Variable Packet Size
Buffered Crossbar (CICQ) Switches

Manolis Katevenis, Georgios Passas, Dimitrios Simos, Ioannis Papaefstathiou, and Nikos Chrysos

FORTH and U. Crete, Greece
Outline

• Background:
 Buffered Crossbars are good
 “Combined Input-Crosspoint Queueing (CICQ)”

• Foreground:
 Variable-Packet-Size BufXbars are even better
 • no SAR → no speedup → higher line rate
 • no output queues → lower cost

• Contributions:
 • performance evaluation - more extensive & accurate
 • chip design → verification, area, power
Background: Unbuffered Crossbar

- No output conflicts allowed: dependent scheduler decisions
 - central scheduling, fixed-size cell operation
• Independent decisions: distributed scheduling
 → can operate directly on variable-size packets
Variable Packet Size (VPS) Buffered Crossbar

- With same-speed crossbar:
 \(s \) times faster line rate with VPS buffered crossbar (\(s = 2 \) to 3)
Contributions:

• Performance Evaluation:
 • Crosspoint buffer sizing
 • under Internet-style, uniformly-destined traffic
 • Hot-spots: no degradation to others – see paper
 • under Unbalanced traffic – see paper

• Full Chip Design:
 • Cut-through
 • Verification
 • Area & power, per function
Crosspoint Buffer Sizing

- For full throughput under worst-case single active flow: \(\text{CrosspBufSize} \geq \text{MaxPacketSize} + \text{RTTwindow} \)
Crosspoint Buffer ≥ MaxPckSize + RTTwindow
No Speedup needed to approach Output Queuing

- Uniform destinations
- Internet-style synthetic workload; 40-1500 byte packet sizes
- Unbuffered crossbar w. SAR: one-iteration iSLIP, 64-byte segments
A VPS Buffered Crossbar Chip Design

- 32x32 ports, 300 Gbps aggregate throughput
- 2 KBytes / crosspoint buffer x 1024 crosspoints
- Variable-size packets (multiples of 4 Bytes)
- 32-bit datapaths
- Cut-through at the crosspoints
- Fully designed, in Verilog
 - Core only, no pads & transceivers
- Fully verified: Verilog versus C++ performance simulator
- Crosspoint logic = 100 FF + 25 gates (simplicity!)
Chip Design: Synthesis, Placement & Routing

32x32 ports, 300 Gbps

- Synthesized: Synopsys
- Placed & routed: Cadence Encounter, 0.18 µm UMC
 -> Clock frequency: 300 MHz @ 0.18 µm
 (operates at maximum SRAM clock frequency)
 -> Core Power: 6 Watt typical @ 0.18 µm
 -> Core Area: 420 mm² @ 0.18 µm, or 200 mm² @ 0.13 µm

- Conclusion:
 - 0.18 µm: 24x24 ports (or ~ 10x10 ports w. Jumbo frames)
 - 0.13 µm: 32x32 ports @ 10 Gbps/port
 - 0.09 µm: higher port counts and line rates achievable
Chip Core Layout

32x32 crosspoints power ring credit logic global wiring
Core Area, Power Allocation:

- 0.18-micron, 32x32 ports:
 Core Area = 420 mm²
 Core Power ~ 6 W typical

 Crosspoint logic (32x32):
 2 % area
 5 % power

 Crosspoint buffers:
 32x32 x2 KBytes
 70 % area
 20 % power

 Crossbar wires & drivers:
 32 in + 32 out x32-bit
 30 % area
 60 % power
 ⇒ large cost of speedup

 32 output schedulers & credit logic:
 1 % area
 15 % power

- For Pads & Transceivers:
 Add an estimated extra:
 ~ 25 % area
 ~ 400 % power (!)
 ⇒ huge cost of speedup
Conclusions

Buffered Crossbars are good

Variable-Packet-Size BufXbars are even better

- no SAR \(\rightarrow\) no speedup \(\rightarrow\) higher line rate
- no output queues \(\rightarrow\) lower cost
Saturation Throughput under Unbalanced Traffic

- Poisson arrivals, Pareto sizes (40-1500)
- For iSLIP, packet sizes are multiples of 64 B (→ no SAR overhead)