Explicit Communication and Synchronization in SARC

Features:

- Direct Access Address Space Extension:
 - SW Allocates part of private cache as scratchpads
- Supports both:
 - Implicit Communication using caches,
 - Explicit Communication via directly accessible local memories (scratchpad)
- Merged Cache controller (CC) and Network Interface for reduced latency

Explicit Communication Mechanisms:

- Remote Stores
 - Fast non-blocking direct transfers
 - Can use write combining to improve data comm. efficiency
 - Store fences may be required in SW
- R-DMA
 - Bulk asynchronous transfers
 - Completion notifications: combination of Acks and Counter

NI Communication & Synchronization primitives:

- Command Buffers
- Counters: Atomic add-on-store
 - Event response, send notification when counter=0
- Queues: Atomic enqueue and dequeue
 - Singe Reader: Many-to-One communication
 - Multiple Reader: Many-to-Many communication
- Locks (using queues)

Cluster Nodes:

- Four MicroBlaze processors (32-bit, inorder, 5-stage pipeline)
- Configurable L2 cache/scratchpad
- Merged NI and CC
- Communication using a 64-bit, 5-port bufferless crossbar switch

FPGA Prototype:

- Multi-FPGA Board (16 nodes based on Xilinx Virtex5 FPGA, Crossbar switch based on Xilinx VirtexII)
- Each node consists of 4 MicroBlaze processors and one DRAM (256 MBytes)

Performance Evaluation:

- Three Diverse applications: Jacobi, Bitonic, FFT
- Configurations:
 - Plain Hardware managed caches
 - Hardware managed caches with strided hardware prefetching
 - Scratchpad memory with RDMA and Remote Stores
- 10%-40% higher speedup on 64 cores
- 2x-4x reduced network traffic
- 35%-70% Energy reduction
- 50%-90% Energy Delay Product (EDP) reduction
- 15%-30% Power consumption reduction

Computer Architecture and VLSI Systems Laboratory (CARV), Institute of Computer Science, FORTH