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ABSTRACT

Traditional bearing estimation techniques perform Nyquist-rate sam-
pling of the received sensor array signals and as a result they require
high storage and transmission bandwidth resources. Compressed
sensing (CS) theory provides a new paradigm for simultaneously
sensing and compressing a signal using a small subset of random
incoherent projection coefficients, enabling a potentially significant
reduction in the sampling and computation costs. In this paper, we
develop a Bayesian CS (BCS) approach for estimating target bear-
ings based on multiple noisy CS measurement vectors, where each
vector results by projecting the received source signal on distinct
over-complete dictionaries. In addition, the prior belief that the vec-
tor of projection coefficients should be sparse is enforced by fitting
directly the prior probability distribution with a Gaussian Scale Mix-
ture (GSM) model. The experimental results show that our proposed
method, when compared with norm-based constrained optimization
CS algorithms, as well as with single-measurement BCS methods,
improves the reconstruction performance in terms of the detection
error, while resulting in an increased sparsity.

1. INTRODUCTION

Direction of arrival (DOA) estimation is a classic problem in the
field of signal processing due to its numerous applications, from tar-
get tracking in a military environment to the localization of a mobile
user in a smart home or a museum. Among the most prominent high-
resolution techniques, MUSIC [1] detects frequencies in a signal by
performing an eigen-decomposition on the covariance matrix of the
received signal samples. The algorithm assumes that the number of
samples and frequencies are known, with an increasing accuracy as
more samples are acquired, but at the cost of a high computational
complexity. MVDR [2] is based on the minimization of the output
power, subject to the constraint that the gain in the steering direction
is unity. Classical MVDR beamforming techniques suffer from sig-
nal suppression in the presence of errors, such as the uncertainty in
the look direction and array perturbations.

In addition, all traditional DOA estimation techniques acquire
the source signals by sampling them at Nyquist’s rate, which may
result in high storage and bandwidth requirements in many modern
sensing systems. In a typical scenario, a number of sensors capture
signals transmitted from several sources. The received samples are
then combined to estimate the position of the sources, either by ex-
changing them using in-network communications among sensors or
by transmitting them to a fusion center (FC) with increased power
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and processing capabilities. In untethered sensor arrays, the amount
of transmitted information must be reduced as much as possible,
since the communication cost dominates the power consumption.

A critical observation is that the problem of DOA estimation in
an environment with a number of sensors and much fewer sources
presents an inherent sparsity in the space-domain. If we view the
monitored field as a dense grid with the sensors and sources placed
on the nodes of the grid, then each sensor can be associated with a
vector with all of its components being zero except for those corre-
sponding to the nodes of the grid where the sources are placed.

Compressed sensing (CS) is a framework introduced recently for
simultaneous sensing and compression enabling a potentially signif-
icant reduction in the sampling and computation costs at a sensing
system with limited capabilities [4, 5]. Several CS methods have
been proposed providing efficient sparse representations and recon-
struction for the single-measurement vector (SMV) case. In particu-
lar, a signal having a sparse representation in a transform basis can
be reconstructed from a vector containing a small number of projec-
tions onto a second, measurement basis that is incoherent with the
first one. The property of asymmetry of the CS-based approaches is
also a crucial point for the design of real-time sensing systems for
DOA estimation, since the compression part is of very low complex-
ity (simple linear projections), while the main computational burden
is on the decompression part where increased processing capabilities
and computational resources are available.

On the other hand, the problem of sparse representation and re-
construction in the case of multiple-measurement vectors (MMV) in
an over-complete dictionary is motivated by several inverse prob-
lems that arise in distinct fields, such as in astronomy [6] and medical
imaging [7]. The corresponding noisy CS reconstruction problem is
stated as follows:

G=%W+H, &)
where G = [q1,...,0k] € RM*K {5 the MMV matrix, ® =
[61,...,6n] € RM*N (M < N)is a random measurement ma-
trix, W = [w1,...,Wx] € RV*K is the weight vectors matrix

and H = [f1,...,7k] € RM*¥ is the noise matrix. Each sparse
weight vector is the transform-domain equivalent of the correspond-
ing original time-domain signal, ﬁ = Ww;,i=1,..., K, where
the columns of ¥; € RY*¥ correspond to the transform basis func-
tions. In general, each ﬁ is considered sparse on a different basis ¥;.
For K = 1, the problem is reduced to the standard CS reconstruction
using a single measurement vector.

Several CS methods have been introduced recently that give an
estimate of W satisfying (1) by solving a norm-based constrained
optimization problem [8, 9, 10]. On the other hand, the work pre-
sented in [11] develops a reconstruction method in a Bayesian frame-
work, by modelling the prior belief that the majority of the rows of
‘W will be zero, due to the assumption for a joint sparsity structure,
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by employing a zero-mean Gaussian distribution on the norm of each
individual row. The Bayesian framework provides the critical ad-
vantage that we obtain not only a point estimate of the signal, as the
norm-based methods do, but also a confidence interval, which can be
employed to select appropriately the future measurements such as to
reduce the uncertainty [12].

Often, we are interested in reconstructing a single original signal
from multiple measurements. This is the case in DOA estimation
using a sensor network, where we try to reconstruct the vector of
sources’ positions using multiple observations of it. For this purpose,
in this paper we generalize our related work [13] for the case of
multiple measurements.

The paper is organized as follows: In Section 2, the statistical
signal model is presented, while in Section 3 the proposed Bayesian
CS reconstruction algorithm using multiple measurement vectors is
described. In Section 4, we compare the performance of the pro-
posed approach with other state-of-the-art CS recovery methods. Fi-
nally, we conclude in Section 5.

2. STATISTICAL SIGNAL MODEL

Although in the present DOA estimation scenario we consider a 2-D
space, the procedure is generalized to a higher dimensional space in
a straightforward way. In our setting we consider a field consisting of
a linear array of K sensors and L sources. Each sensor receives a su-
perposition of the time-domain source signals, f(t) = Zle fi(d).
Given these received signals, the goal is to determine the DOA of
each source. We also assume that the sensor positions are known
in advance, {fl; = [x:,v:]7 }/<1. The i-th sensor receives a time-
delayed and attenuated version of the superimposed source signal
f(t), given by:

wi(t):af(t—i—Ai(@f)—(R/c)) , )
where « is the attenuation, 0 ¢ are the unknown azimuths and A;(6y)
is the relative time-delay at the ¢-th sensor of the signal transmitted
at fy. In the following, we ignore the attenuation and assume that
the % term is known, or constant across the array (far-field assump-
tion), where R is the sensor-source range and c is the speed of the
propagating wave in the medium.

Motivated by a recent work [ 14], the azimuth space is discretized
by forming a finite set of angles B = {601,02,...,0x} where N de-
termines the resolution. Let b denote the sparse vector, which selects
elements from B. A non-zero component gj > 0 indicates the pres-
ence of a source at an azimuth of 6;. For L = 1 the sparsity pattern
vector b has only one non-zero entry and thus, this is the case of the
highest possible sparsity.

In particular, the angle space is discretized in 180 points, which
corresponds to a resolution of 1 degree. Doing so, the sparsifying
transform matrices {¥;}7<; will be of dimension P x 180 (P >
180), where P is the number of data samples per source, with their
columns containing the received time-delayed signals from each po-
tential source location (elements of 3). Besides, the i-th sensor is as-
sociated with a distinct random measurement matrix ®; € RMx*P R
where M is the number of measurements per sensor. The bearing
sparsity pattern vector b is related linearly to the received signal at
the i-th sensor via the expression w; = Wb . The corresponding set
of measurement vectors for the K sensors in the general noisy case
is given by:
where ®; = ®;¥; and 7; € R™ is a noise vector with unknown
variance 072,. In our case, the set {®;}< contains matrices with in-
dependent and identically distributed (i.i.d.) Gaussian entries. Such
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matrices are incoherent with any fixed transform matrix ¥ with high
probability (universality property) [5]. Also notice that this model
differs from the one given by (1) in that distinct measurement matri-
ces are used on a single weight vector, instead of a matrix.

Thus, given the matrix G = [g1, ..., §x| containing the mul-
tiple measurement vectors and the measurement matrices {®;}7;
the reconstruction problem reduces to estimating the sparse vector
b. In [6], this problem is solved by employing a norm-based con-
strained optimization approach. The reconstruction can be also re-
cast as an SMV problem and solved with one of the many norm-
based CS approaches as follows:

b=argmin|b]; st ||G—®WH|<e, )

where ¥ = [¥q,..., \IIK}T, ® = diag(®1,...,Px) and € is the
noise level.

On the other hand, when the inversion of CS measurements is
treated from a Bayesian perspective, then, given the prior belief that
w; is L-sparse in basis W, (that is, only L of b’s components have
“significant” amplitude) and the MMV matrix G, the objective is to
formulate a posterior probability distribution for b. This improves
the accuracy over the point estimate given by a norm-based approach
and provides confidence intervals (error bars) in the estimation of
DOA’s, which can be used to guide the optimal design of additional
CS measurements with the goal of reducing the estimation uncer-
tainty.

3. MULTIPLE-MEASUREMENT BCS RECONSTRUCTION
USING GSM PRIORS

In this Section, we extend our work in [13] by incorporating the set
of multiple measurement vectors in the reconstruction of b. Under
the assumption of zero-mean Gaussian noise vectors with the same
variance 0727, we obtain the following Gaussian likelihood model for
the measurement vector g;, 1 = 1,..., K,

e - 1 - &7
p(@lb, o) = (2mog) M2 exp(— g — ®ibll) . 5)
n

As mentioned above, the goal is to seek a full posterior density func-
tion for b and ai. The proposed extension consists in modeling di-
rectly the prior distribution of b with a heavy-tailed density, which
promotes its sparsity, since it is suitable for modeling highly impul-
sive signals. In particular, we model the prior distribution of b by
means of a Gaussian Scale Mixture (GSM).

Definition 1 A vector b is called a GSM (in RY) with underlying
Gaussian vector V iff it can be written in the form b= VAV,
where A is a positive random variable and V= Vi, Va, ..., VN)
is a zero-mean Gaussian random vector, independent of A, with co-
variance matrix .
The assumption of independence yields a diagonal covariance ma-
trix & = diag(o},...0%). From Definition 1, the density of b
conditioned on the variable A is a zero-mean multivariate Gaussian
given by,
eXp(—%l_)T(AE)flg)
(2m)N2[AZ[1/2
where | - | denotes the determinant of a matrix. From (6), we obtain
the following simple expression for the maximum likelihood (ML)
estimate of the variable A,

p(blA) = 6)

-

Ab) = (b"=""b)/N . 7)



Assuming that the noise variance Uf,, the value of A and the co-
variance matrix 3 have been estimated, given the CS measurement
vector g; and the matrix ®;, the posterior density of b is given by
Bayes’ rule
e oy
p(gi‘bv Jn)p(b|Av z)
p(GilA, 3, 0F)

which is a multivariate Gaussian distribution with a mean vector ji;
and a covariance matrix P;, given by

p(bl7i, A, 2, 07) = : ®)

o, P:®] g, ©)
(o,?®f @, +M)"i=1,....K (10)

fi =
P, =

where M = diag((Ao?)™", ..., (Ac%)™"). The presence of the
scale parameter A in the proposed GSM-based BCS method pro-
vides an additional degree of freedom, which may result in a more
accurate modeling of the true sparsity of the signal of interest, as
well as the noise component, when compared with previous BCS
approaches [12, 15], as the experimental results reveal.

The problem of estimating the sparse vector b reduces to estimat-
ing the unknown model parameters A, 3, 072,, by combining type-11
ML estimations from the K measurement vectors. For this purpose,
we estimate the unknown parameters o, {o5 } I, iteratively by em-
ploying a modified version of the marginal log-likelihood function
used in [13]. In particular, we have to incorporate explicitly the in-
formation provided by the matrix G. We do this by summing up the
contributions of the individual measurement vectors g;, resulting in
the following log-likelihood function:

K
L(oy, {o;°1%0) = Y log[p(GilA, o7, {05 °1)20)]
i=1
1 K K
= —5 [KMlog(2m) + ) Jlog(ICil) + Y 4 C7'Gi] ,(1D)

1=1 i=1

2

where C; = %I + ‘i’,E@ZT It is clear from (11) that the scaling
factor of 1/A plays an important role in the estimation process, since
it controls the heavy-tailed behavior of the diagonal elements of M
and consequently of the covariance matrices {Pi}fil, and thus, the
sparsity of the estimated vector b which depends on the correspond-
ing mean vectors { /l'i}fil, as we will see in the subsequent analysis.
The addition and deletion of candidate basis functions (columns of
{<I>i}iK=1) is performed with the goal to monotonically increase the
marginal likelihood. Following a similar incremental procedure as
the one used in [13], the computational cost for updating the most
“expensive” quantities of (11), namely the determinants {|C;|}/,
and the inverses {C} 1K || is reduced significantly.

After some algebraic manipulation, we can see that the marginal
likelihood is decoupled in two terms, as follows:

Loy, {0y }11) = Lo, {o) 2}l iz5) 1057, (12)

where the first term depends on all except for the j’-th variance,
while the second term depends only on the j'-th variance. This de-
coupling also accelerates the updating of (11). In particular, l(aj_,Q)
is given by:

K 2
—oy 1 —2 —2 a;i
lo;7) = 5[;(1%(%/ ) —log(o;:™ +5i,50) + U;zT”)}
(13)
where s; ;= &;ij,c;ij,éi,j, and g; ;1 = q”sfj/c;ij,gi, with gzgi,j/

denoting the j ’_th column of <i>i and C; _,/ is equal to C; with the

contribution of j'-th basis vector (Z), 4+ removed.
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3.1. Estimation of the sparse vector b

The fact that all covariance matrices {P;}f<; depend on the same
model parameters (072]7 M) means that the algorithm will converge
to a common set of indices indicating the significant basis vectors
which are used from each measurement matrix &;.

Each iteration of the proposed algorithm results in KX multivari-
ate Gaussians with parameters (ii;, P;) given by (9)-(10) by em-
ploying the model parameters estimated by maximizing (13). Work-
ing in a Bayesian framework, we are interested in combining these
Gaussians in a single “best” representative, which will be then con-
sidered to be the estimation of the sparse vector b. For this purpose,
a clustering method exploiting the statistical assumptions made in
this work must be used. The standard k-means techniques exploit
only first-order moments and they also assume that each input is a
sample drawn from one of £ distributions (here Gaussians). How-
ever, in the proposed method we have to incorporate the information
of the second-order moments (covariance matrices), since they rep-
resent the heavy-tailed behavior of b, which is crucial for achieving
an increased sparsity and also we are interested in clustering a set of
distributions (and not a set of samples) into a single best representa-
tive.

For this purpose, we employ a differential entropic clustering
(DEC) of the K multivariate Gaussians [16] and the best representa-
tive (fi*, P*) is defined as the multivariate Gaussian that minimizes
the total differential entropy with respect to the /' Gaussians. Thus,
at the end of each iteration the estimated value of b is defined as

b= i, with

K
A = i, PP =Y ci(Pi+ (i — ") (i — i*)") (14)
=1

i=1

where ¢; are weights, which we choose to be equal to 1/K. It is
also important to note that the update of A from (7) is carried out by
substituting b with the estimated i*.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed MMV
reconstruction scheme (M-BCS-GSM) with the SMV methods BCS,
BCS-GSM [12, 13], as well as with some state-of-the-art norm-
based optimization schemes: 1) Gradient Projection for Sparse Re-
construction (GPSR), 2) Basis Pursuit (BP), 3) Stagewise Orthogo-
nal Matching Pursuit (StOMP), 4) ¢;-norm minimization using the
primal-dual interior point method (L1EQ-PD) and 5) Smoothed ¢o
(SLO)".

The time delay between each potential source position and the
sensor is computed for ¢ = 340 m/s with a sampling frequency
fs = 500 Hz, while the source signals are generated by drawing
512 samples from a Gaussian distribution A/(0,1). Besides, the
sensor array consists of 5 sensors placed at a distance of 10° (on
the grid) from each other. The SNR at the leftmost sensor is equal
to 20 dB and it reduces at 1.5 dB from sensor to sensor as we are
moving on the right side of the array. We illustrate the efficiency
of the proposed method for estimating DOA’s in two test cases: 1)
presence of a single source placed at 54° and 2) presence of two
sources with small angular separation at 41° and 44°, respectively,
in order to evaluate the discrimination capability of the several CS

IFor the implementation of BCS and methods 1)-5) we used the MAT-
LAB codes included in the packages: http://sparselab.stanford.
edu/, http://www.lx.it.pt/ mtf/GPSR, http://www.acm.
caltech.edu/llmagic, http://ee.sharif.ir/~SLzero.



reconstruction methods. In each case the results are averaged over
100 Monte-Carlo runs for a varying number of measurements per
sensor, M € {10, 15,20, 25, 30}.

Fig. 1(a) shows the average number of successful source detec-
tions of the source at 54°, where a detection is characterized as suc-
cessful if it recovers all the sources. As we can see, the proposed
method results in the highest detection performance, which increases
as M increases. Its “centralized” SMV analogue (BCS-GSM) along
with the norm-based methods GPSR and L1EQ-PD also perform
well, but by employing many more basis functions, as shown in
Fig. 1(b). This significant increase of the sparsity achieved by the
proposed method is very important for resource preservation in a
sensor network application.
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Fig. 1. DOA estimation performance for one source (54°).

Fig. 2(a) shows the average number of successful source detec-
tions for the case of two sources. As in the single source case, the
proposed method results in the highest detection performance for
M > 15, with the BCS-GSM and L1EQ-PD methods following
closely. However, as Fig. 2(b) shows, the proposed method results
again in an important increase of the sparsity (e.g., at the order of
80% for M = 30 in comparison with the BCS-GSM and at an even
higher order when compared with the other methods).
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Fig. 2. DOA estimation performance for two sources (41°, 44°).
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5. CONCLUSIONS AND FUTURE WORK

In this work, we described a method for CS reconstruction in a
Bayesian framework using multiple measurement vectors, generated
by projecting a single (sparse) vector on multiple measurement ma-
trices. The experimental results revealed a critical property of the
proposed M-BCS-GSM approach when compared with other CS re-
construction methods. In particular, we showed that the M-BCS-
GSM implementation achieves a higher reconstruction performance,
while using much fewer basis functions and thus, resulting in an in-
creased sparsity.

In the present work, we did not make any assumption for the

probability density function of the scaling factor A of the GSM. In
future work, we are interested in posing a heavy-tailed distribution
on the random variable A. In particular, when A follows an a-stable
distribution, then, the GSM is reduced to a sub-Gaussian model. We
expect that the characteristic exponent which appears in the a-Stable
distribution will provide further control on the sparsity of the weight
vector.
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