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Abstract. The concept of negation plays a special role in non-classical
logics and also in knowledge representation formalisms where negative
information has to be taken into account on par with positive informa-
tion. In the tradition of mathematical logic, there is a general preference
to consider positive information as basic and treat negative information
as derived. This has also been the approach in relational databases, in
normal logic programs, and is now again the approach in the Resource
Description Framework (RDF) that has recently been proposed as a gen-
eral language for representing propositional information on the Web by
the World Wide Web Committee (W3C). However, as we argue in this
article, any practical knowledge representation formalism, especially for
the Web, has to be able to deal with knowledge items involving partial
predicates for which negative information is as informative as positive in-
formation, and which may have truth-value gaps and truth-value clashes.
This kind of knowledge is best represented and processed with the help
of the two negations of partial logic, one expressing explicit falsity and
the other one expressing non-truth.

1 Introduction

Due to its distributed and world-wide nature, the Web creates new problems for
knowledge representation research. Already when the Semantic Web Initiative
was launched it was observed that the globalization of knowledge representation
introduces new challenges:
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The Semantic Web is what we will get if we perform the same glob-
alization process to Knowledge Representation that the Web initially did
to Hypertext. We remove the centralized concepts of absolute truth, total
knowledge, and total provability, and see what we can do with limited
knowledge. [6]

In the same set of documents [4], the following fundamental theoretical problems
have been identified (besides other ones):

— Negation, Contradiction, and Inconsistencies
— Open World versus Closed World assumptions
— Rule Systems for the Semantic Web

For the time being, the first two issues have been circumvented by discarding
the facilities to introduce them, namely negation and closed world assumptions
in RDF(S) [16]. The widely recognized need of having rules in the Semantic
Web [19,26] has restarted the discussion of the fundamentals of closed-world
reasoning and the appropriate mechanisms to implement it in rule systems, such
as the computational concept of negation-as-failure.

The RDF(S) recommendation [16] has been a major step forward and pro-
vides solid ground to discuss the issues. We defend that partial logics [18] are
fundamental for knowledge representation in general, and for knowledge repre-
sentation on the Web in particular. Furthermore, we argue that semantics and
inference operations like the ones proposed in the logic programming and de-
ductive database communities [13,14, 30, 20,24, 1,27,8-10, 23, 3] should be the
basis for developing Web rule formalisms.

1.1 Partial Logic Semantics for Computational Forms of Negation

In [30], it was argued that a database, as a knowledge representation system,
needs two kinds of negation to be able to deal with partial information. In [33],
this point was made for the Semantic Web as a framework for knowledge repre-
sentation in general, and in the present paper we make the same point for the
Semantic Web language RDF and show how it can be extended to accommodate
the two negations of partial logic.

Computational forms of negation are used in imperative programming lan-
guages (such as Java), in database query languages (such as SQL), in modeling
languages (such as UML/OCL), in production rule systems (such as CLIPS
and Jess) and in logic programming languages (such as Prolog). In imperative
programming languages, negation may occur in the condition expression of a
conditional branching statement. In database query languages, negation may
occur in at least two forms: as a not operator in selection conditions, and in
the form of the relational algebra difference operator (corresponding to the SQL
EXCEPT operator). In modeling languages, negation occurs in constraint state-
ments. E.g., in OCL, there are several forms of negation: in addition to the not
operator in selection conditions also the reject and the isEmpty operators are



used to express a negation. In production rule systems, and in logic program-
ming languages, a negation operator not typically occurs only in the condition
part of a rule with the operational semantics of negation-as-failure which can
be understood as classical negation under the preferential semantics of stable
models.

In all these computational information processing systems, negation is, from
a logical point of view, not a clean concept, but combines classical (Boolean)
negation with negation-as-failure and the strong negation of three-valued logic
(also called Kleene negation). In any case, however, it seems to be essential for
all these systems to provide different forms of negation.

In natural language, there are (at least) two kinds of negation: a weak nega-
tion expressing non-truth (in the sense of “she doesn’t like snow” or “he doesn’t
trust you”), and a strong negation expressing explicit falsity (in the sense of
“she dislikes snow” or “he distrusts you”). Notice that the classical logic law of
the excluded middle holds only for the weak negation (either “she likes snow” or
“she doesn’t like snow”), but not for the strong negation: it does not hold that
“he trusts you” or “he distrusts you”; he may be neutral and neither trust nor
distrust you.

A number of knowledge representation formalisms and systems (see, e.g.,
[14, 30,20, 1,27, 10]) follow this distinction between weak and strong negation in
natural language. However, many of them do not come with a model-theoretic
semantics in the style of classical logic. Instead, an inference operation, that may
be viewed as a kind of proof-theoretic semantics, is proposed.

Classical (two-valued) logic cannot account for two kinds of negation because
two-valued (Boolean) truth functions do not allow to define more than one nega-
tion. The simplest generalization of classical logic that is able to account for two
kinds of negation is partial logic giving up the classical bivalence principle and
subsuming a number of 3-valued and 4-valued logics. For instance, in 3-valued
logic with truth values {f, u,t} standing for false, undetermined (also called un-
known or undefined) and true, weak negation (denoted by ~) and strong negation
(denoted by —) have the following truth tables:

-p
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t
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Notice the difference between weak and strong negation in 3-valued logic: if a
sentence evaluates to u in a model, then its weak negation evaluates to t, while
its strong negation evaluates to u in this model. Partial logics allow for truth-
value gaps created by partial predicates to which the law of the excluded middle
does not apply.

However, even in classical logic, where all predicates are total, we may dis-
tinguish between predicates that are completely represented in a database (or
knowledge base) and those that are not. The classification if a predicate is com-
pletely represented or not is up to the owner of the database: the owner must



know for which predicates she has complete information and for which she does
not. Clearly, in the case of a completely represented predicate, negation-as-failure
amounts to classical negation, and the underlying completeness assumption is
also called Closed-World Assumption. In the case of an incompletely represented
predicate, negation-as-failure only reflects non-provability, but does not allow to
infer the classical negation. Unfortunately, neither CLIPS/Jess nor Prolog sup-
port this distinction between ‘closed’ and ‘open’ predicates.

Open (incompletely represented total) predicates must not be confused with
partial predicates that have truth-value gaps. The law of the excluded middle,
p V —p, applies to open predicates but not to partial predicates.

For being able to make all these distinctions and to understand their logical
semantics, we have to choose partial logic as the underlying logical framework.
Partial logic allows to formally distinguish between falsity and non-truth by
means of strong and weak negation. In the case of a total predicate, such as
being an odd number, both negations collapse:

~odd(x) iff —odd(z),

or in other words, the non-truth of the atomic sentence odd(x) amounts to
its falsity. In the case of a partial predicate, such as likes, we only have the
relationship that the strong negation implies the weak negation:

~likes(she,snow) if —likes(she,snow),

but not conversely. Also, while the double negation form "= ~’ collapses (accord-
ing to partial logic, see [18]), the double negation form '~ =’ does not collapse:
not disliking snow does not amount to liking snow. Classical logic can be viewed
as the degenerate case of partial logic when all predicates are total.

1.2 The W3C Resource Description Framework (RDF)

RDF is a special predicate logical language that is restricted to conjunctive
sentences (i.e. existentially quantified conjunctions of atomic formulas) involving
binary predicates, only. Due to its purpose, RDF has a number of special features
that distinguishes it from traditional logical languages:

1. It uses a special jargon, where the things of the universe of discourse are
called resources, types are called classes, and binary predicates are called
properties. Like binary relations in set theory, properties have a domain and
a range. Resources are classified with the help of a type property (for stating
that a resource is of type C, where C is a class).

2. It distinguishes two sorts of individuals: proper individuals and literals (or,
more precisely, literal values), which are the denotations of lexical strings.

3. Properties are resources, that is, predicates are also elements of the universe
of discourse. Consequently, it is possible to state properties of properties, i.e.
make statements about predicates.



4. All properties and resources, except literals, are named with the help of a
globally unique reference schema, called Uniform Resource Identifier (URI),
that has been developed for the Web.

5. RDF comes with a non-standard model-theoretic semantics developed by
Pat Hayes on the basis of an idea of Christopher Menzel, which allows self-
application without violating the axiom of foundation. An example of this
is the provable sentence stating that rdfs:Class, the class of all classes, is an
instance of itself.

The predefined vocabulary of RDF comes in two layers:

1. the basic RDF layer, which includes the terms type and Property,
2. the RDF Schema (RDFS) layer, which includes the terms: Resource, Literal,
Class, Datatype, domain, range, subClassOf and subPropertyOf.

1.3 Open World and Closed World Reasoning

In the last years, we have observed an intense quarrel about the benefits and
problems of allowing nonmonotonic constructs for knowledge representation on
the Web. It is now pretty clear that both sides of the dispute agree on the
need to have mechanisms for expressing nonmonotonic constructs, and the term
“nonmonotonic” is pervasive in some Semantic Web related documents, some of
which are cited below:

From RDF semantics recommendation [16]:
RDF is an assertional logic, in which each triple expresses a simple propo-
sition. This imposes a fairly strict monotonic discipline on the language, so
that it cannot express closed-world assumptions, local default preferences,
and several other commonly used non-monotonic constructs.

From Lbase working group note [15]:
In this document, we use a version of first order logic with equality as Lbase.
This imposes a fairly strict monotonic discipline on the language, so that
it cannot express local default preferences and several other commonly-used
non-monotonic constructs. We expect that as the Semantic Web grows to
encompass more and our understanding of the Semantic Web improves, we
will need to replace this Lbase with more expressive logics.

From SWRL proposal [19]:
Users also may want to restrict the expressiveness of the OWL classes and
descriptions appearing in rules. [...] Suitably-restricted SWRL rules can be
straightforwardly extended to enable procedural attachments and/or non-
monotonic reasoning (negation-as-failure and /or prioritized conflict handling)

L]

We argue that a language with two kinds of negation is essential for satisfying
both sides of the dispute, by providing an answer to the major objection against
using nonmonotonic constructs as well as not loosing expressive power:



The relationship between monotonic and nonmonotonic inferences is
often subtle. For example, if a closed-world assumption is made explicit,
e.g. by asserting explicitly that the corpus is complete and providing ex-
plicit provenance information in the conclusion, then closed-world rea-
soning s monotonic; it is the implicitness that makes the reasoning non-
monotonic. Nonmonotonic conclusions can be said to be valid only in
some kind of ’context’, and are liable to be incorrect or misleading when
used outside that context. Making the context explicit in the reasoning
and wvisible in the conclusion is a way to map them into a monotonic
framework. [16]

We agree that considering the context may help to make nonmonotonic rea-
soning more transparent. One possible step in this direction is to allow publishers
and users of Web knowledge making their own open or closed world assumptions
about particular predicates.

We think that for each Web user/agent/application one should make a dis-
tinction between the ’local’ knowledge under its own control, other local knowl-
edge items controlled by other agents, and the "public’ knowledge items shared
within communities. The latter is not controlled by a single agent but by entire
communities.

The natural incompleteness of the knowledge available to a reasoning agent
in many domains, in particular in the context of the Web, is the main reason to
employ nonmonotonic constructs for jumping to conclusions needed for decision
making and acting. Adopting a strictly monotonic reasoning discipline will not
allow to draw any conclusion in many situations, so no decision can be made and
no action performed, which is often simply not feasible. So, what mechanisms
should be employed for deriving implicit knowledge from the knowledge items
that have been asserted?

First, we may observe that ad-hoc constructs like the CWM operators
log: DefinitiveDocument and log:notIncludes (see [7]) are certainly good for exper-
imentation but do not provide a general approach. It seems to be more promising
to investigate the nonmonotonic constructs studied and proposed by the Non-
monotonic Reasoning, Deductive Databases, and Logic Programming communi-
ties in the last 30 years. The issues are subtle and took these communities a lot
of time to reach consensus about the most valuable proposals and solutions.

1.4 Contradictions and Inconsistencies

The ability to express negative knowledge, besides positive one, is an obvious
requirement for a knowledge representation language. This also holds for the
new languages of the Semantic Web, since for instance one has to be capable of
expressing that a user/machine is “NOT authorized” to access some information.
One initial justification for having this limitation appears in the Semantic Web
Roadmap [5]:

As far as mathematics goes, the language at this point has no negation
or implication, and is therefore very limited. Given a set of facts, it is



easy to say whether a proof exists or not for any given question, because
neither the facts nor the questions can have enough power to make the
problem intractable. [5]

The tractability argument can no longer be used, since as it is stated in the
RDF(S) W3C recommendation [16], the general problem of determining simple
entailment between arbitrary RDF graphs is decidable but NP-complete. So,
the question is now whether there are any knowledge representation frameworks
with the same, or similar complexity classes, supporting rules and (two kinds
of) negation.

By restricting the language of our theories to the Datalog case (no function
symbols), the data complexity of the language proposed in the paper is co-NP-
complete (i.e. testing if a query holds in all stable models), and NP-complete
for testing the existence of a stable model. This is immediate from the bunch
of complexity results for logic programming [11] and the relationship [18] of
our semantics with (Paraconsistent) Answer Set Semantics [14,22,27]. Other
formalisms even have lower data complexity classes, like the Well-founded Se-
mantics [12] and its extensions supporting two forms of negation [1,8,9] which
are P-complete. A major reason for these good complexity results is that the
arrow symbol («) in our rules is interpreted as a sequent, instead of an impli-
cation, and therefore it can only be used in one direction. The classical Modus
Tollens cannot be applied, avoiding the indirect inference of disjunctive con-
clusions. Furthermore, disjunctive heads are also not allowed, thus it is easy
to see that there is no way of obtaining arbitrary disjunctive conclusions. This
language limitation keeps data complexity from increasing to higher complexity
classes [11].

The availability of negation also paves the way to the problem of handling
contradictions in the Semantic Web. Avoiding contradictions by not allowing
to express them is probably the main motivation for not having negation in
RDF. This is an important concern, since in classical logic the existence of a
single contradiction in a 'theory’, or knowledge base, leads to an explosion of the
consequence set because of the ex contradictione sequitur quodlibet principle

A -AEB

where I is an arbitrary first-order theory, and A and B arbitrary formulae.
Logics based on this principle are also called explosive. In general terms, this
means that if a single contradiction is present then everything can be concluded
(every sentence is trivially true), rendering the entire body of knowledge useless.
However, contradictions will surely exist among the knowledge items asserted
on the Web. Some may argue that in order to avoid contradictions, we should not
have negation in Web languages, such as RDF. But notice that the inconsistency
problem already occurs in RDFS even without negation. Since there are RDFS-
inconsistent graphs on the Web (see, e.g., http://www.w3.0rg/2000/10/
rdf-tests/rdfcore/rdfs-entailment/test001.nt), we can conclude every-
thing according to the classical logic RDF(S) semantics. This is clearly unsatis-
factory. The classical logic explosion principle does only make sense for mathe-



matical theories which claim to be true in the sense of metaphysics and which can
therefore not tolerate any inconsistency. The situation is different in knowledge
representation, where we do not deal with metaphysically true theories but with
the beliefs (information and knowledge items) of fallible humans and software
agents.

2 Open World and Closed World Reasoning

As opposed to the predicates such as ‘likes’ or ‘is the author of’, there are also
predicates for which there is no need to express negative information because
the available positive information about them is complete and, consequently, the
negative information is simply the complement of the positive information.

For instance, the W3C has complete information about all official W3C docu-
ments and their normative status (http://www.w3.org/TR/ is the official list of
W3C publications); consequently, the predicate is an official W3C document
should be declared as closed in the W3C knowledge base (making a ‘local’
completeness assumption).® This consideration calls for a suitable extension of
RDF(S) in order to allow making such declarations for specific predicates.

For sentences formed with closed predicates it is natural to use negation-as-
failure for establishing their falsity: anything not listed on that page cannot be
a W3C recommendation.

The concept of Local Closed World assumptions, as proposed in [17], is based
on the idea to have syntactic mechanisms for being able to express that a pred-
icate is closed, i.e. if it cannot be inferred to apply, then we can infer that
its negation applies. The standard negation mechanism in logic programming
(widely called negation-as-failure) is based on a general Closed World assump-
tion. The major problem with the proposal of Heflin and Munoz-Avila is the
use of a Clark’s Completion-like approach, which is well-known to suffer from
serious problems (see [29,28]), even without negation. For instance, if someone
expresses the following knowledge:

member EU (Austria) «—
member EU (Belgium) «—
member EU (United Kingdom) «—

By completing the previous knowledge, you will get that every country which is
not listed is not a member state of the European Union, which is the intended
meaning. However, if the following rule is added to the previous set of facts:

member EU (Tcountry) <« member EU (Tcoumtry)

then, the completion introduces a tautology which prevents the derivation of the
intended negative conclusions; this is an undesired feature.

5 This example is due to Sandro Hawke.



It is also known from the literature that in general the Closed World As-
sumption is not the same as Completion, which can easily become inconsistent
when negation is introduced in the language [28]. This justifies our adoption of
logic programming based semantics [13,12] for providing interesting and gener-
ally adopted semantics for rules with negation(s), and are related to the major
nonmonotonic reasoning forms (see for instance [2, 21]).

A preferable approach is to add to the previous knowledge the following rule

—member EU (Tcountry) «~ member EU (?country)

whenever it is known that member EU predicate is closed. This will have the
intended meaning for both previous situations, and in fact is accepted as the
correct way of completing knowledge in logic programming languages with two
kinds of negation, either based on well-founded inference or on stable model
semantics. Moreover, this is a very simple modular and localized mechanism
to declare that a predicate is closed, with well-understood behavior and math-
ematical properties as well as a widely accepted semantics. Notice that this
mechanism relies intrinsically on the existence of two forms of negation, like the
ones adopted in this work. Symmetrically, one can complete negative knowl-
edge like in the following example, which models a simple remote connection
authorization manager:

—authorize(root) «—

—authorize(Tuser) «— —wregistered(?user)

authorize(?user) «— ~ —authorize(?user)

registered(a) «—

registered(c) «—

registered(root) «—

—registered(Tuser) «— ~ registered(?Tuser)
user(b) —

Remote connections to the user root are not authorized, as well as to any user
not registered in the system (the use of weak negation is fundamental in order to
avoid listing all the unregistered users). Users a, ¢ and root are registered users,
whereas user b is not. In particular, we are able to conclude from the above
knowledge that:

—authorize(root) authorize(c)

—authorize(b) authorize(a)

Notice that —authorize(?user) holds for any ?user distinct from a and ¢, in
particular for b.

The practical significance of the proposed mechanism is that the user /knowledge
engineer may construct Semantic Web knowledge bases using only the strong
negation connective (—), and then explicitly declaring the predicates which are
closed, on an individual basis. There is no loss of generality with this approach,
since a weak negation can always be introduced by resorting to an auxiliary
predicate and closing a program rule.



Suppose that a Semantic Web programmer wants to use weak negation in his
knowledge bases. He introduces a new predicate symbol, say not_P to represent
the weak negation of P, which can be defined by closing the negative instances
of the rule —not_P < P. A similar technique can be applied to obtain the weak
negation of —P, captured by predicate not_neg_P:

-not_P «— P —not_neq_ P «— —P
not_P «—~ —not_P not_neg_P <~ —not_neg_P

Furthermore, one can even relate both forms of negation by introducing an
extra rule, in the spirit of the semantics proposed in [25, 1,8, 9] obeying to the
coherence principle, by letting strong negation entail the weak form:

—cnot_P «— P —cnot_neg_P «— —P
cnot_P «— - P cnot_neg_P «— P
cnot_P «—~ —not_P cnot_neg_P <+~ —cnot_neg_P

The major distinction between both forms is that, in the face of contradiction
between P and —P one also obtains cnot_P and cnot_neg_P, i.e. a localized
explosion occurs. This property is used in Paraconsistent Well-founded Semantics
with Explicit Negation to detect dependencies on contradiction [1,8,9, 3].

We conclude from the above discussion that strong negation plus localized
closures have the same expressive power as strong negation plus weak negation.
The discussion of the advantages of one mechanism over the other, are in some
sense futile. If you have one, you can get the other. There are still some other
issues to address related to the use of weak negation, namely non-ground weak
negations, which have been studied in the literature and are fully understood,
but lie outside the scope of this paper.

3 Contradictions and Inconsistencies

Allowing negation in a knowledge representation language does not imply to
adopt an explosive logic such as the classical logic semantics of RDF(S) [16].
There has been a lot of work on inconsistency-tolerant logics from which the
Semantic Web may benefit. In particular, in the area of logic programming and
knowledge representation with two kinds of negation, there are several propos-
als how to tolerate inconsistency (see [31,22,32,1,27,8-10, 3]). Also the partial
logic based semantics we propose here allows to tolerate contradictions in the
knowledge base.

Consider the case that your rules entail that a user a is authorized to enter
a certain information system, as well as that access should be denied. Should
such a conflict affect the authorization of another user b (for instance the system
administrator) to access the system? Of course, it can be said that it is your
system that is ill-defined, but contradictions will definitely occur in a distributed
and global system such as the Web. What should be done in the face of such a
contradiction? Your system could be immediately shut down and not turned on
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again before it has been repaired, or you can continue to use it while the problem
is being analyzed and solved? Clearly, the answer depends on the particular
situation, but both approaches should be possible.

Consider the following knowledge, abstracted from recent events in the world:

alive(mrA) «—

—alive(mrA) «—

bury(?X) «— —alive(?X)
elected(mrB) «—
oil_price_increases — elected(mrB)
oil_price_increases «— —alive(mrA)
teacher(mrC) «—

We have a contradiction between the facts —alive(mrA) and alive(mrA).
Obviously, one should infer that mrB was elected and that mrC is a teacher,
as well as that oil_price_increases is true. However, the conclusion that mrA is
to be buried depends on contradictory information, and its consequences should
be taken with some care since, in fact, he might be alive. If we adopt the ex-
plosion principle from classical logic, we will also obtain that —teacher(mrC),
—elected(mrB), and —oil_price_increases because of the contradiction, which is
clearly nonsensical.

A partial logics based approach is able to provide a more general basis for the
Semantic Web than the classical logic based approach of [16]. This is in line with
the intuitions and remarks appearing in the LBase Working Group note [15]:

In this document, we use a version of first order logic with equal-
ity as Lbase. This imposes a fairly strict monotonic discipline on the
language, so that it cannot express local default preferences and several
other commonly-used non-monotonic constructs. We expect that as the
Semantic Web grows to encompass more and our understanding of the
Semantic Web improves, we will need to replace this Lbase with more ez-
pressive logics. However, we expect that first order logic will be a proper
subset of such systems and hence we will be able to smoothly transition
to more expressive Lbase languages in the future.

By assuming that all predicates are total and coherent, the classical logic
semantics is obtained from partial logic as a special case. Syntactically, we can
express that a predicate P must be total and coherent by introducing the fol-
lowing two axioms in the theory:

PV -P totalness
~ PV ~ =P non-contradiction (or coherence)

Or with the help of implication instead of disjunction:

~ P D —P totalness
—P D~ P non-contradiction (or coherence)

11



Or by introducing the following integrity constraints

«—n~ P, ~ =P totalness
— PP non-contradiction (or coherence)

The advantage of using integrity constraints like the above is that the technique
is not restricted solely to the current approach, but also applies to the most
important semantics for deductive databases and logic programming with two
kinds of negations [14,27,1,8,9]. In conclusion, the user/agent has a simple
and modular mechanism for expressing that a predicate must be total and/or
coherent, and the syntactic machinery for expressing this in the accepted major
semantics is immediate. By not including any of the above, the user admits
reasoning tolerant to contradiction.

Surely, the problem of contradiction handling is controversial and potentially
hazardous, however it should not be a taboo just because it does not fit into
the orthodoxy of classical logic. Our logics and languages should be equipped
with mechanisms to block the propagation of contradictions or simply warn the
user/agent that some conclusion depends on the use of contradictory informa-
tion, and even reason about it. There are already semantics and programming
techniques that empower applications with capabilities for performing safe rea-
soning with contradiction [22,32,1, 27,10, 3].

4 Extending RDF by Adding Negation and Partial
Predicates

In this section, we extend RDF(S) by adding strong and weak negation. Addi-
tionally, we relax its semantics by allowing for partial predicates. For simplicity,
we disregard literals, datatypes, RDF containers, collections, and reification, as
these can be included by a straightforward extension.

A Web wvocabulary V is defined to be a set of URI references. We denote the
set of all URI references by URI. We consider a set Var of variable symbols
such that Var NURI = (). We use the acronym ERDF for Extended RDF.

Definition 1 (ERDF triple). Let V be a vocabulary. A positive ERDF triple
over V (also called ERDF sentence atom) is an expression of the form p(s, o),
where s,0 € V U Var are called subject and object, respectively, and p € V is
called predicate or property.

A negative ERDF' triple over V is the strong negation —p(s,0) of a positive
ERDF triple p(s,0) over V. An ERDF triple over V (also called ERDF sentence
literal) is a positive or negative ERDF triple over V. [J

We can also use the RDF-triple-like notation
s —p o.
for writing a negative ERDF triple and, as an option, use the + sign as a pred-

icate prefix for marking positive triples, like in the following example:
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ex:Gerd —ex:likes ex:CabernetSauvignon .
ex:Anastasia +ex:likes ex:CabernetSauvignon .
ex:Gerd +ex:likes ex:Riesling .

ex:Carlos —ex:likes ex:Riesling .

Definition 2 (ERDF formula). Let V be a vocabulary. We denote by L(V)
the smallest set that contains the positive ERDF triples over V, and is closed
with respect to the following conditions: if F,G € L(V) then {~ F, =F, F A
G, FV G} C L(V). The connectives -, ~ are called strong negation and weak
negation, respectively. Additionally, we denote by L(V|—, A, V) the smallest set
that contains the atomic ERDF triples over V, and is closed with respect to
the following conditions: if F,G € L(V|-,A,V) then {-F, FAG, FV G} C
L(V|=,A,V). Then, an ERDF formula over V is an element of L(V), and a
persistent ERDF formula over V' is an element of L(V|—, A, V). O

Definition 3 (ERDF graph). An ERDF graph G is a set of ERDF triples
over some vocabulary V. We denote the variables appearing in G by Var(G). O

Let G = {t1,...,tn,} be an ERDF graph, and let Var(G) = {x1,..zx}.
Intuitively, G represents an existentially quantified conjunction of ERDF triples.
Specifically, G represents the formula 3z, ...xx t1 A ... A ty,.

4.1 ERDF Model Theory

Definition 4. Partial interpretation
A partial interpretation I of a vocabulary V' consists of:

— A set of things Res.

— A vocabulary interpretation function Iy : V — Res.

— A set of properties Prop C Res.

— A property-truth extension function PT; : Prop — P(Res x Res), and a
property-falsity extension function PF; : Prop — P(Res X Res).

We define I(z) = Iy (x), Ve e V. O

Definition 5. Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation and a valuation

Let F be an ERDF formula and Var(F') be the variables appearing in F. Let I
be a partial interpretation of a vocabulary V. Let v be a mapping v : Var(F) —
Res (called valuation). If x € Var(F'), we define [I +v](z) = v(z). fz € V, we
define [I + v](z) = I(z).

— If F =p(s,0) then I,v = F iff < [I +v](s), [ +v](0) >€ PT;(1(p)).

If F =-p(s,0) then I,v = Fiff < [I+v](s),[I+v](o) > PF(I(p)).

— If F =~ G then I,v | F iff all URIs appearing in G belong to V, and
I,v = G.

—IfF=F ANFythen I,vE Fiff [,vE Fy and I,v | Fs.

If F=F VFthen I,LvEFiff I,vl=Fyor I,v|E Fs.
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— All other cases of FRDF formulas are treated by the following DeMorgan-
style rewrite rules expressing the falsification of compound ERDF formulas:
~(FANG)— -FVvV-G, -(FVG)—-FA-G, -——F—>F, -~F—F.[O

Let Vrpr = {rdf:type, rdf:Property}, and Vrprs = {rdfs:Resource,
rdf s:Class, rdf s:domain, rdf s:range, rdf s:subClassO f, rdf s:subPropertyO f}.

The vocabulary of ERDF, Vgrpr, is a set of URI references in the erdf:
namespace. Specifically, Verpr = {erdf:TotalClass, erdf:Total Property,
erdf:CoherentClass, erdf:Coherent Property}. Intuitively, instances of the classes
erdf:TotalClass and erdf:CoherentClass are classes that satisfy totalness and
coherence, respectively. Similarly, instances of the classes erdf:Total Propery and
erdf:CoherentProperty are properties that satisfy totalness and coherence, re-
spectively.

Definition 6. ERDF interpretation

An ERDF interpretation of a vocabulary V is a partial interpretation of V U
Vepr UVrprs UVErpr extended by the new ontological categories Cls C Res
for classes, T'Cls C Cls for total classes, and T'Prop C Prop for total properties,
CCls C Cls for coherent classes, and C'Prop C Prop for coherent properties,
as well as the class-truth extension function CT; : Cls — P(Res), and the
class-falsity extension function CFy : Cls — P(Res), such that:

1. @ € Prop iff < x, I(rdf:Property) >€ PT(I(rdf:type)).
2. z € CTy(y) iff < z,y > PT;(I(rdf:type)), and
x € CFr(y) iff < z,y >€ PFi(I(rdf:type)).
Cls = CTr(I(rdf s:Class)).
Res = CTy(I(rdf s:Resource)).
< x,y >€ PTi(I(rdfs:domain)) and < u,v >€ PT(z) implies u € CTr(y).
< x,y >€ PTi(I(rdfs:range)) and < u,v >€ PTy(x) implies v € CTy(y).
x € Cls implies < x, I(rdfs:Resource) >€ PTy(I(rdf s:subclassOf)).
< x,y >€ PTr(I(rdfs:subClassOf)) implies z,y € Cls and CTr(z)
CTy(y).
PTr(I(rdf s:subClassOf)) is a reflexive and transitive relation on Cls.
10. < z,y >€ PT;(I(rdfs:subPropertyOf)) implies z,y € Prop and PT;(z) C
PTi(y).
11. PT;(I(rdf s:subPropertyOf)) is a reflexive and transitive relation on Prop.
12. x € TProp iff < x, I(erdf:Total Property) > € PT;(I(rdf:type)), and
x € TProp implies PT7(z) U PFr(x) = Res x Res.
13. x € TCls iff < x, I(erdf:TotalClass) > € PTr(I(rdf:type)), and
x € TCls implies CTy(x) U CFy(z) = Res.
14. 2 € CProp iff < x, I(erdf:CoherentProperty) > € PTi(I(rdf:type)), and
x € CProp implies PT;(z) N PF(z) = 0.
15. 2 € CCls iff < z, I(erdf:CoherentClass) > € PTi(I(rdf:type)), and
x € CCls implies CTy(z) N CFy(x) = 0.
16. I satisfies the RDF and RDF'S axiomatic triples, as well as the triples:
rdf s:subClassO f (erdf :TotalClass, rdf s:Class),
rdf s:subClassO f (erdf:Total Property, rdf : Property),
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rdf s:subClassO f (erdf :CoherentClass, rdf :Class),
rdf s:subClassO f(erdf :Coherent Property, rdf s: Property),

rdf :type(X, erdf:Coherent Property), where X € {rdfs:domain, rdf s:range,
rdf s:subClassOf, rdf s:subPropertyOf},

rdf type(X, erdf:CoherentClass), where X € {rdfs:Resource, rdf:Property,
'rdfs:C’lass} UVegrpr. O

5 Conclusion

The basic language of the Semantic Web needs to accommodate two kinds
of negation for representing and processing negative information involving
truth-value gaps and truth-value clashes. For this reason RDF has to be
extended in the way we have shown in this paper, and its classical logic
semantics has to be refined into the partial logic semantics we have presented
here. Without this extension, RDF will be too limited to capture the kind
of information and knowledge items that occur in a globally distributed and
decentralized knowledge space such as the Web.
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