked against the
“default” rule-set of thesnort distribution. This rule-set
is composed of 1243 rules, of which 90.3% requires ex-
amining the packet payload.snort organizes these rules
in 152 “chain headers”. Chain headers insnort are used
to associate each packet header rule with a suitable set of
string matching rules.

To drive the execution ofsnort , we use full-packet
traces from the “capture the flag” data-set1. The “cap-
ture the flag” contest is held every year at DEFCON: the
“largest underground Internet security gathering on the
planet”. These traces contain a significant number of in-
trusion attempts2. For most of the experiments, we used
theeth0.dump2 trace containing 1,035,736 packets. For
simplicity, traces are read from a file. Replaying traces
from a remote host provided similar results.

4.2 Experiments with the default rule-set

Before comparing the two algorithms, we first determine
the optimal size for the fixed-size bit-string used by ExB. In
Figure 3 we show the fraction of false matches for different
bit-string lengths, and in Figure 4 the corresponding run-
ning time ofsnort , obtained using thetime(1) facility
of the host operating system. We observe that the fraction
of false matches is well below 2 % when using bit-strings
of 13 bits and more. Completion time decreases with in-
creasing bit-string size, as the fraction of false matches that
have to be searched using Boyer-Moore is reduced. How-
ever, it is not strictly decreasing: it is minimized at 13 bits
but exhibits a slight increase for more than 13 bits, appar-
ently because of the effect of data-structure size (1 KB for

1Available at http://www.shmoo.com/cctf/
2The most appealing reason for using these traces is less the num-

ber of intrusion attempts and more the availability ofreal payloads. One
could, however, argue that neither of these two characteristics affects per-
formance noticeably, but this has not been confirmed experimentally.
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Figure 4: Completion time vs. bit-string length.

FVh ExB
completion time (sec) 41.42 30.34

Table 1: Completion time ofsnort using the default rule-
set

13 bits, 8 KB for 16 bits) on cache performance. For our
specific configuration, 13 bits appear to offer the best per-
formance.

We now examine whether ExB offers any overall im-
provement compared to FVh. The completion time for ExB
and FVh are presented in Table 1. We see that using ExB,
snort completes execution 27% faster compared to using
FVh. ExB completes execution faster because in the com-
mon case it can quickly decide that a given string is not
contained in a packet. In 98.4% of all invocations, ExB was
able to terminate without actually invoking Boyer-Moore.
In the remaining 1.6% of the cases, ExB used the Boyer-
Moore to find whether the considered string was contained
in the input packet.

To better understand the behavior of ExB , we obtain
processor-level statistics using the Pentium performance
counters[14]. We measure the total number of instructions
executed, the number of L1 data cache misses, and the
number of L2 cache misses. These statistics are reported
in Table 2. We see that ExB achieves 27% improvement
in completion time, uses 37% fewer instructions, induces
17% fewer L1 data cache misses, and 14% fewer L2 cache
misses.

FVh ExB improv.
completion time (sec) 41.42 30.34 27%
instructions (×109) 58.9 37.1 37%
L1 misses (×109) 1.83 1.51 17%
L2 misses (×106) 259 222 14%

Table 2: Performance ofsnort using the default rule-set
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Figure 5: Performance ofsnort vs. number of rules.

4.3 Synthetic rules

4.3.1 Number of rules

To better understand the performance of ExB we construct
a synthetic rule-set, where each rule checks every packet
against a random 20-character string. To focus on the cost
of string matching, rules are applied to all packets. Fig-
ure 5 shows the completion time ofsnort using ExB and
FVh. We see that for a small number of rules, FVh slightly
outperforms ExB , but as the number of rules increases,
ExB clearly outperforms FVh. This is because ExB pays
the price of pre-processing for each packet. When a packet
is checked against several rules, the initial pre-processing
overhead is amortized over a larger number of rules, and
thus its effect on the total completion time is reduced.

4.3.2 String length

We examine the effect of string length on the performance
of ExB and FVh. We use a set of 200 rules that match all
TCP/IP headers and search the payload for a random string
of given length. Note that the length of strings in the default
rule-set are between 2 and 39 bytes, with an average of 14.
Figure 6 summarizes the results: ExB outperforms FVh in
all cases, but the effect of string length on completion time
does not appear to have a very clear trend (and repeated
experiments did not improve the picture). A noticeable dif-
ference is, however, that the relative benefits of ExB are
much higher in the case of 2-byte strings. We traced this to
the surprisingly poor cache behavior of FVh, considering
the large number of L1 data cache misses, as reported (in
billions) in the following table:

string FVh ExB
length misses misses

2 3.38 1.71
20 3.14 3.37
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Figure 6: Completion time vs. string length (200 rules)

We observe that, although both approaches have a com-
parable number of cache misses (within 5%) for 20-byte
strings, the number of cache misses is significantly reduced
for 2-byte strings in ExB, but not in FVh. This is because
FVh uses data structures that do not fit in the 8 KB L1 data
cache. In contrast, ExB uses a 1 KB data-structure, thereby
leaving much more space in the cache for rules and other
data structures.

4.4 Packet size

To examine how ExB and FVh perform for different packet
sizes, we divide the trace in two sets: one containing
“small” packets of less than 200 bytes, and one containing
“large” packets of more than 200 bytes. We runsnort on
these two sets and report the results in Figure 7.

We observe that FVh is marginally better for small
packets, while for larger packets ExB outperforms FVh by
roughly 20 %. This is understandable, as the relative cost
of header processing is higher for small packets than for
large packets. Therefore, an improved string matching al-
gorithm is unlikely to provide any noticeable improvements
for small packets.

4.5 Other traces

All results reported so far are based on a single trace.
For completeness, we repeated the experiments with other
traces from the same data source, using the default rule-set.
The results are summarized in Table 3. ExB performs better
than FVh for all traces, but the relative improvement varies.
The improvement is as high as 69% (three times faster), but
there are a few cases where the improvement of ExB is as
small as 2%. This coincides with differences in the packet
size distribution: the average packet size foreth2.dump2
is 111 bytes3. In contrast, theeth0.dump7 trace has an

3More specifically, these data-sets seem to contain an unusually large
number of TCP SYN and ACK packets and ICMP, portscan and shellcode
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Figure 7: Performance as a function of packet size.

Trace characteristics Running time
trace name number avg. pkt FVh ExB improv.
(defconX) of size (%)

packets (bytes) (sec) (sec)
eth0.dump 1119212 658 55.52 34.66 38
eth0.dump2 1035736 835 41.42 30.12 27
eth0.dump3 1238761 693 54.87 30.70 44
eth0.dump4 595267 1481 41.87 13.39 68
eth0.dump5 1468543 582 45.47 19.30 58
eth0.dump6 853988 1023 49.38 15.67 68
eth0.dump7 786446 1114 49.62 15.41 69
eth0.dump8 497302 1111 31.95 9.80 69
eth0.dump9 1464704 111 31.81 31.12 2
eth2.dump2 2467168 241 85.54 83.04 3

Table 3: Completion time ofsnort using various traces

average packet size of 1114 bytes. Thus, when process-
ing large packets (as ineth0.dump7 ), snort spends a
large fraction of its time in string matching, and ExB offers
significant benefits. On the contrary, in the case of small
packets (as ineth.dump2 ), snort spends only a small
fraction of its time in string matching, and therefore any
improvements in string matching do not affect total com-
pletion time.

5 Future work

There are a number of questions that remain unanswered
by our experiments so far. First, the set of traces used is
rather limited; it would be interesting to examine the per-
formance of ExB on a more diverse set of traces, including
workloads from production networks, as in [6]. Due to pri-
vacy issues it has been generally difficult to obtain such
traces for research purposes.

Second, a crucial dimension that has not been ex-
plored sufficiently is the effect of processor and memory
architecture. Our results suggest that this parameter has

attacks, which tend to be small packets



a significant effect on performance, but it remains to be
shown that the benefits of ExB are pervasive.

Third, a theoretical analysis and comparison of ExB
to existing algorithms is needed to better understand the
relative benefits demonstrated here. Similarly, analyzing
algorithm parameters such as the rule-set structure (e.g.,
distribution of rules per chain header) and the frequency
at which different chain headers are invoked in different
scenarios could offer valuable insights.

Finally, a more detailed experimental analysis, in-
cluding a cost breakdown for the various operations of
ExB, could lead to further optimizations.

6 Summary and concluding remarks

We have examined the problem of string matching for Net-
work Intrusion Detection Systems, and presented the de-
sign of an efficient algorithm called ExB.

We have evaluated ExB against the set of algorithms
currently implemented insnort using trace-driven execu-
tion with real packet traces. The experiments presented in
this short paper are by no means exhaustive, and a number
of questions remain unanswered, as discussed in the previ-
ous section. Nevertheless, based on our results so far we
can make the following observations.

First, ExB string matching appears to be more effi-
cient than the set of algorithms currently used insnort ,
resulting in a significant overall performance improvement
for NIDSes; in some cases ExB makessnort three times
faster. Second,the performance benefits of our approach
improve with packet size. Third, ExB scales well with in-
creasing rule-sets, consistently outperforming the FVh ap-
proach.

Finally, we must note that we expect the relative ben-
efits of improved string matching algorithms such as ExB
to be even more pronounced in the future, as network link
speeds are likely to continue increasing faster than proces-
sor speeds.
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