
DiMAPI: An Application Programming Interface
for Distributed Network Monitoring

Panos Trimintzios,† Michalis Polychronakis,* Antonis Papadogiannakis,* Michalis Foukarakis,*

Evangelos P. Markatos,* Arne Øslebø‡

†European Network and Information Security Agency ‡UNINETT
Panagiotis.Trimintzios@enisa.eu.int Arne.Oslebo@uninett.no

*Institute of Computer Science, Foundation for Research & Technology – Hellas
{mikepo,papadog,foukas,markatos}@ics.forth.gr

Abstract— Network monitoring and measurement is com-
monly regarded as an essential function for understanding,
managing and improving the performance and security of
network infrastructures. Traditional passive network monitor-
ing approaches are not adequate for fine-grained performance
measurements nor for security applications. In addition, many
applications would benefit from monitoring data gathered at
multiple vantage points within a network infrastructure.

This paper presents the design and implementation of
DiMAPI, an application programming interface for distributed
passive network monitoring. DiMAPI extends the notion of the
network flow with the scope attribute, which enables flow creation
and manipulation over a set of local and remote monitoring
sensors. Experiments with a number of applications on top of
DiMAPI show that it has reasonable performance, while the
response latency is very close to the actual round trip time
between the monitoring application and the monitoring sensors.
A broad range of monitoring applications can benefit from
DiMAPI to efficiently perform advanced monitoring tasks over
a potentially large number of passive monitoring sensors.

I. INTRODUCTION

Network traffic monitoring is getting increasingly important
for a large set of Internet users and service providers, such as
ISPs, NRNs, computer and telecommunication scientists, se-
curity administrators, and managers of high-performance com-
puting infrastructures. As networks get faster and as network-
centric applications get more complex, our understanding of
the Internet continues to diminish. The world is often surprised
with security breaches, such as Internet worms and Denial of
Service (DoS) attacks, and the extent of unclassified traffic
due to applications that use dynamic ports.

Current monitoring standards often force administrators to
trade-off functionality for interoperability [1]. Passive traffic
monitoring and capture has been regarded as the main solution
for advanced network monitoring and security systems that re-
quire fine-grained performance measurements, such as “deep”
packet inspection [2]. Current passive network monitoring
applications are commonly based on data gathered at a single
observation point. For instance, Network Intrusion Detection
Systems (NIDS) usually run on a single monitoring host
that captures the network packets and processes them by
performing tasks such as filtering, TCP stream reassembly,
and pattern matching.

Several emerging applications would benefit from moni-
toring data gathered at multiple observation points across a
network. For instance, Quality of Service (QoS) applications
could be based on traffic characteristics that can be computed
only by combining monitoring data from both the ingress and
egress nodes of a network. However, a distributed monitoring
infrastructure can be extended outside the border of a single or-
ganization and span multiple administrative domains across the
Internet. The installation of several geographically distributed
network monitoring sensors provides a broader view of the
network in which large-scale events could become apparent.

Recent research efforts [3]–[5] have demonstrated that a
large-scale monitoring infrastructure of distributed cooperative
monitors can be used for building Internet worm detection
systems. Distributed DoS attack detection applications would
also benefit from multiple vantage points across the Internet.
Finally, user mobility necessitates distributed monitoring due
to nomadic users who change locations frequently across
different networks.

It is clear from the above that distributed network monitor-
ing is becoming necessary for understanding the performance
of modern networks and for protecting them against security
breaches. The wide dissemination of a cooperative passive
monitoring infrastructure across many geographically distrib-
uted and heterogeneous sensors necessitates a uniform access
platform, which provides a common interface for applications
to interact with the distributed monitoring sensors.

In this paper we present the design, implementation, and
performance evaluation of DiMAPI, an programming interface
for distributed passive network monitoring. DiMAPI builds
on top of MAPI [6], an API for local passive monitoring
applications. MAPI enables users to express complex moni-
toring needs, choose only the amount of information they are
interested in, and therefore balance the overhead they pay with
the amount of information they receive. The main contribution
of DiMAPI is that it elevates the generalized flow abstraction
of MAPI into a distributed world, facilitating the programming
and coordination of several distributed monitoring sensors in
a flexible and efficient way.

The remainder of this paper is organized as follows. Sec-
tion II outlines the main concepts of MAPI [6] and its basic

Monitored network traffic

"Incoming web server traffic" "HTTP GET requests" "CodeRed worm"

Packet with destination port 80
P containing the string "GET "acket with destination port 80
Packet with destination port 80 containing the string "GET /default.ida?NNNNN..."

A B C

Fig. 1. Network flow examples.

operations. Section III describes the design of DiMAPI, along
with some usage examples. In Section IV we present in detail
the distributed monitoring architecture and the implementation
of DiMAPI. Section V presents the results of the experimental
evaluation of DiMAPI. Finally, Section VI summarizes related
work and Section VII concludes the paper.

II. BACKGROUND: THE MONITORING API

DiMAPI has been designed and realized by building on the
Monitoring Application Programming Interface (MAPI) [6],
an expressive and flexible API for passive network traffic
monitoring over a single local monitoring sensor. MAPI builds
on a generalized network flow abstraction, flexible enough to
capture emerging application needs, and expressive enough to
allow the system to exploit specialized monitoring hardware,
where available. In order to facilitate the concurrent program-
ming and coordination of a large number of remote passive
monitoring systems, we have extended MAPI to operate in
a distributed monitoring environment. DiMAPI enables users
to efficiently configure and manage any set of remote or local
passive monitoring sensors, acting as a middleware to homo-
geneously use a large distributed monitoring infrastructure.

In this section we introduce the main concepts of MAPI,
and briefly describe its most important operations. A complete
specification of MAPI is provided in the MAPI man pages [7].

A. Network Flow Abstraction

The goal of an application programming interface is to
provide a suitable abstraction that is both simple enough
for programmers to use, and powerful enough for expressing
complex and diverse monitoring application specifications.
A good API should also relieve the programmer from the
complexities of the underlying monitoring platform, while
making sure that any features of specialized hardware can be
properly exploited.

Towards these targets, MAPI builds on a simple, yet power-
ful, abstraction: the network flow. A network flow is generally
defined as a sequence of packets that satisfy a given set of
conditions. These conditions can be arbitrary, ranging from
simple header-based filters to sophisticated protocol analysis
and content inspection functions.

Figure 1 illustrates the concept of the network flow with
some examples. On the top we see a portion of the monitored
network traffic, and below three different network flows, each
consisting of a subset of the monitored packets. Network
flow A consists of “all packets with destination port 80”,
i.e., packets destined to some web server. Network flow B
comprises “all HTTP GET request packets”, while C contains
only “packets of the CodeRed worm [8]”. Note that the
packets of network flow B are a subset of A, and similarly,
CodeRed packets are a subset of all HTTP GET requests. The
network flow abstraction allows for fine-grained control of the
conditions that the packets of a flow should satisfy.

The approach to network flows in MAPI is therefore fun-
damentally different from existing flow-based models, e.g.,
NetFlow [9], which constrain the definition of a flow to the
set of packets with the same source and destination IP address
and port numbers within a given time-window. Furthermore,
MAPI gives the network flow a first-class status: flows are
named entities that can be manipulated in similar ways to
other programming abstractions, such as sockets, pipes, and
files. In particular, users may create or destroy (close) flows,
read, sample, or count the packets of a flow, apply functions to
flows, and retrieve other statistics from a flow, etc. Using this
generalized network flow abstraction, users can express a wide
variety of monitoring operations. For instance, MAPI flows
allow users to develop simple intrusion detection schemes that
require content (payload) inspection.

B. Basic MAPI Operations
Central to the operation of MAPI is the action of creating

a network flow:

int mapi_create_flow(char *dev)

This call creates a network flow and returns a flow descriptor
fd that refers to it. By default, a newly created flow consists
of all network packets that go through the monitoring interface
dev. When a network flow is not needed any more, it can be
closed using mapi close flow().

The abstraction of the network flow allows users to treat
packets belonging to different flows in different ways. For
example, after specifying which packets will constitute the
flow, a user may be interested in capturing the packets (e.g., to
record an intrusion attempt), or in just counting the number of
packets and their lengths (e.g., to measure the bandwidth usage
of an application), or in sampling the packets (e.g., to find the
IP addresses that generate most of the traffic). MAPI allows
users to clearly communicate to the underlying monitoring
system these different monitoring needs, by allowing the
association of functions with network flows:

int mapi_apply_function(int fd, char * f, ...)

The above call applies the function f to every packet of the
network flow fd, and returns a relevant function descriptor
fid. Depending on the applied function, additional arguments
may be passed.

MAPI provides several predefined functions that cover a
broad range of standard monitoring needs. Several functions

are provided for restricting the packets that will constitute a
network flow. For example, applying the BPF FILTER func-
tion with parameter "tcp and dst port 80" restricts
the packets of a network flow to the TCP packets destined to
port 80, as in flow A of Figure 1. STR SEARCH can be used
to restrict the packets of a flow to only those that contain a
specified byte sequence. Network flows B and C in Figure 1
would be configured by applying both BPF FILTER and
STR SEARCH. Many other functions are provided for process-
ing the traffic of a flow. Such functions include PKT COUNTER
and BYTE COUNTER, which count the number of packets and
bytes of a flow, SAMPLE, which can be used to sample packets,
HASH, for computing a digest of each packet, and REGEXP,
for pattern matching using regular expressions.

Although these functions enable users to process packets
and compute network traffic metrics without receiving the
actual packets in the address space of the application, they
must somehow communicate their results back to the ap-
plication. For example, a user that has applied the function
PKT COUNTER to a network flow, will be interested in reading
what is the number of packets that have been counted so far.
Results retrieval is achieved using the following call:

void * mapi_read_results(int fd, int fid)

The above function returns a pointer to the memory where
the result of the function with the identifier fid, which has
been applied to the network flow fd, has been stored. Once a
flow is established, packets belonging to that flow can be read
one-at-a-time using the following blocking call:

struct mapipkt * mapi_get_next_pkt(int fd,
int fid)

The above function reads the next packet that belongs to
flow fd. In order to read packets, the function TO BUFFER
(which returns the relevant fid parameter) must have pre-
viously been applied to the flow. TO BUFFER instructs the
monitoring system to store the captured packets into a shared
memory area, from where the user can directly read the packet,
supporting this way efficient zero-copy packet capturing plat-
forms [10], [11].

III. DISTRIBUTED PASSIVE MONITORING

The need for elaborate monitoring of large-scale network
events and characteristics requires the cooperation of many,
possibly heterogeneous, monitoring sensors distributed over
a wide-area network or several collaborating Autonomous
Systems (AS). In such an environment, the processing and
correlation of the data gathered at each sensor gives a broader
perspective of the state of the monitored network, in which
related events become easier to identify.

Figure 2 illustrates a high-level view of such a distributed
passive network monitoring infrastructure. Monitoring sensors
are distributed across several autonomous systems, with each
AS having one or more monitoring sensors. Each sensor may
monitor the link between the AS and the Internet (as in AS 1
and 3), or an internal sub-network (as in AS 2). An authorized

Internet

Autonomous
System 1

Autonomous
System 3

Autonomous
System 2Local

Network 1

Local
Network 2

Monitoring Sensor

User

Fig. 2. A high-level view of a distributed passive network monitoring
infrastructure.

user, who is not necessarily located in any of the participating
ASes, can run monitoring applications that involve an arbitrary
number of the available monitoring sensors.

In order to take advantage of information from multi-
ple vantage points, monitoring applications need a uniform
access platform for interaction with the remote monitoring
sensors. DiMAPI fulfils this requirement by facilitating the
programming and coordination of a set of remote sensors from
within a single monitoring application. This is achieved by
building on the abstraction of the network flow introduced in
MAPI. However, MAPI supports the creation of network flows
associated with a single local monitoring interface, and thus,
in MAPI, a network flow receives network packets captured
at a single monitoring point.

One of the main novelties of DiMAPI is the introduction
of the network flow scope, a new attribute of network flows.
In DiMAPI, each flow is associated with a scope that defines
a set of monitoring interfaces which are collectively used for
network traffic monitoring. Generally, given an input packet
stream, a network flow is defined as a sequence of packets
that satisfy a given set of conditions. In MAPI, the input
stream of packets comes from a single monitoring interface.
The notion of scope in DiMAPI enables a network flow to
receive packets from several monitoring interfaces. With this
definition, the abstraction of the network flow remains intact:
a network flow with scope is still a subset of the packets
of an input packet stream. However, the input packet stream
over which the network flow is defined may come from more
than one monitoring points. In this way, when an application
applies functions to manipulate or extract information from a
network flow with a scope of multiple sensors, it effectively
manipulates and extracts information concurrently from all
these monitoring points.

A. Extensions to MAPI

In order to support the abstraction of scope in DiMAPI,
the interface and implementation of mapi create flow()
have been extended to support the definition of multiple
remote monitoring interfaces. A remote monitoring interface is

sensor.uninett.no

mon1.ics.forth.gr

Internet

Packet to port 80

fd = mapi_create_flow(
"sensor.uninett.no:/dev/dag0,"
"mon1.ics.forth.gr:eth0");

mapi_apply_function(fd,
"BPF_FILTER", "dst port 80");

User

Fig. 3. An example where a monitoring application manipulates a network
flow associated with two remote monitoring sensors located in different
administrative domains.

defined as a host:interface pair, where host is the host
name or IP address of the remote sensor and interface is
the device name of the monitoring interface or the name of a
packet trace file. The scope of a network flow is composed by
concatenating several comma-separated host:interface
pairs as a string argument to mapi create flow(). For
example, the following call creates a network flow associated
with two monitoring interfaces located at two different hosts
across the Internet:

fd = mapi_create_flow(
"m1.forth.gr:/dev/dag0, 123.45.6.7:eth2");

In the example of Figure 3, a user creates a network flow
associated with two remote sensors located in two different
organizations, FORTH and UNINETT. The user then applies the
function BPF FILTER in order to restrict the packets of the
flow to only those that are destined to some web server (some
code has been omitted for clarity). As a result, the application
receives packets with destination port 80 that are captured at
both UNINETT’s and FORTH’s sensors.

The scope abstraction also allows the creation of flows
associated with multiple interfaces on the same local or remote
host. For example, the following call creates a network flow
associated with a commodity Ethernet interface and a DAG
card, both installed at the same monitoring sensor.

fd = mapi_create_flow(
"m1.forth.gr:/dev/dag0, m1.forth.gr:eth1");

Note that the scope abstraction in DiMAPI preserves the
semantics of the existing mapi create flow() function,
ensuring backwards compatibility with existing legacy MAPI
applications. A local network flow can still be created by
specifying a single monitoring interface without prepending
a host.

B. Monitoring Application Examples

In this section we describe two simple monitoring applica-
tions built on top of DiMAPI. The first is a simple byte counter
for web traffic, and the second is an application that detects
covert traffic from a specific peer-to-peer file sharing client.
Note that these are illustrative examples—one may think of

much more complicated monitoring applications to exploit the
full power of DiMAPI.

1) Web Traffic Byte Counter: The following pseudocode
illustrates a simple DiMAPI application that counts the total
bytes of the packets received by the web servers of several
monitored networks within a predefined interval.

1 fd = mapi_create_flow(
2 "host1:eth2, host2:/dev/dag0, host3:eth1");
3

4 /* keep only packets directed to a web server */
5 mapi_apply_function(fd, "BPF_FILTER",
6 "tcp and dst port 80");
7

8 /* and just count them */
9 fid = mapi_apply_function(fd, "BYTE_COUNTER");

10

11 mapi_connect(fd);
12 sleep(10);
13

14 bytes = mapi_read_results(fd, fid);
15 ...

The application operates as follows. We initially define a
network flow with a scope of three remote sensors (line 1).
Then, we restrict the packets of the flow to only those destined
to some web server, by applying the BPF FILTER function
(line 5). After specifying the characteristics of the network
flow, we instruct the monitoring system that we are interested
in just counting the number of bytes of the flow, by applying
the BYTE COUNTER function (line 9). Finally, we activate the
flow (line 11). After 10 seconds, the application reads the
result by calling mapi read results() (line 14).

2) Covert Peer-to-Peer Traffic Identification: The second
example is an application that identifies covert traffic from
Gnutella file sharing clients. Several Gnutella clients offer
the capability to operate using HTTP traffic through port
80, masquerading as normal web traffic in order to bypass
strict firewall configurations aiming to block P2P traffic. The
following pseudocode illustrates how DiMAPI can be used for
writing a simple application that identifies file sharing clients
joining the Gnutella network using covert web traffic.

1 fd = mapi_create_flow(
2 "host1:eth2, host2:/dev/dag0, host3:eth1");
3

4 /* keep only web packets */
5 mapi_apply_function(fd, "BPF_FILTER",
6 "tcp and port 80");
7

8 /* indicating Gnutella traffic */
9 mapi_apply_function(fd, "STR_SEARCH",

10 "GNUTELLA CONNECT");
11

12 /* and just count them */
13 fid = mapi_apply_function(fd, "PKT_COUNTER");
14

15 mapi_connect(fd);
16

17 /* forever, report the number of packets */
18 while(1) {
19 sleep(60);
20 cnt = mapi_read_results(fd, fid);
21 ...
22 }

Similarly to the previous example, we initially create a net-
work flow that receives the packets seemingly destined to, or

coming from, some web server. Once a file sharing client that
wants to connect to the Gnutella network obtains the address of
another servant on the network, it sends a connection request
containing the string “GNUTELLA CONNECT.” Thus, we use
the function STR SEARCH to further restrict the packets of
the flow to those that contain this characteristic string (line 9).
After specifying the characteristics of the flow, we instruct the
monitoring system that we are interested in just counting the
number of packets by applying the PKT COUNTER function
(line 13). Finally, we activate the flow (line 15). After this
point, each monitoring sensor has started inspecting the mon-
itored traffic for covert Gnutella traffic and keeps a count of
the matching packets. Then, the application periodically reads
the current value of the counter in a infinite loop (line 20).

Implementing the above simple distributed monitoring ap-
plication using existing tools and libraries would have been
a tedious process, resulting in longer code and higher over-
heads. For example, we could use tools like snort [12] or
ngrep [13], which allow for pattern matching in the packet
payload, for capturing the Gnutella packets at each remote
sensor. At the end-host, we should have to use some scripts for
starting and stopping the remote monitoring applications and
for retrieving and collectively reporting the results, through
some remote shell such as ssh.

Alternatively, one could build the application using solely
WinPcap [14] or rpcap [15]. Both libraries extend
libpcap [16] with remote packet capture capabilities, al-
lowing captured packets at a remote host to be transferred to
a local host for further processing. In order to count the covert
Gnutella packets using one of these libraries, the application
has to first transfer locally all the captured web packets,
separately from each remote sensor, and then identify locally
the Gnutella packets. The pattern matching operation has to be
performed locally since libpcap does not offer any pattern
matching operation. However, transferring all the web packets
from each remote sensor to the local application incurs a
significant network overhead. In contrast, DiMAPI enables
traffic processing at each remote sensor, which allows for
sending back only the computed results. In this case, only the
count of Gnutella packets is transferred through the network,
which incurs substantially less network overhead.

Clearly, such custom schemes do not scale well and cannot
offer the ease of use and flexibility of DiMAPI for building
distributed monitoring applications. Furthermore, DiMAPI ex-
ploits any specialized hardware available at the monitoring
sensors, and efficiently shares the monitoring infrastructure
among many users. The monitoring daemon on each sensor
groups and optimizes the monitoring operations requested by
the users of the system, providing the same or even better
performance compared to libpcap [6].

IV. DIMAPI ARCHITECTURE

Figure 4 illustrates the architecture of a monitoring sensor
that supports DiMAPI. The overall architecture includes one or
more monitoring interfaces for capturing traffic, a monitoring
agent, which provides optimized passive monitoring services,

Monitoring
Interface

Communication
Agent

UNIX socket /
shared memory

Captured Packets

Application 1

Monitoring Sensor
User A

TCP
socket

Application 2TCP
socket

DiMAPI stub
DiMAPI stub

DiMAPI stub

Monitoring
Agent (mapid)

User B

Fig. 4. Architecture of a DiMAPI monitoring sensor. Remote user applica-
tions interact with the Monitoring Agent through the Communication Agent.

the DiMAPI stub, for writing monitoring applications, a com-
munication agent for interaction with the remote monitoring
applications, and finally, the actual monitoring applications.

The monitoring host is equipped with one or more monitor-
ing interfaces for packet capture, and optionally an additional
network interface for remote access. The latter is the sensor’s
“control” interface, and ideally it should be separate from the
network “taps.” Packets are captured and processed by the
monitoring agent [6], called mapid: a user-level process with
exclusive access to the captured packets. Mapid is optimized
to perform intensive monitoring operations at high speeds,
exploiting any features of the underlying hardware. Local
monitoring applications communicate directly with mapid
via a subset of the DiMAPI stub that is optimized for fast
and efficient local access. This is achieved by performing
all communication between local applications and mapid via
shared memory and UNIX sockets [6].

Remote applications must be able to communicate their
monitoring requirements to each sensor through the Internet.
A straightforward approach for enabling applications to com-
municate with a remote sensor would be to modify mapid
to interact directly with the remote applications through the
DiMAPI stub. However, this design requires changes to be
made to the monitoring agent, which poses several risks.
Indeed, mapid is a complex part of the software architecture
and is already responsible for handling important “heavy-duty”
tasks, as this is where all the processing of the monitoring
requirements of the users’ applications takes place, and thus,
has to keep up with intensive high-speed packet processing.
Besides increasing the software complexity of mapid, extend-
ing it to handle communication directly with remote clients
would probably introduce additional performance overhead.
Furthermore, allowing remote clients to connect directly to
mapid, which has exclusive access to the captured packets,
may introduce significant security risks.

For the above reasons, we have chosen an alternative
design that avoids any modifications to mapid, as depicted in
Figure 4. We have introduced an intermediate agent between

ApplicationDiMAPI stubDiMAPI stub commdmapid

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Monitoring Sensor User's HostInternet

mapi_create_flow(
"sensor:eth0");

mapi_create_flow("eth0");
[CREATE,
"eth0"]

[fd_priv]

fd_priv

fd

[CREATE, "eth0"]

[fd_priv]

function call TCP socketUNIX socket

Fig. 5. Control sequence diagram for the execution of the function
mapi create flow().

mapid and the remote applications, for handling all remote
communication. This Communication Agent (commd), which
runs on the same host as mapid, acts as a proxy for the
remote applications, forwarding their monitoring requests to
mapid, and sending back to them the computed results. The
presence of commd is completely transparent to user appli-
cations, which continue to operate as if they were interacting
directly with mapid—only the DiMAPI stub is aware of the
presence of commd. Furthermore, the presence of commd is
also transparent to mapid since it operates as a typical local
monitoring application on top of MAPI.

The main benefit of this design is that it does not require
any modifications to mapid. Only the MAPI stub needs
to be extended for supporting the DiMAPI functionality, as
discussed in Section III. At the monitoring sensor side, the
DiMAPI functionality is solely implemented by commd, which
is built as a local monitoring application. This allows for a
cleaner implementation with shorter debugging cycles and for
a more robust system due to fault isolation. Indeed, the system
becomes more robust as communication failures will not result
in failure of the monitoring processes. Furthermore, in case
that the remote monitoring functionality of a sensor is not
required any more, it can be easily left out by simply not
starting up commd.

In the following sections we look more closely into the
structure and operation of commd and the communication
protocol between commd and the DiMAPI stub. We also
discuss security and privacy issues related to the system.

A. Communication Agent

The communication agent runs on the same host with
mapid and acts as an intermediary between remote moni-
toring applications and mapid. Upon the reception of a mon-
itoring request from the DiMAPI stub of a remote application,
it forwards the relevant call to mapid, which in turn processes
the request and sends back to the user the computed results,
again through commd. The communication agent is a simple
user-level process implemented on top of DiMAPI, i.e., it
looks like an ordinary DiMAPI-based monitoring application.

However, its key characteristic is that it can receive monitoring
requests from other monitoring applications that run on differ-
ent hosts and are written with DiMAPI. This is achieved by
directly handling the control messages of the DiMAPI coming
from the remote applications, and transforming them to the
relevant local calls.

The communication agent listens for monitoring requests
from DiMAPI applications to a known predefined port. A
new thread is spawned for each new remote application
and thereafter handles all the communication between the
monitoring application and commd. The DiMAPI stub that is
linked with the application sends a control message to commd,
for each DiMAPI call invocation, which in turn repeats the
call. This time though, the stub of commd will interact directly
with the mapid running on the same host. Commd then
returns the result to the stub of the remote application, which
in turn returns it to the user. Note that although commd is
implemented on top of DiMAPI, it uses only the subset of
DiMAPI that is intended for local network monitoring [6],
and communicates locally with mapid solely through shared
memory and UNIX sockets, since it never manipulates network
flows associated with remote monitoring sensors.

The message sequence diagram in Figure 5 shows the
operation of the communication agent in more detail, using
a concrete example of the control sequence for the im-
plementation of the mapi create flow() call. Initially,
a monitoring application calls mapi create flow() for
creating a network flow at a remote monitoring sensor (step 1).
The DiMAPI stub retrieves the IP address of the sensor and
sends a respective control message to the commd running on
that host through a TCP socket (step 2). The message contains
the type of the DiMAPI call to be executed (CREATE),
along with the monitoring interface that will be used (eth0).
Upon the receipt of the message, commd repeats the call to
mapi create flow (step 3). This time, however, the call is
destined directly to mapid, thus the stub of commd sends the
respective message through a UNIX socket (step 4). Assuming
a successful creation of the flow, mapid returns the flow
descriptor fd priv of the newly created flow to the stub
of commd (step 5), which in turn finishes the execution of
the mapi create flow() call by returning fd priv to
commd (step 6). The agent constructs a corresponding reply
message that contains the flow descriptor, and sends it back
to the DiMAPI stub of the user application (step 7).

Finally, the stub of the application has to return a flow
identifier back to the user. However, in case that the network
flow is associated with more than one monitoring sensors, the
DiMAPI stub of the application will receive several flow de-
scriptors, one for each of the monitoring interfaces constituting
the scope of the network flow.1 Thus, the stub generates and
returns a new unique flow identifier, and internally stores the
mapping between the received flow descriptors and the newly
created identifier (step 8).

1In that case, steps 2–7 in Figure 5 are repeated for each sensor of the
network flow’s scope.

Total Length Command

fd fid

Timestamp

Data

0 32 64

Fig. 6. Format of the control messages exchanged between the DiMAPI stub
and commd.

Although at first sight it may seem that the overhead for a
DiMAPI call is quite high, since it results in several control
flow transitions, we should stress that most of the above steps
are function calls or inter-process communication that takes
place on the same host, and thus, are performed very fast.
The operations with the highest overhead are the send and
receive operations through the TCP socket (steps 2 and 7),
which incur an unavoidable overhead due to network latency.
We look in more detail into this issue in Section V.

B. Communication Protocol

All communication between the monitoring sensors and the
remote applications is encapsulated in the DiMAPI stub. The
design target of the communication protocol was to provide
communication with minimal overhead and good scalability
over a large number of monitoring sensors. DiMAPI stub
library calls exchange control messages with commd through
TCP sockets. Each message contains all the necessary in-
formation for the operation to be executed. After sending a
request, the stub waits for the corresponding acknowledgement
from the sensor, indicating the successful completion of the
requested action, or a specific error in case of failure.

The format of the messages exchanged between the
DiMAPI stub and commd is shown in Figure 6. Each message
has variable length, denoted by the field Total Length.
The Command field contains the operation type, sent by
the stub to commd, or the acknowledgment value for a
request that commd has processed. It takes values from an
enumeration of possible message types. For example, for a
call to mapi create flow(), the relevant message sent
from the stub will have a Command value of CREATE FLOW,
for a call to mapi apply function() Command will be
APPLY FUNCTION, and so on.

Fields fd and fid contain the descriptors of the network
flow and the applied function instance being manipulated,
respectively. Timestamp contains the time at which the result
included in the communication message was produced. Finally,
the field Data, the only with variable size, serves different
purposes depending on the contents of the Command field.
Specifically, when the message is a reply (acknowledgement)
from commd to a call of mapi read results(), it con-
tains the results of an applied function. If the Command
field contains a request, sent from the DiMAPI stub, e.g., to
apply some function to a network flow, it may contain the
arguments of the relevant DiMAPI function. For example, in
a call to mapi apply funtion(), it contains the name of
the function to be applied along with its arguments.

C. Security and Privacy

A large-scale network monitoring infrastructure consisting
of many sensors across the Internet is exposed to several
threats that may disrupt its operation. Monitoring sensors
may become targets of coordinated Denial of Service (DoS)
attacks, aiming to prevent legitimate users from receiving a
service with acceptable performance, or sophisticated intrusion
attempts, aiming to compromise the monitoring hosts. Being
exposed to the public Internet, monitoring sensors should
have a rigorous security configuration in order to preserve the
confidentiality of the monitored network, and resist to attacks
that aim to compromise it.

To counter such threats, each sensor is equipped with a
firewall, configured using a conservative policy that selectively
allows inbound traffic only from the predefined IP addresses
of legitimate users. Inbound traffic from any other source is
dropped. Since our system is based on the Linux OS, such a
policy can be easily implemented using iptables [17].

The administrator of each monitoring sensor is respon-
sible for issuing credentials to users who want to access
the monitoring sensor with DiMAPI. The credentials specify
the usage policy applicable to that user. Whenever a user’s
monitoring application connects to some monitoring sensor
and requests the creation of a network flow, it passes the
user’s credentials. The monitoring sensor performs access
control based on the user’s request and credentials. In this
way, administrator delegates authority to use that sensor, using
public key authentication. Access control in our system is
based on the KeyNote [18] trust-management system, which
allows direct authorization of security-critical actions.

Since all communication between user applications and
the remote sensors will be made through public networks
across the Internet, special measures must be taken in order
to ensure the confidentiality of the transferred data. Data
transfers through TCP are unprotected against eavesdropping
from third-parties that have access to the transmitted packets,
since they can reconstruct the TCP stream and recover the
transferred data. This would allow an adversary to record
DiMAPI’s control messages, forge them, and replay them
in order to access a monitoring sensor and impersonate a
legitimate user. For protection against such threats, any com-
munication between the DiMAPI stub and a remote sensor is
encrypted using the Secure Sockets Layer protocol (SSL).

In a distributed monitoring infrastructure that promotes
sharing of network packets and statistics between different
parties, exchanged data should be anonymized before made
publicly available for security, privacy, and business com-
petition concerns that may arise due to the lack of trust
between the collaborating parties. The DiMAPI architecture
supports an advanced framework for creating and enforc-
ing anonymization policies [19]. Since different users and
applications may require different levels of anonymization,
the anonymization framework offers increased flexibility by
supporting the specification of user and flow specific policies.

Tr
af

fic
 (K

B
yt

es
)

0

10

20

30

40

50

Number of Monitoring Sensors
0 5 10 15

1 applied functions
8 applied functions

Fig. 7. Total network traffic exchanged during the
initialization phase, i.e., creation, configuration, and
instantiation of a network flow, when applying 1 and
8 functions.

Tr
af

fic
 R

at
e

(K
bi

t/s
)

0

50

100

150

200

250

300

350

Number of Monitoring Sensors
0 5 10 15

100 ms
1 sec
10 sec

Fig. 8. Network overhead incurred with a
DiMAPI monitoring application that uses function
BYTE COUNTER, with polling periods 0.1, 1, and
10 seconds.

Tr
af

fic
 R

at
e

(K
bi

t/s
)

0

50

100

150

200

250

300

350

Number of Monitoring Sensors
0 5 10 15

100 ms
1 sec
10 sec

Fig. 9. Network overhead incurred with a
DiMAPI monitoring application that uses function
HASHSAMP, with polling periods 0.1, 1, and 10
seconds.

V. PERFORMANCE EVALUATION AND EXPERIENCE

In this section we experimentally evaluate several perfor-
mance aspects of DiMAPI. Our analysis consists of measure-
ments regarding the network overhead and response latency,
and how these metrics scale as the number of the participating
monitoring sensors increases. Furthermore, we discuss our
experiences with a real world application built on top of
DiMAPI.

A. Experimental Environment

For the experimental evaluation of DiMAPI we used two
different monitoring sensor deployments. The first system con-
sists of 15 monitoring sensors distributed across the internal
network of FORTH. All nodes are interconnected through
100 Mbps Ethernet for the sensor control interface. Each
sensor is equipped with a second Ethernet interface for the
actual passive network monitoring. The monitored test traffic
is generated using iperf [20] and tcpreplay [21]. The
second deployment consists of four monitoring sensors located
at four different ASes across the Internet: FORTH, the Uni-
versity of Crete (UoC), the Venizelio Hospital at Heraklion
(VHosp), and the University of Pennsylvania (UPenn). In this
deployment, each sensor monitors live traffic passing through
the monitored links of the corresponding organization. The
operating system of the sensors in both deployments is Linux
(various distributions).

B. Network Overhead

As discussed in Section IV, whenever a monitoring applica-
tion that utilizes remote sensors calls a DiMAPI library func-
tion, this results to a message exchange between the DiMAPI
stub and the commd running on each sensor. This procedure
poses questions about the overhead and the scalability of this
approach. In this set of experiments, we set out to quantify the
network overhead that DiMAPI incurs when used for building
distributed monitoring applications.

For the experiments of this section, we implemented a test
monitoring application that creates a network flow, configures
it by applying several functions, and then periodically reports
some result according to the applied functions. This applica-
tion operates in a similar fashion to the examples presented

in Section III-B. The measurements were performed in the
15-sensor FORTH network, while the test application was
running on a separate host. Our target is to measure the
network overhead generated by DiMAPI, when using different
monitoring granularity. The generated network traffic was
measured using a second local DiMAPI application running on
the same host with the test application. This local application
reports the amount of DiMAPI control traffic by creating a
network flow that captures all packets to and from the DiMAPI
control port. Since it is a local monitoring application, it incurs
no network traffic. We validated our results using tcpdump.

In the first experiment, we measured the network overhead
for the initialization of a network flow, as a function of
the number of remote monitoring sensors constituting the
scope of the flow. The initialization overhead includes the
traffic incurred by both the DiMAPI stub and commd during
the creation, configuration, and instantiation of a network
flow. For example, in the pseudo-code of Section III-B.1,
the initialization phase includes lines 1–11, and comprises
four DiMAPI function calls, while in the second example of
Section III-B.2, the initialization phase is between lines 1–15,
and includes calls to five functions.

Figure 7 shows the amount of traffic generated during the
initialization phase for two variations of the test application.
In the first variation, corresponding to the dashed line, the
network flow is configured by applying only one function,
which results to a total of three DiMAPI library function
calls for the initialization phase. In the second variation,
the network flow is configured by applying 8 functions, a
rather extreme case, resulting to a total of 11 DiMAPI library
function calls. The incurred traffic grows linearly with the
number of monitoring sensors, and, for 15 sensors, reaches
about 15 KBytes for the first variation and 45 KBytes for the
second. In both cases, the network overhead remains low, and
can be easily amortized during the lifetime of the application.

In the next experiment we measured the rate of the network
traffic incurred during the lifetime of the application due to
the periodic results retrieval. After the initialization phase,
the test application constantly reads the new value of the
result by periodically calling mapi read results() at a

La
te

nc
y

(m
s)

0

0.4

0.8

1.2

1.6

2

Number of Monitoring Sensors
0 5 10 15

Fig. 10. Completion time for mapi read results(). This includes the
processing within DiMAPI stub, the processing within each of the remote
monitoring sensors, and the network round-trip time.

predefined time interval. The measured traffic includes both
the control messages of DiMAPI and the data transferred,
across all monitoring sensors. We modified the test application
to read the number of bytes of a network flow in three different
periodic intervals, and plotted the mean rate of the generated
traffic for one hour in Figure 8.

In case that the application reads the result in 0.1 sec inter-
vals, which is orders of magnitude lower than the minimum
polling cycle allowed by most implementations of the Simple
Network Management Protocol (SNMP), the generated traffic
reaches 295 Kbit/s, when using a network flow with a scope
of 15 sensors. However, for periodic intervals of one second
or more, the generated traffic is negligible.

The result of the BYTE COUNTER function is an unsigned
8-byte integer. In order to see the effects of larger result
structures, we repeated the experiment by reading the results
of the HASHSAMP function. HASHSAMP is used to perform
hash-based sampling on the packets of a network flow, and
its results format is a 36-byte structure. The traffic rate when
reading the results of HASHSAMP is shown in Figure 9. We
see that there is only a slight increase in the traffic rate due
to the larger size of the produced results.

In all of our experiments the CPU utilization at the end-host
was negligible, constantly lower than 1%.

C. Response Latency

In this set of experiments we set out to explore the delay
between the call of a DiMAPI function and the return from
the function. Since the call of a DiMAPI function results to a
message exchange with each of the remote sensors within the
flow’s scope, the return from the function is highly dependent
on the round trip time (RTT) of the network path between the
host on which the application runs and the remote monitoring
sensors. Ideally, the latency introduced by DiMAPI should be
negligible, and thus the overall latency should be close to the
maximum RTT to the sensors within the flow’s scope.

We measured the time for retrieving a result by calling
mapi read results() using the same test application we
used for the experiments of Section V-B in the FORTH net-
work. The time was measured by generating two timestamps
from within the monitoring application right before and after

TABLE I
COMPARISON BETWEEN THE COMPLETION TIME OF A DIMAPI CALL AND

THE NETWORK ROUND TRIP TIME.

Network flow mapi read results() Network
scope delay (ms) RTT (ms)

VHosp 170.58 160.69
UoC 3.26 3.24

FORTH 0.68 0.67
UPenn 283.65 279.22

VHosp, UoC, FORTH, UPenn 285.496 -

the call to mapi read results(). In this way, the mea-
sured time includes both the processing time of the DiMAPI
stub and that of the remote sensor, as well as the network
latency.

Figure 10 shows the completion time for the execution of a
mapi read results() call as a function of the number of
monitoring sensors in the network flow scope. As the number
of sensors increases, there is a slight increase in the delay for
retrieving the result. Since all the sensors are located within the
FORTH LAN, the network latency for each monitoring sensor
is almost constant and remains very low. Thus, the delay for
retrieving the result from 15 sensors also remains very low,
below 1 ms.

In order to explore how the network latency affects the delay
of DiMAPI calls under more realistic conditions, we repeated
the experiment using the second sensor deployment. As de-
scribed in Section V-A, this network comprises monitoring
hosts located in four different ASes across the Internet, thus
the RTT between the end host where the application runs and
each monitoring sensor varies considerably.

We report our findings in Table I. The third column
shows the actual RTTs for each sensor, as measured from
the end host using ping. We measured the delay of
mapi read results() for reading a result from each
monitoring sensor. The results of Table I suggest that for each
sensor, the delay is slightly higher, but comparable, to the
corresponding RTT. Furthermore, when using a network flow
with a scope that includes all the monitoring sensors, the delay
is roughly equal to the delay of the slowest sensor.

D. Distributed Intrusion Detection with DiMAPI

In this section we describe our experience with building a
distributed Network Intrusion Detection System (NIDS) using
DiMAPI. NIDSes are an important part of any modern network
security management architecture and provide an additional
layer of protection against cyber-attacks. A NIDS monitors
the network traffic, trying to detect attacks or suspicious
activity by matching packet data against well-defined patterns.
Such patterns, also known as signatures, identify attacks by
matching fields in the header and the payload of packets. For
example, a packet directed to port 80 containing the string
/bin/perl.exe in its payload is probably an indication
of a malicious user attacking a web server. This attack can
be detected by a signature which checks the destination port

number, and defines a string search for /bin/perl.exe in
the packet payload.

Implementing a distributed NIDS is a rather compli-
cated task. Several basic operations like packet classification,
TCP/IP stream reconstruction, and pattern matching, must
be crafted together to form a fully functional system. Each
one of these operations alone requires deliberate decisions
for its design and considerable programming effort for its
implementation. Furthermore, the resulting system is usually
targeted to a specific hardware platform. For instance, the
majority of current NIDSes are built on top of libpcap [16]
packet capture library using commodity network interfaces
set in promiscuous mode. As a result, given that libpcap
provides only basic packet delivery and filtering capabilities,
the programmer has to provide considerable amount of code
to implement the large and diverse space of operations and
algorithms required by a NIDS.

In contrast, DiMAPI inherently supports the majority of the
above operations in the form of predefined functions which can
be applied to network flows, and thus, can be effectively used
for the development of a simple NIDS. Consequently, a great
burden is released from the programmer who has now a con-
siderably easier task. Furthermore, a NIDS based on DiMAPI
is not restricted to a specific hardware platform. DiMAPI
operates on top of a diverse range of monitoring hardware,
including sophisticated lower level components [22], and thus,
can further optimize overall system performance, considering
that certain functions can be pushed to hardware.

We have developed a distributed NIDS using DiMAPI.
Based on the observation that a rule which describes a
known intrusion threat can be represented by a corresponding
network flow, the overall implementation is straightforward.
As an example, consider the following snort [12] signature
for detecting malicious activity from a host infected with a
backdoor:

alert tcp any 146 -> any 1000:1300
(msg:"BACKDOOR Infector 1.6"; content:
"|57 48 41 54 49 53 49 54|"; depth: 100;
flags:A+; sid:120;)

All packets that match the above rule can be returned by
a network flow, after the application of only two DiMAPI
functions:

mapi_apply_function(fd, "BPF_FILTER",
tcp and (src port 146) and ((tcp[2:2]>=1000"
" and tcp[2:2]<=1300)) and tcp[13:1]&16>0);

mapi_apply_function(fd, "STR_SEARCH",
"|57 48 41 54 49 53 49 54|", 0, 100);

Our DiMAPI-based NIDS operates as follows: during pro-
gram start-up, the files that contain the set of rules are parsed,
and for each rule, a corresponding network flow is created.
Rules are written in the same description language used by
snort. The rest of the functionality is left to DiMAPI, which
will optimize the functional components of all the defined rules
and deliver any matching packets.

We should note that DiMAPI is not designed to fully
replace fully-blown NIDS platforms. Our experience with
intrusion detection shows that DiMAPI provides reasonably
good support and performance for basic intrusion detection
functionality, especially in a distributed monitoring environ-
ment. This is useful for providing the defense capabilities
needed to respond to coordinated large-scale attacks. A key
advantage of our DiMAPI-based NIDS is that the it can rely
on more than one vantage points for attack detection. The
scope of the network flows that correspond to the signatures is
user-defined, thus the system is able to observe and correlate
malicious activity from multiple sources. This functionality
is crucial for building distributed early-warning systems for
large-scale attacks like Internet worms [3].

VI. RELATED WORK

There are several techniques and tools currently available for
passive network monitoring, which can be broadly categorized
into three categories [2]: passive packet capturing, flow-level
measurements, and aggregate traffic statistics. These categories
are with decreasing order regarding the offered functionality
and complexity. For example, flow-level measurements and
aggregate traffic statistics can be probided by packet capturing
systems. DiMAPI belongs to the first category, since it is capa-
ble to perform distributed packet capture and manage remote
monitoring sensors, but can also offer the latter functionalities
by applying the appropriate functions to the network flows.

The most widely used library for passive packet monitoring
is libpcap [16], which provides a portable API for user-level
packet capture. The libpcap interface supports a filtering
mechanism based on the BSD Packet Filter [23], which allows
for selective packet capture based on packet header fields. The
Linux Socket Filter [24] offers similar functionality with BPF
for the Linux OS, while xPF [25] and FFPF [26] provide
a richer programming environment for network monitoring
at the packet filter level. FLAME [27] is an architecture
that allows users to directly install custom modules on the
monitoring system, similarly in principle to Management-
by-Delegation models [28]. Windmill [29] is an extensible
network probe environment which allows loading of “experi-
ments” on the probe for analyzing protocol performance.

The libpcap library has been widely used in several
passive monitoring applications such as packet capturing [13],
[30], network statistics monitoring [31], and intrusion detec-
tion systems [12]. WinPcap [14] and rpcap [15] extend
libpcap with remote packet capturing capabilities. Both
allow the transfer of captured packets at a single remote host
to a local host for further processing. DiMAPI offers the
same functionality through the scope abstraction for multi-
ple distributed monitoring sensors. Furthermore, by enabling
traffic processing at each remote sensor, DiMAPI avoids the
considerable network overhead of above approaches since it
sends back only the computed results.

CoralReef provides a set of tools and support functions
for capturing and analyzing network traces [32]. libcoral

provides an API for monitoring applications that is indepen-
dent of the underlying monitoring hardware. Nprobe [33] is
a monitoring tool for network protocol analysis. Although
it is based on commodity hardware, it speeds up network
monitoring tasks by using filters implemented in the firmware
of a programmable network interface.

DiMAPI leverages current passive network monitor-
ing/capturing approaches that are tied to a single monitoring
host, into a distributed environment. Indeed, DiMAPI is imple-
mented on top of various monitoring architectures, including
libpcap-based interfaces and DAG cards [11], and provides
a flexible interface on top of them for building distributed mon-
itoring applications. To the best of our knowledge, DiMAPI is
also more expressive than existing tools. For instance, DiMAPI
can be used to filter packets based on payload data, apply
arbitrary functions on packets, and keep statistics based on
the results of these functions.

Except from packet capture oriented systems, there has
been significant activity in the design of systems providing
flow-based measurements. Cisco IOS NetFlow technology [9]
collects and measures traffic data on a per-flow basis. In this
context, a flow is usually defined as all packets that share a
common protocol, source and destination IP addresses, and
port numbers. In contrast to packet capture systems, NetFlow
only extracts and maintains flow-level records, from which
various traffic statistics can be derived. NeTraMet [34], much
like NetFlow, can collect traffic data on a per-flow basis
focusing only on flows that match a specific rule.

A drawback of such tools is that they are usually accessible
only by network administrators who have access rights to
network equipment like routers. Open source probes like
nProbe [35] offer NetFlow record generation by capturing
packets using commodity hardware. Although DiMAPI shares
some goals with the above flow-based monitoring systems,
we believe that it has significantly more functionality. For
example, by being able to examine packet payloads, DiMAPI
is able to provide sophisticated traffic statistics, e.g., for
applications that use dynamically allocated ports [6].

There is also significant activity within the IETF for defining
network traffic monitoring standards, from several working
groups such as RMON [36], PSAMP [37], and IPFIX [38].
The Simple Network Management Protocol (SNMP) [39]
facilitates the retrieval of traffic statistics from network de-
vices. Though SNMP is useful it is limited in capabilities,
since we cannot perform fine-grained monitoring. RMON
offers significantly more capabilities than SNMP, however its
complexity and overhead prohibit wide deployment [2].

As network traffic monitoring is becoming increasingly
important for the operation of modern networks, several pas-
sive monitoring infrastructures have been proposed. Gigas-
cope [40] is a stream database for storing captured network
data in a central repository for further analysis using the
GSQL query language. A similar approach is followed by the
CoMo project [41], which allows users to query network data
gathered from multiple administrative domains, and Sprint’s
passive monitoring system [42], which also collects data

from different monitoring points into a central repository
for analysis. Arlos et al. [43] propose a distributed passive
measurement infrastructure that supports various monitoring
equipment within the same administrative domain.

Finally, a lot of work is being done in the area of monitoring
of high-performance computing systems, such as clusters and
Grids. Ganglia [44] is a distributed monitoring system based
on a hierarchical design targeted at federations of clusters.
GridICE [45] is a distributed monitoring tool integrated with
local monitoring systems with a standard interface for pub-
lishing monitoring data. Note that such systems could utilize
at lower levels the functionality offered by DiMAPI.

VII. CONCLUSIONS AND FURTHER WORK

We have presented the design, implementation and perfor-
mance evaluation of DiMAPI, an API for building distributed
monitoring applications. One of the main novelties of DiMAPI
is the introduction of the network flow scope, a new attribute
of network flows which enables the creation and manipulation
of flows over a set of local and remote passive monitoring
sensors. The design of DiMAPI mainly focuses on minimizing
performance overheads, while providing extensive functional-
ity for a broad range of distributed monitoring applications.

We have evaluated the performance of DiMAPI using a
number of monitoring applications operating over large moni-
toring sensor sets, as well as highly distributed environments.
Our results showed that DiMAPI has low overhead, while
the response latency in retrieving monitoring results is very
close to the actual round trip time between the monitoring
application and the monitoring sensors within scope.

A broad range of advanced monitoring applications can
benefit from DiMAPI to efficiently perform fine-grained mon-
itoring tasks over a potentially large number of passive mon-
itoring sensors. Such application include collaborative early
warning of large-scale attacks, accurate traffic distribution
characterization, even for applications that use dynamic ports,
identification of unexpected performance problems, and ex-
traction of detailed traffic characteristics.

Currently, our efforts are focused on the deployment
of DiMAPI-enabled monitoring sensors across several au-
tonomous systems, aiming to create a large-scale passive mon-
itoring infrastructure. We are also looking at the automation
of the sensor discovery process. There has been a lot of
work done for scalable resource discovery [46], so we are
currently looking at how these approaches can be integrated
with our design. Finally, we are exploring the possibility of
extending the functionality of the communication agent in
order to allow the monitoring sensors to communicate with
each other, for potential monitoring applications that require
such functionality.

AVAILABILITY

DiMAPI is available at http://mapi.uninett.no

ACKNOWLEDGMENTS

This work was supported in part by the IST project LOB-
STER funded by the European Union under contract number
004336, and in part by the project CyberScope funded by
the Greek General Secretariat for Research and Development
under contract number PENED 03ED440. Michalis Poly-
chronakis, Antonis Papadogiannakis, Michalis Foukarakis, and
Evangelos P. Markatos are also with the University of Crete.
The work of Panos Trimintzios was done while at ICS-
FORTH. We would like to thank Kostas Anagnostakis and the
members of the DCS Lab at ICS-FORTH for their valuable
assistance and support.

REFERENCES

[1] Peter Morriessy, “RMON2: To the Network Layer and Beyond!” Net-
work Computing, Feb. 1998, http://www.nwc.com/903/903f1.html.

[2] M. Grossglauser and J. Rexford, “Passive traffic measurement for IP
operations,” in The Internet as a Large-Scale Complex System, 2005,
pp. 91–120.

[3] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for internet worms,” in Proceedings of the 10th ACM conference
on Computer and communications security (CCS), 2003, pp. 190–199.

[4] J. Wu, S. Vangala, L. Gao, and K. Kwiat, “An effective architecture
and algorithm for detecting worms with various scan techniques,”
in Proceedings of the 11th Network and Distributed System Security
Symposium (NDSS), 2004.

[5] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm
detection and signature generation,” in Proceedings of the 8th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID),
2005.

[6] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø,
“Design of an Application Programming Interface for IP Network
Monitoring,” in Proceedings of the 9th IFIP/IEEE Network Operations
and Management Symposium (NOMS’04), Apr. 2004, pp. 483–496.

[7] “MAPI Public Release,” http://mapi.uninett.no.
[8] eEye Digital Security, “.ida “Code Red” Worm,” http://www.eeye.com/

html/Research/Advisories/AL20010717.html.
[9] Cisco Systems, “Cisco IOS Netflow,” http://www.cisco.com/warp/public/

732/netflow/.
[10] L. Deri, “nCap: Wire-speed packet capture and transmission,” in Pro-

ceedings of the IEEE/IFIP Workshop on End-to-End Monitoring Tech-
niques and Services (E2EMON), 2005.

[11] DAG 4.3GE dual-port gigabit ethernet network monitoring card, Endace
measurement systems, 2002, http://www.endace.com/.

[12] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proceedings of the 1999 USENIX LISA Systems Administration Confer-
ence, November 1999, (software available from http://www.snort.org/).

[13] J. Ritter, “ngrep – Network grep,” http://ngrep.sourceforge.net/.
[14] “WinPcap Remote Capture,” http://www.winpcap.org/docs/docs31beta4/

html/group remote.html.
[15] S. Krishnan, “rpcap,” http://rpcap.sourceforge.net/.
[16] S. McCanne, C. Leres, and V. Jacobson, “libpcap,” lawrence

Berkeley Laboratory, Berkeley, CA. (software available from
http://www.tcpdump.org/).

[17] Rusty Russell, “Linux 2.4 Packet Filtering HOWTO,” 2002, http://www.
netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html.

[18] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The
KeyNote Trust-Management System version 2,” IETF, Network Working
Group, Informational RFC 2704, Sept. 1999.

[19] The LOBSTER Project, “Deliverable D1.1a: Anonymization Framework
Definition,” 2005, http://www.ist-lobster.org/deliverables/Deliverable
D1.1a.pdf.

[20] A. Tirumala, J. Ferguson, J. Dugan, F. Qin, and K. Gibbs, “Iperf,” http:
//dast.nlanr.net/Projects/Iperf/.

[21] A. Turner, “tcpreplay,” http://tcpreplay.sourceforge.net/.

[22] J. Coppens, S. V. den Berghe, H. Bos, E. Markatos, F. D. Turck,
A. Øslebø, and S. Ubik, “SCAMPI: A Scalable and Programmable
Architecture for Monitoring Gigabit Networks,” in Proceedings of the
E2EMON Workshop, 2003.

[23] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture,” in Proceedings of the Winter 1993
USENIX Conference, January 1993, pp. 259–270.

[24] G. Insolvibile, “Kernel korner: The linux socket filter: Sniffing bytes
over the network,” The Linux Journal, vol. 86, June 2001.

[25] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D. Keromytis,
“xPF: packet filtering for low-cost network monitoring,” in Proceedings
of the IEEE Workshop on High-Performance Switching and Routing
(HPSR), May 2002, pp. 121–126.

[26] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
“FFPF: Fairly Fast Packet Filters,” in Proceedings of OSDI’04, 2004.

[27] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M. B.
Greenwald, and J. M. Smith, “Efficient packet monitoring for network
management,” in Proceedings of the 8th IFIP/IEEE Network Operations
and Management Symposium (NOMS), April 2002, pp. 423–436.

[28] G. Goldszmidt and Y. Yemini, “Distributed management by delegation,”
in Proceedings of the 15th International Conference on Distributed
Computing Systems (ICDCS), 1995, pp. 333–340.

[29] G. R. Malan and F. Jahanian, “An extensible probe architecture for net-
work protocol performance measurement,” in Proceedings of the ACM
SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, 1998, pp. 215–227.

[30] The Tcpdump Group, “tcpdump,” http://www.tcpdump.org/.
[31] L. Deri, “ntop,” http://www.ntop.org/.
[32] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy, “The

architecture of CoralReef: an Internet traffic monitoring software suite,”
in Proceedings of the 2nd International Passive and Active Network
Measurement Workshop, Apr. 2001.

[33] A. Moore, J. Hall, E. Harris, C. Kreibich, and I. Pratt, “Architecture of
a network monitor,” in Proceedings of the 4th International Passive and
Active Network Measurement Workshop, April 2003.

[34] N. Brownlee, “Traffic flow measurement: Experiences with NeTraMet,”
RFC2123, http://www.rfc-editor.org/, March 1997.

[35] L. Deri, “nProbe,” http://www.ntop.org/nProbe.html.
[36] S. Waldbusser, “Remote network monitoring management information

base,” RFC2819. http://www.ietf.org/rfc/rfc2819.txt.
[37] N. Duffield, “A framework for packet selection and reporting,”

2005, Internet Draft. http://www.ietf.org/internet-drafts/
draft-ietf-psamp-framework-10.txt.

[38] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for IP
Flow Information Export,” Oct. 2004, RFC3917. http://www.ietf.org/rfc/
rfc3917.txt.

[39] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network
Management Protocol (SNMP),” May 1990, RFC1157. http://www.ietf.
org/rfc/rfc1157.txt.

[40] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
a stream database for network applications,” in Proceedings of the ACM
SIGMOD international conference on Management of data, 2003.

[41] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo,
“The CoMo White Paper,” 2004, http://como.intel-research.net/pubs/
como.whitepaper.pdf.

[42] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki,
and F. Tobagi, “Design and Deployment of a Passive Monitoring
Infrastructure,” in Proceedings of the Passive and Active Measurement
Workshop, Apr. 2001.

[43] P. Arlos, M. Fiedler, and A. A. Nilsson, “A distributed passive measure-
ment infrastructure,” in Proceedings of the 6th International Passive and
Active Network Measurement Workshop (PAM’05), 2005, pp. 215–227.

[44] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience,” Parallel
Computing, vol. 30, no. 7, July 2004.

[45] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, G. Rubini,
G. Tortone, and M. Vistoli, “GridICE: a Monitoring Service for Grid
Systems,” Future Generation Computer Systems Journal, vol. 21, no. 4,
pp. 559–571, Apr. 2005.

[46] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Distributed
Resource Discovery on PlanetLab with SWORD,” in Proceedings of the
1st Workshop on Real, Large Distributed Systems, Dec. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

