A 128 x 128 x 24Gb/s Crossbar, Interconnecting 128 tiles in a single hop, and Occupying 6% of their area

Giorgos Passas, Manolis Katevenis, Dionisis Pnevmatikatos

presentation by
Giorgos Passas

Inst. of Computer Science (ICS)
Foundation for Reasearch & Technology -- Hellas (FORTH)
Heraklion, Crete, Greece
Introduction

- **Motivation:**
 - Through real ASIC design
 - Area cost estimation of high-valency crossbar datapaths

- **Applications:**
 - Combined input-output queued switches (off chip)
 - CMP crossbars (on chip)

- **Contributions:**
 - A systematic design methodology
 - Proof that a 128x128x24Gb/s crossbar will occupy < 6% of a typical die
 - Crossbar area scales linearly --not quadratically-- with word width
Floorplan Alternatives for a 25x25 Crossbar NoC

\[\alpha \times \frac{\alpha}{N} \]

\[\frac{\alpha}{\sqrt{N}} \times \frac{\alpha}{\sqrt{N}} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Floorplan Alternatives for a 25x25 Crossbar NoC

processor / switch-port control

memory / switch queues

α
Floorplan Alternatives for a 25x25 Crossbar NoC

- Processor / switch-port control
- Memory / switch queues
- Crossbar slice

\[\alpha \]
Floorplan Alternatives for a 25x25 Crossbar NoC

- Processor / switch-port control
- Memory / switch queues

lines on top of memory: 5 (= \(\sqrt{N} \))
& total line length: 50\(\alpha \) (= 2N\(\alpha \))

6 (= N/4)
25\(\alpha \) (= N\(\alpha \))
Floorplan Alternatives for a 25x25 Crossbar NoC

These are floorplans for a 25x25, not a 5x5 crossbar.
Floorplan Alternatives for a Centralized 2-bit 4x4 Crossbar

2-bit 4-to-1 mux 2-bit 4-to-1 mux 1-bit 4-to-1 mux

too slow \(O(N^2 W)\) wires \(O(NW)\) wires
- 90nm CMOS standard cell, M1-M9
- 1.1mm x 154um array of 128 128-to-1 quad-tree muxes
 - wide to provide for quad-tree wiring
- routing in M2-M4 with 95% utilization
- 750MHz worst-case, bounds:
 - NoC frequency at 750MHz
 - pipelined-link length at 6mm in M5/M6
128x128x24Gb/s Centralized-Crossbar Floorplan

Routed in M5-M8 with 90% area util.
max wire length = half perimeter < 6mm
128x128x24Gb/s Crossbar-NoC Floorplan

1 bidirectional 32-bit link M5-M6

16x32 = 512 metal tracks x 512nm routing pitch = 0.26mm = 1/4 x tile edge

9 sq-mm left for centralized control
7-Cycle Corner-to-Corner Latency

- 2 cycles corner to center (crossbar port)
 - 1 cycle crossbar port to slice
 - 1 cycle slice in to out
 - 1 cycle slice out to crossbar port
- 2 cycles crossbar port (center) to to corner
Still plentiful of wiring resources at each level of the circuit hierarchy
Traffic: Permutation updated / cycle - toggle rate = 1
Worst-case conditions: 0.9Volts, 750MHz
-- THE END --