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ABSTRACT

The ease of image storage and transmission in modern applications
would be unfeasible without compression, which converts high-
resolution images into a relatively small set of significant transform
coefficients. Due to the specific content of many real-world images
they are highly sparse in an appropriate orthonormal basis. The
inherent property of compressed sensing (CS) theory working si-
multaneously as a sensing and compression protocol, using a small
subset of random incoherent projection coefficients, enables a po-
tentially significant reduction in the sampling and computation costs
of images favoring its use in real-time applications which do not
require an excellent reconstruction performance. In this paper, we
develop a Bayesian CS (BCS) approach for obtaining highly sparse
representations of images based on a set of noisy CS measurements,
where the prior belief that the vector of projection coefficients
should be sparse is enforced by fitting directly its prior probability
distribution by means of a Gaussian Scale Mixture (GSM). The ex-
perimental results show that our proposed method, when compared
with norm-based constrained optimization algorithms, maintains the
reconstruction performance, in terms of the reconstruction error and
the PSNR, while achieving an increased sparsity using much less
basis functions.

1. INTRODUCTION

During the last years, image data increase at an explosive rate due
to the increased capabilities of modern digital imaging devices. This
huge amount of data necessitates the development of efficient com-
pression techniques and standards [1, 2]. However, there are cases
where even higher compression rates would suffice to carry out spe-
cific tasks, such as image classification and retrieval, where a high-
quality reconstruction of the still images is not necessary.

Several studies [3] have shown that many natural images result
in a highly sparse representation by projecting on localized orthonor-
mal basis functions (e.g., wavelets, sinusoids). The traditional com-
pression techniques exploit only a small subset of large-amplitude
transform coefficients. However, this is an inherently wasteful pro-
cess (in terms of both sampling rate and computational complexity),
since one gathers and processes the entire image even though an ex-
act representation is not required explicitly.

Compressed sensing (CS) is a framework for simultaneous sens-
ing and compression [4, 5] enabling a potentially significant reduc-
tion in the sampling and computation costs at a sensing system with
limited capabilities. In particular, a signal having a sparse repre-
sentation in a transform basis can be reconstructed from a small set
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of projections onto a second, measurement basis that is incoherent
with the first one. Thus, CS provides a simple compression scheme
with low computational complexity, which is asymmetrical, with
the compression part consisting of simple linear projections, while
the main computational cost is on the decompression part where in-
creased computational and storage resources are available.

The majority of previous CS methods for sparse representation
and reconstruction of a signal in an over-complete dictionary solve
constraint-based optimization problems. Several recent studies ex-
ploit the sparsity of images using CS to increase the compression
rates [6, 7]. Recently, a Bayesian CS (BCS) framework was intro-
duced [8] resulting in certain improvements when compared with
norm-based CS methods, by employing a hierarchical model as a
sparsity-enforcing prior distribution on the transform coefficients
vector. In the present work, we replace this hierarchical prior by
modeling directly the coefficients vector using a Gaussian Scale
Mixture (GSM). The experimental results reveal that this approach
yields a significantly sparser representation of several images, which
is our primary objective, while maintaining a high reconstruction
performance.

The paper is organized as follows: in Section 2, we briefly re-
view the main concepts of BCS, extend the standard BCS approach
by incorporating a GSM as the sparsity-enforcing prior model and
discuss its potential advantages when compared with constraint-
based optimization methods for obtaining even sparser representa-
tions of images with distinct content in an over-complete dictionary.
In Section 3, we compare the performance of the proposed approach
in terms of the degree of sparsity and the reconstruction quality with
several other CS recovery methods, while we conclude in Section 4.

2. BAYESIAN CS RECONSTRUCTION

Let Ψ be a N × N matrix, whose columns correspond to the trans-
form basis functions. Then, a given image �f ∈ R

N (reshaped as a
column vector) can be represented as �f = Ψ�w, where �w ∈ R

N is
the weight vector. Obviously, �f and �w are equivalent representations
of the image, with �f being in the space domain and �w in the (trans-
form) Ψ domain. As mentioned above, for many natural images the
majority of the components of �w have negligible amplitude. In par-
ticular, �f is L-sparse in basis Ψ if the corresponding weight vector
�w has L non-zero components (L � N ). In a real-world scenario
�f is not strictly L-sparse, but it is said to be compressible when the
re-ordered components of �w decay at a power-law.

Consider also an M × N (M < N ) measurement matrix Φ
(the over-complete dictionary) with its rows being incoherent with
the columns of Ψ. For instance, let Φ be a Hadamard matrix or
contain independent and identically distributed (i.i.d.) Gaussian en-
tries. Such matrices are incoherent with any fixed transform matrix
Ψ with high probability (universality property) [5].

If �f is compressible in Ψ, then it is possible to perform directly
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a compressed set of measurements �g, resulting in a simplified image
acquisition system. The original image �f and the CS measurements
�g are related through random projections, �g = ΦΨT �f = Φ�w ,

where Φ = [�φ1, . . . , �φM ]T and �φm ∈ R
N is a random vector with

i.i.d. components. Thus, a sparse representation of �f from �g reduces
to estimating a weight vector �w with as few non-zero components as
possible, which then can be used for reconstructing �f .

Most of the recent CS literature has concentrated on constrained
optimization-based methods for sparse signal representation. For in-
stance, in a real-world scenario with CS measurements corrupted by
additive noise �η with unknown variance σ2

η , �g = Φ�w + �η, the �1-
norm minimization approach seeks a sparse vector �w by solving the
following optimization problem,

�̃w = arg min
�w

‖�w‖1 , s.t. ‖�g − Φ�w‖∞ ≤ ε , (1)

where ε is the noise level (‖�η‖2 ≤ ε). The main approaches for
the solution of such optimization problems include linear program-
ming [9] and greedy algorithms [10], resulting in a point estimate of
the weight vector �w.

On the other hand, when the CS inversion is treated from a
Bayesian perspective, then given a prior belief that �w is sparse in
basis Ψ and the set of CS measurements �g, the objective is to for-
mulate a posterior probability distribution for �w. This improves the
accuracy over a point estimate and provides confidence intervals (er-
ror bars) in the approximation of �f , which can be used to guide the
optimal design of additional CS measurements with the goal of re-
ducing the uncertainty in reconstructing �f .

Under the common assumption of a zero-mean Gaussian noise
we obtain the following Gaussian likelihood model,

p(�g|�w, σ2
η) = (2πσ2

η)−M/2 · exp
(− 1

2σ2
η

‖�g − Φ�w‖) . (2)

Assuming that Φ is known, the quantities to be estimated, given �g,
are the sparse vector �w and the noise variance σ2

η . This is equivalent
to seeking a full posterior density function for �w and σ2

η . Thus, given
�g and assuming the Gaussian likelihood model in (2), it is straight-
forward to see that the solution of (1) corresponds to a maximum a
posteriori (MAP) estimate for �w.

In a probabilistic framework the assumption that �w is sparse is
formalized by modeling its distribution using a sparsity-enforcing
prior. A common choice of this prior is the Laplace density [11].
However, its usage raised the problem that the Bayesian inference
may not be performed in closed form, since the Laplace prior is not
conjugate1 to the Gaussian likelihood model. The treatment of the
CS measurements �g from a Bayesian viewpoint, while overcoming
the problem of conjugateness, was introduced in [8] by employing a
hierarchical model, which had similar properties as the Laplace but
allowed convenient conjugate-exponential analysis [12].

2.1. BCS reconstruction using Gaussian scale mixture priors

In the present study, the estimation of �w is also performed in a
Bayesian framework. However, in contrast to the previous BCS
work, our proposed method consists in modeling directly the prior of
�w with a heavy-tailed distribution, which promotes its sparsity, since
it is suitable for modeling highly impulsive signals. This is motivated
by the fact that the content of many natural images is often well
structured (e.g., containing edges), and thus �w can be considered

1In probability theory, a family of prior probability distributions p(s) is
said to be conjugate to a family of likelihood functions p(x|s) if the resulting
posterior distribution p(s|x) is in the same family as p(s).

as highly impulsive, since it is characterized by a large number of
small-amplitude components and a small number of large-amplitude
components. For this purpose, we replace the approximate hierar-
chical process by modeling directly the prior distribution of �w by
means of a Gaussian Scale Mixture (GSM).
Definition 1 A vector �w is called a GSM (in R

N ) with underlying
Gaussian vector �G iff it can be written in the form �w =

√
A �G,

where A is a positive random variable and �G = (G1, G2, . . . , GN )
is a zero-mean Gaussian random vector, independent of A, with co-
variance matrix Σ.
In the subsequent analysis we consider that the components of �G
are also independent, yielding a diagonal covariance matrix Σ =
diag(σ2

1 , . . . σ2
N ). From definition 1, the density of �w conditioned

on the variable A is a zero-mean multivariate Gaussian given by,

p(�w|A) =
exp(− 1

2
�wT (AΣ)−1 �w)

(2π)N/2|AΣ|1/2
, (3)

where |· | denotes the determinant of a matrix. From (3), we obtain
the following maximum likelihood (ML) estimate of the variable A,

Â(�w) =
(
�wT Σ−1 �w

)
/N . (4)

Assuming that the noise variance σ2
η , the value of A and the covari-

ance matrix Σ have been estimated, given the CS measurements �g
and the matrix Φ, the posterior of �w is given by the Bayes’ rule, com-
bining the likelihood and the prior density functions and exploiting
the independence of A and �G, as follows:

p(�w|�g, A,Σ, σ2
η) =

p(�g|�w, σ2
η)p(�w|A,Σ)

p(�g|A,Σ, σ2
η)

, (5)

which is a multivariate Gaussian distribution with a mean vector �μ
and a covariance matrix P, given by,

�μ = σ−2
η PΦT�g , (6)

P = (σ−2
η ΦT Φ + M)−1 , (7)

where M = diag((Aσ2
1)−1, . . . , (Aσ2

N )−1). Working in this
framework, the estimated vector �w is equal to the most probable
value of the above multivariate Gaussian model, that is, �w ≡ �μ.

The critical advantage of a BCS approach, when compared with
norm-based optimization methods in the processing of images, is
that it fits better the true heavy-tailed statistics of the sparse vector
and the noise component. In contrast, the norm-based optimization
approaches consider only the noise level and not its actual distribu-
tion. For this purpose, a BCS algorithm for image data is expected
to result in an increased sparsity, as our experimental results reveal.
This performance could be enhanced by employing the proposed
GSM-based BCS method, since it provides an additional degree of
freedom through the scale parameter A, and thus, it ends up with a
more accurate modeling of the true sparsity of the image of interest.

The problem of estimating the sparse vector �w reduces to esti-
mating the unknown model parameters A,Σ, σ2

η , by performing a
type-II ML method. By noting that (7) can be re-written in the fol-
lowing equivalent form, A−1 P = P̃ =

(
Aσ−2

η ΦT Φ + Σ−1
)−1

,

we can estimate the unknown parameters σ2
η , {σ2

i }N
i=1 iteratively by

maximizing the following marginal log-likelihood function based on
the matrix P̃, with respect to the unknown parameters:

L(σ2
η, {σ−2

i }N
i=1) = log[p(�g|A, σ2

η, {σ−2
i }N

i=1)]

= −1

2

[
M log(2π) + log(|C|) + �gT C−1�g

]
, (8)

where C =
σ2

η

A
I + ΦΣΦT . By comparing (8) with the marginal

likelihood model in [13] we notice that our proposed model is a
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scaled version of the previous hierarchical model by a factor of 1/A.
This factor plays an important role in the estimation process, since
it controls the heavy-tailed behavior of the diagonal elements of M
and consequently of the covariance matrix P, and thus the sparsity
of the estimated vector �w ≡ �μ. An incremental algorithm is used
for the addition and deletion of candidate basis functions (columns
of Φ) to monotonically increase the marginal likelihood (8).

As it was mentioned before, one of the advantages of BCS is
that it provides a measure of uncertainty in the estimation of the
original image �f . This can be further employed to design a mea-
surement matrix Φ adapted to the information content of the sparse
vector �w, by selecting the next projection �φM+1 with the goal of
reducing the uncertainty of �f . This is impossible with the previous
norm-based approaches. Using the differential entropy minimiza-
tion criterion, the next optimal projection is selected by performing
an eigen-decomposition of P (cf. (7)) and selecting �φM+1 to be the
eigenvector corresponding to the largest eigenvalue.

3. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed sparse
representation scheme (BCS-GSM) with the BCS method [8], as
well as with the norm-based optimization schemes BP [9] and
StOMP [14] (combined with a CFAR thresholding)2, that achieved
the best reconstruction performance on three 256 × 256 (noise-
free) images of distinct content shown in Fig. 1, as well as on
noisy versions of them by adding zero-mean Gaussian noise with
SNR = 5, 10 dB. Each image is transformed in the 2-D Discrete
Wavelet Transform (DWT) domain [3], by decomposing it in 6
scales using the Daubechies’ wavelet with 4 vanishing moments.
The CS measurements �g are acquired by applying partial Hadamard
ensemble matrices Φ on the wavelet coefficients vector �w.

Fig. 1. Test images.

In the following, we mainly focus on comparing the sparsity
level achieved by each method, but also in conjunction with the cor-
responding reconstruction error. Fig. 2 shows the PSNRs between
the reconstructed noise-free/noisy images and the original (noise-
free) “Indor2” image, using the BCS-GSM, the linear reconstruction
(inverse DWT) which achieves the best performance, and the se-
lected norm-based CS methods for the two SNR values as a function
of the number of measurements, where the number of CS measure-
ments is equal to the sum of a portion α of the detail coefficients
of the decomposition levels 3 − 6, plus the coarse-scale approxima-
tion coefficients. The value of α varies in {0.4:0.2:1}. As it can be
seen, the proposed BCS-GSM achieves similar reconstruction per-
formance with the other four methods for the same number of mea-

2For the implementation of BCS, BP and StOMP we used the code
included in the SparseLab package that is available online at http://
sparselab.stanford.edu/.

surements, with a decrease of PSNR which is at most ∼1dB in the
noise-free case, while there is no difference in the two noisy cases.

Most importantly, Fig. 3 shows the CS ratio for each one of the
four CS methods, which we define as the ratio of the number of
measurements M over the number of non-zero components of �w
(sparsity) returned by each algorithm. The higher the CS ratio the
higher the sparsity is for a fixed value of M . We can see that the
proposed BCS-GSM method results in a much sparser representa-
tion of the original image as M increases, by reducing the number
of significant basis functions by as much as 50%. Thus, Figs. 2-
3 indicate that the proposed scheme could reduce significantly the
storage requirements of a large image database, while maintaining a
high reconstruction quality. This is very significant in applications
such as image classification and retrieval, which is a subject of our
ongoing research.

Finally, Fig. 4 shows the PSNR and CS ratio values for the BCS-
GSM and BCS methods along with their adaptive versions applied
on “Indor2” image with M varying in the interval [2513, 2611].
Specifically, both of the adaptive versions start with M = 2513 CS
measurements and in each iteration M increases by one. Accord-
ingly, the columns of Φ are augmented with the eigenvector cor-
responding to the largest eigenvalue of the current matrix P. The
adaptive implementation achieves the same reconstruction perfor-
mance in terms of the PSNR value for both methods, whereas the
CS ratio increases, which is equivalent to a more efficient sparse
representation (3.03% for the BCS-GSM method on average).
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Fig. 2. PSNRs for “Indor2” image as a function of the number of CS
measurements for SNR=5,10 dB.

Table 1 shows the PSNRs and CS ratios of the four CS meth-
ods for the other two test images, with α = 0.6 resulting in M =
2611. As for the “Indor2” image, the proposed BCS-GSM approach
achieves a significantly increased sparse representation for images
with distinct contents (with a maximum increase of sparsity over
50%), while yielding the same reconstruction performance in the
noise-free and the two noisy cases.

4. CONCLUSIONS AND FUTURE WORK

In this work, we described a method for CS reconstruction based
on a Bayesian framework. We extended a recent work [8] by re-
placing the hierarchical prior model with a GSM, which models di-
rectly the weight vector with a heavy-tailed distribution that enforces
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BP StOMP BCS BCS-GSM Linear
IMAGE PSNR CS ratio PSNR CS ratio PSNR CS ratio PSNR CS ratio PSNR

Noise-free 29.27 0.68 29.16 1.85 29.04 3.63 28.35 5.63 29.60
Indor4 10 dB 7.08 0.68 7.09 1.87 7.09 2.05 7.08 5.49 7.09

5 dB 6.15 0.67 6.15 2.45 6.15 4.31 6.14 5.95 6.15
Noise-free 25.43 0.67 25.34 2.11 25.35 2.24 25.32 4.13 25.61

Nemasup 10 dB 9.95 0.68 9.96 2.92 9.96 1.90 9.95 4.30 9.96
5 dB 5.57 0.68 5.56 2.51 5.57 2.01 5.56 4.15 5.57

Table 1. Performance comparison in terms of PSNR and CS ratio values for the reconstruction of “Indor4” and “Nemasup” images (noise-
free+noisy versions) with α = 0.6 (M = 2611).
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Fig. 3. CS ratios of the CS-based recovery methods for “In-
dor2” image as a function of the number of CS measurements for
SNR=5,10 dB.

its sparsity. The experimental results revealed a critical property of
the proposed BCS-GSM approach when compared with norm-based
CS reconstruction methods. In particular, we showed that the BCS-
GSM implementation employs much fewer basis functions and thus,
results in a more efficient sparse representation, while maintaining a
comparable reconstruction performance.

In the present work, we did not make any assumption for the
probability density function of the scaling factor A of the GSM. As a
future work, we intend in posing a heavy-tailed distribution on A. In
particular, when A follows an α-Stable distribution, then, the GSM
is reduced to a sub-Gaussian model. We expect that the characteris-
tic exponent which appears in the α-Stable distribution will provide
further control on the sparsity of the weight vector.
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