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ABSTRACT. Query languages for object bases became enriched by generalized path
expressions that allow for atiribute and path variables. Optimizing queries contain-
ing generalized path expressions attracted some interest. However, many interesting
queries require still a full scan over the whole object base. This unbearable situation
can be remedied best by utilizing index structures. However, traditional database in-
dezxes fail to support generalized path expressions. We propose to use a flexible miz of
database and full text indexes in order to evaluate efficiently queries containing gener-
alized path expressions. We introduce an algebraic framework for the optimization of
such queries using full text indezes, and we report on a first prototype implementation
including some performance results.

RESUME. Etendre les langages de requétes des SGBD objet avec des expressions de che-
min généralisées permet d’interroger les données sans une connaissance ezacte de leur
structure. Cependant, ’évaluation efficace des requétes contenant des expressions de
chemin généralisées reste un probléme ouvert et les techniques d’indezation classiques
ne conviennent pas & ce nouveayu conterte. Nous proposons d’utiliser conjointement in-
dex classiques et index plein-texte pour obtenir une évaluation efficace des requétes avec
expressions de chemin généralisées. Nous définissons un cadre algébrique permettant
de combiner étroitement l'utilisation des index plein-texte et les techniques standard
d’optimisation. Enfin, nous donnons quelques résultats sur les performances d’un pre-
mier prototype.

KEY WORDS: query optimization, generalized path expression, full-text index.
MOTS-CLES : optimisation de requétes, expressions de chemin, index plein-texte.




1. Introduction

Query languages for object bases have proven to be a very powerful tool
for users. However, there exists good reasons to enrich them even further. The
most useful extension proposes the introduction of generalized path expressions
(GPE) containing attribute and path variables [Kks92]. These are very useful
for several reasons. Firstly, if the schema is unknown to the user, he is still
able to query the database. Secondly, if the schema includes some degree of
heterogeneity, this might be overcome by attribute and path variables. Thirdly,
some queries that cannot be stated otherwise or look very awkward, can be
stated easily. Fourthly, attribute and path variables allow the querying of the
schema and structure of an object base. Theses functionalities are crucial for
a wide range of object base applications where the distinction between data
and schema/type seems to disappear — at least for the end-user. As a witness,
consider text applications that became even more popular with the advent of
the Web.

Text applications have already received a lot of attention from the database
community. Several commercial database systems (e.g., DB2, Sybase, Oracle,
Informix, Q) already offer tools for developing Web servers or Web applications.
New database query languages have been proposed to deal with textual data
(e.g., [BRG88, KKS92, QRS+95, CACS94]) and various optimization techniques have
been introduced (e.g., [BRG88, CCM96, CS93, CM94b, CDY95]). However, there
still lacks an approach that would encompass the full power of standard or
extended database query languages — especially those containing generalized
path expressions. More specifically, despite the new optimization techniques,
many interesting queries still require a full scan of the object base. The most
famous example of this kind is a query that resembles a Unix grep. This situation
can only be remedied by proper use of well-suited indexes.

In this situation, our contribution is threefold. (1) We show how existing full
text index systems (e.g., INQUERY [ccH92], Topic [ver9s], WAIS [pfe95], etc.)
can be used in order to optimize queries featuring generalized path expressions.
The main idea is that the full text index should not only report where a certain
item occurred but also the path that leads to this item. (2) We enhance an ob-
ject algebra with appropriate operators and give equivalences between algebraic
(sub)queries and queries using a full text index. A first version of the algebra
allowing to optimize queries with GPEs was introduced in [ccM96]. However,
some adjustments are necessary in order to allow for the introduction of full
text indexes and state the equivalences enabling their utilization by the query
optimizer. (3) We validate our approach by reporting performance measures on
a first prototype. The main justification of our approach will be that queries
that took hours without full text index utilization can now be answered within
seconds.

Although there exists many proposals to integrate databases and information
retrieval systems (e.g., INQUERY/IRIS [cs92], etc.), none is intended to use full
text indexes to optimize standard or extended query language featuring GPEs.



Nevertheless, two approaches appear similar to ours [CM94b, CDY95]. Contrary
to [cM94b], we do not exclude standard optimization techniques from our frame-
work. Also, our use of full text indexing capabilities is much more flexible than
that proposed in [CDY95] where only the textual parts of documents are indexed.
Our approach allows the use of full text indexes on structured documents stored
in files or in text databases, and this at various granularities, according to the
application’s need. Additionally, our approach is independent of the underlying
full text indexing system.

The paper is organized as follows. Section 2 introduces GPE’s and review
(scarce) literature existing on the subject of their optimization. In Section 3, we
show how full text indexes can be used to optimize GPE. Then, in Section 4,
we show that full text indexes can also be used to optimize standard queries.
Section 5 reports on a first prototype implementation. The paper is illustrated
with some performance figures.

2. Optimizing Queries with GPE: State of the Art

In this section, we briefly introduce queries with generalized path expressions
along with some first naive approaches to evaluate them [BRG88, CACS94, KKS92].
Next, we briefly review the algebraic approach we proposed in [cCM96]. We then
use an example to show the lack in the current state of the art and the need for
the introduction of full text indexes.

2.1. Generalized Path Expressions

Generalized path expressions (GPE) are very useful primitives that allow to
query instance as well as schema in a uniform fashion. They were introduced
as a means to query textual data [BRG88, CACS94], object schema [KKS92] or
schema-less data [QRS+95]. Given these various motivations, they exist under
different forms in the literature. However, all are more or less equivalent to the
GPEs presented in this paper.

A GPE is a path expression containing, on top of more standard features,
variables of two new kinds: path and attribute. As will be illustrated with dif-
ferent examples, these variables allow easy navigation through the composition
graph of database objects.

Let us consider a first example. The language we use is OQL extended with
GPEs [cACs94]. The schema is composed of five classes: Volume, Chapter, Sec-
tion, Paragraph, Text. We are not interested here in the exact structure of the
various classes. We just need to know that a volume has a set of chapters, a
chapter a set of sections, a section a set of paragraphs and a paragraph has a
text part of class Text. Finally, Encyclopedia is a database name identifying a
set of volumes.



Example 2.1. The following query returns the couples of volumes referencing
each other and such that the title of the first volume starts with “Digital”. Note
that this query could not be formulated using standard OQL.

select v, v2
from Encyclopedia{vl} @QP(x), Encyclopedia{v2} QQ(y)
where  vl.title like “Digital*” and x=v2 and y=v1

The query from clause contains two GPEs. Both allow to navigate from some
volumes (vl or v2) contained in the encyclopedia, following some path (P or
Q) and ending in some value (x or y). Note that the “@” character is used to
introduce path variables. O

Former (naive) approaches for evaluating GPEs were introduced in [BRGSS,
CACS94, KKS92] and implemented somehow an intuitive understanding of GPEs:
(i) look for all possible instantiations of attribute and path variables, (ii) replace
the attribute and path variables by their instantiations, (iii) eliminate the not
well-typed alternatives, (iv) union the remaining instantiated queries, optimize
and evaluate the resulting query.

In [ccm96], we showed the lacks of this naive approach (exponential input
to the optimizer, no rewriting previous to or intermixed with the GPEs instan-
tiation) and proposed an algebraic treatment that we review now.

2.2. The Algebraic Approach

In the naive approach, GPEs are processed from a schema perspective be-
fore being evaluated on the object base. Our approach relies on the fact that
these two instantiations are somehow unavoidable but offers some optimization
possibilities that should be exploited. The main idea of our technique is thus
to integrate schema lookup and object base lookup in an algebra, and thereby
be able to apply optimization techniques in a homogeneous fashion to both loo-
kups. For this, we extended the algebra of [cM93] with two new operators, S_inst
and D _inst, that instantiate GPEs from a schema and a data perspective.

Let us consider the algebraic translation of Query 2.1 shown on the left side
of Figure 1. Formal definitions of the S_inst and D _inst operators along with
syntactical definitions of GPEs, path and patterns are given in [Chr96]. The
definition of the standard algebraic operators can be found in [cM93]. We now
explain this translation.

Operation (1) allows us to view Encyclopedia as a set of tuples with one
attribute v1. This feature is essential to the algebra whose operators are, for the
most part, defined on set of tuples. This gives nice properties to our operators.
At the end of (1), we have a set of the following form:

{ [v1l: ol], [v1: 02], ....}
where 01,02 are Volume objects belonging to Encyclopedia.

Operation (2) finds all the possible schema paths matching the GPE (G1)

and starting in v1. In order to differentiate them from data paths, we call schema
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Figure 1. Translation and optimization of query 2.1

paths patterns. Operation (3) find all the data paths matching the patterns
obtained by (2) on each volume of (1) and adds to (1) attributes corresponding
to this evaluation (one per variable contained in the GPE). At the end of (3),
we thus, have a set of the following form:

{ [vl: o1, x: “s17, P: pl], [v1: 02, x: “s2”, P: p2], ....}
where pi is the database (i.e., instantiated) path going from oi to the string
” SZ'” .

Operations (4,5,6) are similar to (1,2,3). Operation (7) is a join® which will
result in a set with attributes v1, z, P, v2, y, Q. Operation (8) is a selection.
The last operation is a projection.

Let us now consider the optimized expression corresponding to query 2.1
that is shown on the right part of Figure 1. One can note the following changes:
(i) The selection operation has been pushed down the query tree. This presents
several advantages. Firstly, it is expected that the (expensive) D _inst operation
is now applied to a smaller set. Secondly, this allows the use of an index to
evaluate the selection. (ii) The first S_inst operation now uses some type in-
formation that should reduce the schema lookup phase. (iii) The second S_inst
operation has disappeared to be replaced by a renaming (Map) of the result of
the first. (iv) The join operation has been integrated to the second D _inst ope-
ration, which follows @) from the v2 data elements that can be found at the end

1. This join operation has actually required some rewriting after the translation process.



of P. This somehow takes care of the first join condition (z = v2). The second
join condition (y = v1) is given to the D_inst operation that will consider only
elements satisfying it.

This new expression looks considerably better than the first and, given some
database index on the volumes title, one can expect reasonable response time.
However, as we will see next, algebraic rewriting does not always lead to reaso-
nable plans.

2.3. Remaining Problems

Let us consider a new example featuring a query that illustrates well the
power of GPEs. The query performs a kind of Unix grep over the database.

Example 2.2. The query returns the paths starting from an attribute of “En-
cyclopedia” and ending in some string containing “Polypody”.

select A,P, X

from Encyclopedia{V}.A P(X)

where X contains “Polypody”
O

The algebraic expression corresponding to this query is presented in Figure 2.

4) Ma
( ) pA, P, X
(3) D_inst
G;
X contains ("Polypody")
(2) s_inst
Vv,
G: " APX)";
type(X) <= Text

(1) Encyclopedia[V]

Figure 2. Algebraic translation of the grep query

Since the selection operation carries over elements found at the end of path
P, it cannot be pushed. This is rather bad. It means that, in order to evaluate
the query, we have to scan most of the database. This clearly implies that some
alternative solutions must be found. Unsurprisingly, we propose to use full text
indexes.

3. Optimizing GPEs using Full-Text Index

The work we presented in [cCM96] was preliminary. In this first proposition,
we relied on a tree representation of schema instantiated GPEs that, as we will



see, is not appropriate if one wants to use full text indexes. Also, two useful
operations were hiding in the D_inst operator: data instantiation of a GPE
and conversion into standard data. For these reasons, we had to modify the
algebra. We introduced the concepts of paths and patterns, added functions to
manipulate them, redefined the S_inst and D_inst operators and added two
new ones P_inst and FT1I.

In this section, we first illustrate the new framework by means of an example.
We then show how query 2.2 can be rewritten using the new FTI operator and
give some performance results obtained with a first prototype.

3.1. The New Framework

Let us first summarize our approach for optimizing GPEs. For this, let us
consider Figure 3.

S_inst P_inst Map
— — convgrt
GPE — Patterns — = Paths tlTples

D_inst

Figure 3. How to process GPEs in the algebra

As can be seen, GPEs are first transformed into patterns by means of the
S _inst operator. A pattern thus corresponds to one possible schema instantiation
of a given GPE. Then, there are two equivalent ways to transform patterns into
(nearly) standard data (i.e., tuples eventually containing path and attribute
values). The first direct method consists in applying the D_inst operator. The
second consists in applying first the P_inst operator then the convert function
to all the paths returned by P_inst. As we will see in Section 3.2, this cutting
of the data instantiation process allows us to introduce the FTTI operator.

We now illustrate each of the elements found on Figure 3. Formal definitions
can be found in [Chr96].

Patterns. Patterns are syntactic elements used to generate (through instan-
tiation), to filter or to interpret the paths involved in a generalized path ex-
pression. They are linear trees whose nodes represent data variables and whose
edges represent access operations.

Example 3.1. The first part of Figure 4 shows three patterns, the last two
corresponding to a possible schema instantiation of the GPE found in query 2.2.
Patternfil features two data variables (X1 and X2), one attribute variable (A)
and one path variable (P). A node is labeled by a question mark when we are
not interested in its possible data instantiations. Otherwise, a variable is used.
A node is labeled with an « (resp. w) marker to indicate the beginning (resp.
end) of a path or attribute variable instantiation. O
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Figure 4. Four paths and three patterns

Paths: Paths are used to navigate through the objects and values of a data-
base. They are linear trees whose nodes contain data items and whose edges
indicate how we access one data item from another.

Example 3.2. Let us consider an object representing the volume of an en-
cyclopedia, whose object identifier is “01”. This volume has a set of chapters
identified by “d2”. Let “03” and “04” be the identifiers of two of these chapters
whose titles are “Polypody” and “SGML”, respectively. The right part of Fi-
gure 4 shows some valid paths involving these data. For example, Pathf2 begins
with object “01”, then goes through an attribute “chapters” to data “d2” which
is a set containing “04”, etc. O

The S_inst (Schema Instantiation) Operator. The S_inst operator (first
introduced in [ccMm96]) takes a GPE as well as a set of tuples of a given type
7. Starting from that type, S_inst traverses the schema graph and returns the
patterns within the schema graph that start at 7 and match the GPE.

As an example, if we take the GPE “AP.title(X)” , and if we apply S_inst
on the set of two volumes {[V : 01], [V : 02]}, the result is:

S-insty 6.« ap titie(x)” nengen(p)y<s ({[V 1 01, [V : 02]}) = {[V : 01, G : Patterntd],
[V :0l,G : Patternt2], [V : 02,G : Patterntd], [V : 02,G : Patternf2],...}

The P_inst (Path Instantiation) Operator. The P_inst operator performs
a walk through the composition graph of database objects. Given a set of values
and a pattern, it returns all paths starting from one of the input values and
matching the pattern. Note that this navigation through the composition graph
is very similar to navigation mechanisms used in hypertext systems [AS92].



Example 3.3. As an example, consider the paths and patterns implied in the
evaluation of query 2.2 (see Figure 4), we have:

P_instpatterng2({01}) = { Pathf2, Pathi3}

O

Convert, a Function to Interpret Paths: The Conwvert function links the
path world to the standard data world. Given a pattern and a matching path,
it returns a tuple whose attributes represent the pattern variables and their
instantiation in the path. If the path does not match the pattern, Convert
returns the undefined value (nil).

Example 3.4. Let us consider, once more, the paths and patterns of Figure 4.
We obtain the following examples:

.sections

— Convertpaiternys(Pathid) = [A : “chapters”, P : ¢ 4 od 5 db 4 06”7, X :
“Algebra”]

“chapters”, P : ¢ g 04”, X : “Polypody”]

[

Convertpatterny2(Pathf2) = [A :
= [A: “chapters”, P : ¢ 4 03", X : “SGML”]

( )
Convertpatterny2 (Pathi3)
( ) =[X2:d2,A: “chapters”, P : ¢ g 03", X1 : 03]
( )

Convert patterny1 (Pathfil
— Convertpatternys(Pathi3) = nil
O

The D_inst (Data Instantiation) Operator. The D_inst follows all the
paths corresponding to a given pattern, starting from a given data item. Then,
it returns a set of tuples whose attributes represent all the possible instantiations
of the pattern variables. It is obviously a combination of P_inst and Convert
and is, as a matter of fact, defined as such. We keep it in the algebra because it
offers some implementation possibilities worthwhile exploiting. As a matter of
fact, and for the same reasons, we plan to add another operator called G_inst
(GPE instantiation) performing both S_inst and D_inst operations.

Example 3.5. We consider the same example as above, from query 2.2, and
with the specific condition X contains (“Polypody”) (see Figure 2). If we apply
the D_inst operator on the result of the previous S_inst operation, we obtain:

D_inst ({[V : 01,@G : Patternfl],[V : ol,G : Patternt2]})

V,G;X contains( “Polypody” )
= {[V : 01,G : Patternf2, A : “chapters”, P : “ g o4”, X : “Polypody”]}



3.2. Optimizing the Grep Query

In order to optimize Query 2.2, we are now ready to introduce the FTI
operator. The FTI operator represents the interface between the full text index
mechanism and the algebra. We implemented this operator by coupling the Wais
indexing mechanism with the O, database system. This first implementation is
not optimal but allowed us to validate our optimization techniques. It is detailed
in Section 5.

At this point, let us just say that given a textual predicate and a root of
indexation, the FTT operator returns a set of couples (pattern, path) such that
the paths matches their corresponding patterns, the root of the path is the root
of indexation and the values at the end of the paths validate the predicate.
Thus, the FTI operator somehow performs both S_inst and D_inst operations
as well as a predicate evaluation. This is illustrated on Figure 5.

l

S inst P_inst Map .onvert
GPE — Patterns — > Paths —— > thpIes

D_inst

FTI

Figure 5. Introducing FTI in the algebra

Note that in order to obtain paths and patterns, we simply have to add
to the full text indexing mechanism the ability to go back to some given root.
We did that very simply using object identifiers, recursive calls and the SGML
structure of the indexed documents (see Section 5). Still, with this rather trivial
implementation we obtain good performances.

The use of the F'TI operator on query 2.2 is illustrated on Figure 6. The
equivalence used for the rewriting is given in [Chr96].

Map
A, P, X

Map
Convert (P)
G_Match (G)
"X}P.AX)"
FTI

G,P;
contains (“Polypody")

Encyclopedia

Figure 6. Optimized expression of query 2.2



The G and P parameters of the F'T'I operator will be used to name the re-
sulting patterns (G) and paths (P). The G_match function used in the subscript
of the Convert operation allows to annotate the patterns returned by the FTI
operator with the variables found in the given GPE.

Example 3.6. The following examples illustrate how the G_Match function
works:

— G-Matche ypyiyexy (* ehapiersy ﬂ’?) = ) (if the pattern does not match
the GPE);

- G_Match« ,p chapfersy 1 ey = {2 chaptersoy(a),a(p) 1o title
Xw(P)}

Now, the result at the end of the FTT operation could be:
FTIG’,P;Xcontains( “Polypody”)({OI}) = {
(G . 7 chaptersy By ditleg by chapters go 11 o4 e «polypody”],

[G .7 .chaﬁers? Q)? .secii)ons? {_})? .tﬁe?,
P o1 chepters go 1 oy sections 4o 1L g -paragraph “Polypody”], ...}

O

To validate our approach, we evaluated the FTT algebraic expression on a
database containing 10 chapters, 20 sections per chapter, 10 paragraphs per
section and 1,500 words per paragraph (3,000,000 words at the leaves). The
graphics on Table 1 presents the time spent (in seconds) to process both ex-
pressions on a Sparc20, one processor, 64M-bytes of RAM. The first line gives
the selectivity (in %) of the “contains” predicate on the paragraphs. We did
not evaluate the query without FTI. However, we expect it to take more or less
the time of a dump (one and a half hours on our example database) and this,
whatever the selectivity of the predicate. We see that FTI reduces this time to
seconds.

Query’s selectivity 1.5 3.0 4.5 6.0 7.5 9.0 10.5
Response time (ins) | 9.1 182 | 273 | 36.4 | 455 | 57.6 | 84.8
Query’s selectivity 12.0 13.5 15.0 30.0 45.0 60.0 75.0
Response time (ins) | 87.9 | 112.1 | 124.2 | 227.3 | 375.8 | 487.9 | 609.1

Table 1. Response time for the grep query using FTI

4. Optimizing Standard Queries Using FTI

In the previous section, we have seen how the evaluation of queries featuring
GPEs can be greatly optimized by using a FTT mechanism. But the F'TT ope-



rator, which was first designed in order to evaluate GPEs in a reasonable time,
can also be very useful for more standard query optimization.

In this section, we first demonstrate by means of an example, the limitations
of current systems concerning the evaluation of text queries. We then demons-
trate how we can use the new algebraic operations, defined in Section 3, for
standard query optimization and we show that these operators — together with
appropriate equivalences — allow the introduction of FTI evaluation on any
part of a database query.

We will show that we are now able to combine full-text and database index.
This mix of database and FTI evaluation has many advantages. On the func-
tionality side, consider a database used as a server for existing documents (e.g.,
a front-end to a Web server). With our approach, the database can store only a
view of the documents (e.g., some structural information, title, authors’ names,
etc.) and still answer database queries on their textual content. Part of these
queries will be evaluated using the FTI. The result of the FTI evaluation will
then be used to further evaluate the query. On the performance side, consider
a database containing plenty of text. Queries with a contains predicate could
be evaluated by the standard query evaluation mechanism, or by coupling the
database with a full-text indexing mechanism. To conclude, the performance
results we give at the end of this section favor the use of the FTI/database mix.

4.1. A Standard Query on Text

Example 4.1. The following query selects chapters along with their sections
and paragraphs such that the paragraphs contain the word “Polypody” and the
chapter is reviewed by “Dupont”.
select «¢,s,Dp
from ¢ in myencyclopedia.chapters, s in c.sections,
p in s.paragraphs
where  p.text contains “Polypody”

and c.reviewer contains “Dupont”
O

The query is translated into the algebraic expression shown on the left-hand
side of Figure 7.

Operation (1) constructs a set of tuples with one attribute ¢ taking its value
in the set of chapters of the encyclopedia. Operation (2) is a dependency join
(a join requiring nested loop evaluation because of some dependency of the
second parameter on the first). It expands the tuples with a new attribute s
taking its values in the set of sections of ¢. Operation (3) acts analogously for
paragraphs. Operation (4) adds two attributes whose values are the reviewers’
name and the paragraphs text. Operation (5) and (6) are the final selection and
projection(Map).

D-joins are usually evaluated through nested loops. However, in [CM94a], we
show how they can be rewritten into standard joins using class extents. Also, the
selection can be pushed. Thus, the query can be rewritten into the expression



(6) Project Project
C,SP CS,P

®) select T in S.paragrs
R contains "Dupont”
and
P contains "Polypody"
join_ . C.secii Select
(4) Map [n C-sections P contains "Polypody"
R: C.reviewer
Select Sections|[S]
R contains "Dupont” Paragraphs[P]
(3) d-join
Map
R: C.reviewer
() d-join S paragrs{P]
(1) myencyclopedia.chapters[C] C.sections[S] myencyclopedia.chapters[C]

Figure 7. Algebraic translation of query 4.1

shown on the right-hand side of Figure 7 where Paragraphs and Sections denote
the extents of classes Section and Paragraph.

Now, with appropriate indexes, the join between chapters and sections will
be fast. However, in the absence of text indexing facilities, the selection on
paragraphs will be very costly. Evaluating this selection at the end will not
help much since there is still a join to be performed. Thus, a mix of both
expressions might be the solution: first select the interesting chapters hoping
there are few of them; then follow the path to the sections and paragraphs and
check the condition. Obviously, unless the predicate on chapters is very selective
or the database is very small, this solution will be very costly. This is one of the
motivations which lead to make use of full text indexing facilities.

4.2. Rewriting the Query with FTI

Using appropriate algebraic equivalences (see formal equivalences and proofs
in [Chr96]), we are able to rewrite the initial query into the two expressions given
in Figure 8. The expression on the left-hand side (FTI+DB) uses FTI on the
leaves to select the appropriate paragraphs. Then it finds the paths back to the
root using database indexes. The expression on the right-hand side (FTT) uses
only an FTI index which returns the paths going from the encyclopedia to the
appropriate strings.

Now, let us give an intuition of how this rewriting works. In order to intro-
duce the FTT operator and take advantage of the indexing mechanism, we need
some equivalences that allow us to transform sequences of maps and D-joins
into a path query. For this, the paths which occur in the form of a sequence
of D-joins and Map operators have to be transformed (cut and pasted) into a
pattern which is indexed by an FTI. The process of cutting and pasting the



paths resembles very much the process of cutting and pasting database paths
in order to introduce path indexes [KM90].

Project FTI+DB FTI
csp Project
c,spP
Select

R contains "Dupont”
P Select

R contains "Dupont"”

Map
R: C.reviewer
Ma
R: C.reviewer
Index—join
in S.paragrs
Map
Convert (P’
sectigns 8 avq ] »
Index—join Map ¢ ’ s ! ?
in C.sections Convert (P")
/\ P FTI s, Sga@svhp
P’; P contains "Polypody"

yencyclopedia.chapters[C] = Sections[S] FT| o
PP tains"Polypody” .
contains Folypody myencyclopedia.chapters

Paragraphs

Figure 8. FTI plan for Query 4.1

To validate the mixed approach, we evaluated both expressions on the da-
tabase introduced in the previous section. Resulting figures (in seconds) are
presented in Table 2. We can draw two conclusions from these results. The first
is that queries featuring FTI offer very good response times when less than 10%
of the paragraphs are selected (the most probable cases) and reasonable ones in
all cases. Note that we would perform better with a more efficient implementa-
tion. The second is that the mixed approach offers a very good response time. It
would be interesting to see if we could derive a cost model in order to determine
the appropriate mix between FTI and database indexes.

Query’s selectivity 1.5 3.0 4.5 6.0 7.5 9.0 10.5
Response time (771 only) | 18.2 36.4 51.9 67.5 67.6 75.3 85.7
Response time (rr1+08B) | 2.60 7.79 13.0 18.2 20.8 23.4 26.0
Query’s selectivity 12.0 13.5 15.0 30.0 45.0 60.0 75.0
Response time (rr1ony) | 96.1 | 111.7 | 122.1 | 226.0 | 337.7 | 433.8 | 561.0
Response time (rr1+0B) | 28.6 31.2 36.4 70.1 | 106.5 | 140.3 | 181.8

Table 2. Response time for queries FTI and FTI+DB



5. Coupling an OODB with a Full-Text Index

This section briefly describes the interface we developed in order to loosely
couple O2 and WAIS (which provided us with full-text indexing capabilities). Of
course, such a loose coupling with an experimental — that is unoptimized — in-
terface results in performance degradations not expected in a tightly integrated
system. Nevertheless, even this testbed allowed us to validate our optimization
techniques. A much better performance is expected for a tight coupling or an
oodbms with integrated full-text indexing capabilities.

In the current prototype, we generate SGML documents corresponding to the
objects stored in a database or a subset of them. For each object, a document
is generated. All generated documents are then indexed. This step — called
dumping the database — is described in the next subsection. Note that our
optimization techniques can be used without changes on the converse approach
(i-e., generating a database - or a database view - corresponding to some indexed
documents). The last subsection describes how the interface interprets the query
results from the full-text index.

5.1. Dumping the Database

There are two pre-requisites to the optimization techniques we introduced
in previous sections: (i) correspondences between objects and documents repre-
senting the same entity must be maintained and (ii) a means to interpret the
generated documents from a database perspective must be provided.

This can be done in different ways [ACM95]. Nevertheless, as the O2 database
system uses physical object identifiers, this means that they cannot be expor-
ted. As a consequence, we introduce logical identifiers and store within an Oq
database the correspondences between the logical and physical identifiers.

WAIS allows the full-text indexing of a set of documents. Given a retrie-
val predicate on strings, it returns all the documents satisfying the predicate.
Furthermore, it returns also the offsets of the relevant strings occuring within
the documents. As already mentioned, each database object is represented by
a single document. This implies that, given a predicate, the WAIS system re-
turns the logical identifiers of the objects as well as the offsets within the ob-
ject/document where the strings occur.

Since database queries refer to, say, attribute values and not just strings
occurring somewhere in the object, we have to validate that the string occurring
in the document (representing an object) corresponds to the attribute referred
to in the database query. Thus, we need to structure the documents. We do this
by introducing SGML tags representing database (schema) information.

For instance, let us consider an object representing a section in a book whose
logical identifier is “23”. Further assume that the section is composed of a list of
paragraphs and some other informations. Among the paragraphs, the first one
has the logical identifier “24”. The following string is our SGML representation



of the section where tags are between brackets:

<doc><id>23<val><tuple><att>paragraphs<list><ob>24</ob>
....</val></doc>.

One of the WAIS most interesting features is its ability to index fields (i.e. parts
of the documents between specific tags). We use this to index cross references
between objects (by indexing the field between <ob> and </ob> tags).This spe-
cific index allows the retrieval of all objects which have a reference to a given
object. More details can be found in [Sim95].

Let us finally give some numbers concerning the database dump. We dumped
a database of 81 M-bytes. It took one and a half hours to browse the entire
database and generate the appropriate text and data structures. The size of the
dump was 17M-bytes. The difference in size is easily explained by the database
overhead incurred on each string of a text. The WAIS index consumed 35M-
bytes.

5.2. Interpreting Results of WAIS Queries

Given a string predicate, WAIS returns a set of documents and offsets in
these documents. We now have to interpret this from a database point of view.

Using the SGML tags, we can find the path that goes from an object to
the occurrence of the predicate string it contains. For example, we can infer in
which logical part of the object the string occurs. This is a good start but we
need more.

Typically, database queries are evaluated on some persistent root(s) (rela-
tions in relational systems, extents or names in oodb). Thus, knowing that an
object satisfies a predicate is useful only if we can trace back a path from a root
object occurring in the database query to the object retrieved by WAIS. As was
explained before, we can find all the objects referencing a logical identifier (us-
ing the <ob> field). Performing this operation recursively, we are able to trace
the object back to some root and build the corresponding path.

6. Conclusion

A new algebraic framework for the optimization of queries containing gene-
ralized path expressions was presented. The algebraic approach is very flexible
and allows to use full-text indexing in conjunction with standard rewriting tech-
niques. In this context, we show how full-text indexing can be used to optimize
queries with generalized path expressions as well as standard OQL queries. The
proposed optimization approach is quite general and can be applied even when
the textual content of documents reside outside the database (e.g., handled by
a traditional information retrieval engine). A first prototype adding full-text in-
dexing capabilities in the O, database system was described. Some performance
measures on this prototype validate the approach.
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