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Abstract—This paper exploits recent developments in sparse
approximation and compressive sensing to efficiently perform
localization in wireless networks. Particularly, we re-formulate
the localization problem as a sparse approximation problem using
the compressive sensing theory that provides a new paradigm for
recovering a sparse signal solving an /; minimization problem.
The proposed received signal strength-based method does not
require any time specific/propriatery hardware since the location
estimation is performed at the Access Points (APs). The experi-
mental results show that our proposed method, when compared
with traditional localization schemes results in a better accuracy
in terms of the mean localization error.

I. INTRODUCTION

Recently, the demand for wireless communications has
grown tremendously. Location and mobility management are
critical issues for providing a seamless and ubiquitous com-
puting environment for mobile users. The ability of a mobile
user to determine its position through automatic means is
recognized as an essential capability. This determination of the
physical position is known as localization or location-sensing.

Certain localization techniques require the mobile node to
compute its own position. The mobile node perceives signal
strength from the APs and by applying a mathematical model
determines its own location. In contrast, some systems require
the object to periodically broadcast to allow the external
infrastructure to locate it [1]. In cases where the localization
takes place in the mobile user’s device, the need of special
software/driver/application in the mobile device for the data
collection is essential. This leads to several problems. At first,
devices that are not user serviceable, like wireless IP phones,
can not be tracked unless the manufacturer has pre-installed
the software and the device’s processing power is adequate.
Second, in an emergency situation, the user may not be able
to install the proper software in order to take advantage of the
tracking service.

The popularity and the low cost of IEEE 802.11 networks
make them ubiquitous and therefore the majority of localiza-
tion systems use signal strength measurements. Most of the
signal-strength based localization systems can be classified
into two categories, namely the distance prediction-based and
the signature or map-based.
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Distance prediction-based systems use a prior theoretical or
empirical radio propagation model to formulate the relation-
ship between the signal strength and the position. The signal
propagation between the wireless device and the AP suffers
from the connectivity of line-of-sight (LOS), non line-of-sight
(NLOS), and the shadow fading due to the complicated in-
door environments. Therefore, using a theoretical propagation
model to characterize the distance between the emitter and the
receiver may result in high errors.

Map-based localization systems create a radio map that
represents the physical space. They use various statistical
signal strength techniques in order to find the optimal estimate
of the position [2]. The K-nearest neighbors (KNN) method
computes the K position estimations with the lower distances
in the signal space. The estimated position of the user is
the average of the coordinates of K points [3]. The Bayesian
classification method is a probabilistic approach that computes
the conditional distribution of a certain possible position
of the mobile user given the runtime measurements. This
method searches for the maximum likelihood estimator of
the position [4]. Map-based systems are fairly accurate as
they take advantage of the radio propagation characteristics
of the physical space, but they are time consuming due to the
required training phase to construct the signature map [5]-[8].

Unfortunately, most of the existing localization solutions
are computationally inefficient as they require the exchange
of a large number of data between the receiver and the
transmitter. Moreover, as the node receives this amount of data,
the administrative overhead to manage and maintain hardware
and software is high. Consequently, they are frequently slow,
inefficient, high-dimensional and cost-ineffective.

In order to overcome these problems, in this work we re-
formulate the localization problem employing recent advances
in sparse approximation and compressive sensing (CS) theory
to introduce a fundamentally different approach that is effi-
cient, linear and cost-effective. In this paper, we use the signal
perceived at the APs and we propose a signal strength-based
localization scheme with no pre-phases. We chose to collect
measurements at the APs and to perform the localization at
a central unit because in spite of improvements in energy
consumption, battery capacity still grows slowly and power
remains an important challenge in mobile computing.

The main idea is that under specific conditions, the localiza-
tion estimates can be obtained by searching for the sparsest
solution of an under-determined linear system of equations



that arises in localization. Particularly, we use a grid-based
representation of the physical space where each cell of the grid
corresponds to a position of the physical space. The key idea
is that the mobile location is sparse over the ground plane. A
vector is called sparse if it contains a small number of non-zero
values in a certain domain. It has been proven that minimizing
the ¢1-norm can recover the sparse vectors [9], [10].

Recently, independently of our work, another sparse approx-
imation approach to mobile localization has been proposed.
The approach in [11] differs from our proposed method in
that the localization algorithm is performed at the device of
the mobile user and a two-phase signal strength CS-based
algorithm is used to improve the final estimation.

The paper is organized as follows: In Section II, we present
the necessary CS background, while in Section III we in-
troduce our localization framework using the received signal
strength model and CS theory. In Section IV, we compare the
performance of the proposed method with other localization
techniques run at the AP, while we conclude in Section V.

II. COMPRESSIVE SENSING BACKGROUND

Compressive sensing exploits sparsity to acquire high-
dimensional signals using a small number of linear measure-
ments. Denote the discrete-time signal ¢, an N x 1 column
vector in RY, and W a sparsity basis matrix of N x 1 vectors
{1}, , such that

¢ =W, 6]

where b is the N x 1 column vector of weighting coefficients
b = (¢, v;) = @biTC being the projections of ¢ to each of
the basis vectors 1,. The signal ¢ is called K-sparse if it is a
linear combination of only K basis vectors, that is, if only K
of the b; coefficients in (1) are nonzero and N — K are zero
(KK << N).

Given that the signal is sparse, the main objective is to
directly acquire a compressive signal representation without
the intermediate stage of acquiring N samples. CS accom-
plishes a full signal acquisition by measuring a set of M
linear projections of ¢ into vectors ¢;,1 < ¢ < M where
M = (Klog N/K) [9], [10]. We can represent the measure-
ments 3; = (¢, ¢;) ina M x 1 vector 3 and the measurement
vectors qS]T as rows in an M x N matrix ®. Therefore 3 can
be written as:

B =& =dTb= Ob. )

When the matrix © obeys the so-called restricted isometry
property (RIP), the original sparse vector b can be recovered
exactly as the solution of the following optimization problem:

o~

b = argmin ||b]|; s.t. 8 = Ob. 3)

This is a convex optimization problem that conveniently re-
duces to a linear problem known as Basis Pursuit.

III. LOCALIZATION USING CS

A. Received Signal Strength

The received signal strength indicator (RSSI) is the most
convenient distance measurement method and has attracted a
lot of attention in the recent literature. In contrast to other
ranging techniques, RSSI needs no additional hardware, it is
low-cost and it requires small power consumption.

In the RSSI model, each node broadcasts a signal at a
maximum distance and each AP that lays in the area can
estimate its distance from the node on the basis of the received
signal. A commonly used model for the radio propagation path
loss is

— d

P. = P, — PL(dp) — 10n IOglo(%) - Xo, 4)
where P, is the receiving power at distance d, P; is the
transmitting power and PL(dg) is the average of the path
loss value measurements at a reference distance dp, usually
set to 1 meter. The attenuation exponent, n, is a constant
depending on the transmission medium (indoor, outdoors) and
ranges typically from 2 to 4. It is often statistically determined
to provide a best fit with measurement readings. X, is a
zero-mean Gaussian distributed random variable (in dB) with
standard deviation ¢ [12]. Since antilog function is used to
convert RSSI values to distance values, small RSSI variation
in decibel form leads to large variation in estimated distance.

B. Proposed Framework

In this paper, we propose a new localization protocol for
wireless networks. Considering that the node locations form
a sparse map over the ground plane, the key idea is to try
to reconstruct a sparse signal from a set of appropriate RSSI
measurements by applying compressive sensing. Particularly, a
grid based representation of the physical space is used to create
a finite set of possible positions. We formulate the localization
problem as a dictionary selection problem where the dictionary
entries are produced by discretizing the spatial space and
then synthesizing the node’s signals from each discrete cell.
Sparseness, in the spatial space implies that only a few of the
dictionary entries will be needed to match the measurements.
We pay attention to one AP, or a central unit, that samples
the reference signal. In this work we consider a system that
does not require any time specific hardware and we reduce the
computational overhead of the mobile device by performing
the localization algorithm at the AP. This enables us to find the
sparse dictionary selector vector by solving an £; minimization
problem as the one described in (3).

In the proposed system, we consider a set of APs that are
wirelessly connected. The wireless card of the mobile user to
be located is active and therefore the APs receive RSSI values
from the beacons the mobile device transmits. The localization
algorithm consists of two phases (cf. Figure 1). During the
training phase, each AP acquires signal strength measurements
from a node for each cell of the grid in order to construct a map
of signatures of the physical space. For consistency, we receive
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Fig. 1. Proposed localization framework.

the RSSI measurements during the training phase and runtime
phase from a mobile node that has the same wireless card.
In the runtime phase, each AP selects RSSI measurements in
order to estimate the average signal the mobile node transmits
and sends it to the central unit. The central unit collects the
RSSI fingerprints from the APs and applies the CS localization
protocol in order to estimate the position of the mobile device.
In a general localization framework, an AP tries to locate
the mobile user on its local grid by receiving signal strength
measurements from the node. We consider the physical space
of D dimensions and we assume that there are P APs. Our
goal is to find the position n = [z,y]T of the mobile node,
using the signal strength measurements it transmits.

The physical space is discretized to form a finite set of
cells B = {p1,p2,...,pp}, where each cell corresponds to
a position in the two dimensional space. The sparse vector
b € RP selects elements from B. A non-zero component of
b at the i-th position indicates the presence of a node at the
cell p;. For instance, the vector

b=10,1,0,...,0" (5)

indicates that the node is located at the cell po.

During the runtime phase, each AP 7 creates an RSSI
measurement vector S; = [S;1 Si2 ... SiT|(1xT), Where T
is the period of RSSI collection measurements and S ; is the
RSSI signal received from AP 7 at time j (cf. Figure 1). We
can express the average value of the runtime measurements of
signal (; received at the i-th AP as:

G =vylb, (6)

where 1), is the signature map of the i-th AP. Particularly, each
value of 1, corresponds to the mean value of RSSI signals

the i-th AP perceives from a node at a specific location

Y;=[Pi1 Pz ... Pipllixp) )

where D is the number of the possible positions a node may
occupy. We denote the average value the i-th AP receives from
a node at the location j as P; ;.

In the case where the localization process is made in a
central unit, we can express the signal ensemble as a single
vector ¢ = [¢1 ... (p]T and the training matrix into a single
dictionary ¥ = [, ... p]T. As aresult, the signal ensemble
can be written as

¢ = Ub. (8)

In (8), each element of vector ¢ consists of the mean values
of the runtime measurements each AP perceives from the
mobile node. Moreover, the matrix W is the signature map that
has been constructed during the training phase. Particularly,
each row of W represents the signature map of each AP.

Then the sparsity pattern vector b can be found from the
set of samples from all the APs by solving the following ¢;
minimization problem:

b = argmin|b||;, s.t.¢ = ¥b. 9)

The index of the non-zero element of vector b indicates the
position of the mobile node.

IV. EXPERIMENTAL RESULTS

In this Section, we study the performance of the proposed
scheme in terms of location error, under different RSSI
variation characteristics. The location error is defined as the
Euclidean distance between the estimated position of the
mobile node and the true one. The purpose of the experiment
is to evaluate the performance of the CS localization method
compared to traditional localization techniques using real data
measurements. Specifically, our experiment was performed in
a laboratory area of 7m x 12m. For this area, a grid-based
structure was considered with cells of size 50cm x 50cm. The
experiment involved a total of 13 APs. The RSSI observations
from the mobile device were recorded for a period of 100
seconds (one reception per second) over 109 cells during the
training phase. For the implementation of the CS method we
used the MATLAB code included in the /; magic package [13].

Figure 2 compares the effectiveness of the proposed lo-
calization framework with two well-known localization al-
gorithms, the KNN (K=3) and the Bayesian classification
method. In order to estimate the performance under different
signal-to-noise-ratio (SNR) values, we added white Gaussian
noise to the runtime measurement vectors. We computed
the SNR by averaging all RSSI measurements (dBm) and
subtracting the logarithm of the variance of the added white
Gaussian noise. For each possible position in the testbed, we
performed 100 Monte Carlo simulations for different SNR
values in order to calculate the mean location error. For each
algorithm, the average runtime measurement was computed by
considering 1, 10 and 100 RSSI samples.
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Fig. 2. Mean location error vs. SNR for the KNN, Bayesian and the proposed
CS-based localization methods. We used 1, 10 and 100 runtime measurements.
The CS-based algorithm has better performance in all cases, especially for low
SNR values.

Figure 2 shows that as the number of measurements in-
creases, the accuracy of all three methods is improved, as
expected. But for a certain number of measurements and a
certain SNR, the proposed CS localization scheme achieves
a significant reduction in terms of the localization error over
the KNN and the Bayesian classification methods. Particularly,
in the case where the noise is high (SNR = -110 dB), we
notice that the proposed algorithm leads to improvements in
terms of mean localization error in the order of 50% (1.54 m)
and 74% (4.3 m) over the KNN and the Bayesian algorithms,
respectively.

Figure 3 illustrates the empirical CDF curve (P(|X| < z))
of the localization error for the three methods in the case of
low SNR = -110 db and when one RSSI sample is considered
in runtime phase. We observe that the median location error
(i.e., the value bellow which 50% of the location errors fall)
is 0.5 m for the proposed CS-based approach vs. 2.8 m and
5.8 m for the KNN and the Bayesian methods, respectively.

V. CONCLUSIONS

In this paper, we have proposed a novel localization protocol
that uses the compressive sensing theory to reformulate the
localization problem in wireless networks. The key idea is
that the mobile location is sparse over the ground plane. The
proposed RSSI-based method is implemented at the APs in or-
der to reduce the computational overhead at the mobile device.
The results indicate that the CS localization scheme increases
the accuracy compared with other localization techniques.

Future work will investigate the performance of the algo-
rithm with additional real runtime measurements in various
operational environments. Another issue of future research is
to apply different reconstruction algorithms in order to solve
the ¢; minimization problem described in (9). We will focus
on the impact of the various reconstructions algorithms in
terms of the accuracy of the localization algorithm and the
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Fig. 3. CDF curves (P(|X| < z)) for the three methods for SNR = -110
dB and 1 runtime RSSI measurement. Observe that the location error of the
CS-based method is less than 0.5 m 50% of the time.

computational time. An exhaustive comparison will reveal the
tradeoff between the desired accuracy of the location estimator
and the associated complexity of the algorithm.
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