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Multi-threaded programming is increasingly relevant due to the growing preva-
lence of multi-core processors. Unfortunately, the non-determinism in parallel processing
makes it easy to make mistakes but difficult to detect them, so that writing concurrent pro-
grams is considered very difficult. A data race, which happens when two threads access
the same memory location without synchronization is a common concurrency error, with
potentially disastrous consequences.

This dissertation presents LOCKSMITH, a tool for automatically finding data races
in multi-threaded C programs by analyzing their source code. LOCKSMITH uses a collec-
tion of static analysis techniques to reason about program properties, including a novel
effect system to compute memory locations that are shared between threads, a system
for inferring “guarded-by” correlations between locks and memory locations, and a novel
analysis of data structures using existential types. We present the main analyses in de-
tail and give formal proofs to support their soundness. We discuss the implementation
of each analysis in LOCKSMITH, present the problems that arose when extending it to
the full C programming language, and discuss some alternative solutions. We provide
extensive measurements for the precision and performance of each analysis and compare
alternative techniques to find the best combination.
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Chapter 1

Introduction

Since the advent of transistors and digital computers, solid-state physics, materials
science and computer architecture have advanced continuously, creating numerous itera-
tions of ever smaller and faster processors. In what later became known as Moore’s Law,
Gordon Moore predicted in 1965 that the number of components in integrated circuits
would double every year, and ten years later corrected this prediction to every two years.
The semiconductor industry has so far kept up with that prediction, reducing the size and
increasing the number of components per chip. The reduction in transistor size further-
more allows lower response times and thus higher clock frequencies, making computers
faster “for free,” even when using the same architecture.

Recently, however, the industry has begun reaching the physical limits of the ma-
terials used to make field-effect transistors. This has caused clock frequencies to stop
following the exponential doubling pattern of the past, bounded by the physical limits
for transistors made of silicon and operating in normal temperatures. Moreover, the time
for doubling the number of components per chip had increased from two to three years
already in 2006, with predictions of an even longer doubling cycle in the future [55]. To
answer the market’s ever-increasing demand for processing power, processor manufactur-
ers are turning towards multicore or chip-multiprocessor architectures, that is, more than
one processor core per silicon chip. Dual-core processors are already common among
desktop users, and hardware manufacturers have announced prototype chips with as many
as 80 or 96 cores [80, 115].

This shift in processor architecture cannot but affect software. To take advantage of
such computers with multiple processors functioning in parallel, software must be able to
perform several tasks at once. It seems inevitable that developing parallel software will
become the norm even for the average programmer.

Currently, the dominant model for writing concurrent programs is by using threads,
that is, processes that share memory and are executed concurrently. This abstraction
makes writing concurrent programs seem very similar to writing sequential programs,
aiming to help the programmer reason about each thread as if it were an independent
process. Interactions between threads can be both explicit, using basic synchronization
constructs such as locks or semaphores, and implicit, through accesses of many threads
to the same memory.

Unfortunately, because of the implicit interactions through memory, threads are not
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actually independent. That makes writing multi-threaded software difficult and error-
prone [92]. In particular, the implicit interactions between threads via shared memory
break the assumption that the programmer can reason about each thread in the same
way they do for a sequential program. Sequential programs are deterministic and self-
consistent, meaning that knowing the instructions and the initial state, one can predict the
state at each point of the program’s execution. On the contrary, the state of execution in
the presence of many parallel threads depends not only on the program instructions, but
also on the relative order in which they are executed, making execution non-deterministic.

It is the programmer’s responsibility in a multi-threaded program to use explicit
synchronization to remove non-determinism, so that either the program is deterministic,
or whatever non-determinism is left does not cause the program to misbehave. Hence,
programmers writing multi-threaded programs strive to balance determinism and paral-
lelism. Programmers typically ensure determinism by using synchronization to restrict
concurrent access to shared memory. Synchronization, on the other hand, reduces par-
allelism by restricting the number of possible orderings of shared accesses. Balancing
this tension manually can be quite difficult, particularly since traditional uses of blocking
synchronization are not modular and composable [68]. Thus, the programmer must rea-
son about the entire program’s behavior, the myriad of possible thread interactions, and
may need to consider unintuitive memory models [103], making concurrent programming
difficult.

This difficulty in writing parallel programs makes programming errors easier to
make. Based on the balance between determinism and parallelism in a multi-threaded
program, synchronization errors fall in two categories. Erring on the side of excessive
synchronization might cause loss of parallelism and performance, or deadlock in the worst
case. On the other hand, erring on the side of insufficient synchronization can cause
unwanted non-determinism, unpredictable behavior, corrupted memory and crashes.

Data races are synchronization errors that fall in the latter category, and form a
particularly important problem in multi-threaded software. A data race occurs when one
thread accesses a memory location at the same time another thread writes to it [89]. Data
races are infamous for causing failures of critical software systems, with disastrous con-
sequences like loss of life [93] and failure of critical infrastructure [122]. Even in the
cases when races do not cause program failures but only benign non-determinism, race-
freedom is an important property in its own right, because race-free programs are easier
to understand, analyze and transform [6, 136]. For example, race freedom is necessary
for reasoning about code that uses locks to achieve atomicity [47, 54], and to improve the
precision of dataflow analysis [22].

The inherent nondeterminism in concurrent software means that traditional testing
techniques are unreliable for detecting defects and unable to guarantee race freedom, as
multiple runs of the same program might produce different results, depending on the rela-
tive order of execution among the various threads, which in turn may depend on hardware
factors in parallel architectures. To guarantee race freedom for a program, we need to
reason about all its possible executions. This problem lends itself nicely to static analy-
sis, i.e., analysis that reasons about program behavior by abstractly modelling all possible
executions without running the program.

The summarization of all possible executions done by static analysis might however
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be imprecise and include executions that can never happen. This in turn might cause a
static analysis to warn about false errors in correct programs. More precise analyses
perform less summarization and abstraction of the possible program executions, often
at the cost of efficiency. It is undecidable to eliminate false positives altogether without
sacrificing soundness, so we aim to measure this tradeoff between precision and efficiency
and balance it, achieving a practical technique that can be used to find races while not
producing many false positives.

1.1 Thesis
This work aims to develop tools and techniques to either automatically detect all

data races in multi-threaded programs, or verify their absence. In short, this dissertation
shows that

Data races can be automatically detected using static analysis. The static
analysis can be sound, giving guarantees of race freedom; it can be precise,
producing a small number of false warnings; and it can be efficient.

In support of this thesis, we developed LOCKSMITH, a tool for automatically finding
data races in C programs. This dissertation describes the set of static analyses used in
LOCKSMITH. For each analysis, we describe the problem it needs to solve and how that
fits into the overall LOCKSMITH architecture. We then formalize our solution and reason
about its correctness. Finally, we discuss its implementation and any extensions that
might be required to make it practical, and we measure its performance and precision, as
well as the effect of its precision on the rest of LOCKSMITH.

1.2 Overview
We give a short overview of the main contributions of this work, following the

structure of the rest of the dissertation.

1.2.1 Correlation inference
LOCKSMITH aims to soundly detect data races, and works by enforcing one of the

most common techniques for race prevention: for every shared memory location ρ, there
must be some lock ` that is held whenever ρ is accessed. When this property holds, we
say that ρ is guarded by `, or ρ and ` are consistently correlated. Motivated by the need
to compute the guarded-by correlations between locations and locks in LOCKSMITH, we
developed a context-sensitive analysis for inferring correlations in general. Chapter 3 first
formalizes the correlation inference system for a small extension to the lambda calculus
and presents its soundness property (proved in Appendix A). Chapter 6 discusses how we
extended this technique for C programs in LOCKSMITH.
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1.2.2 Existential label flow
Some programs store locks in data structures, making it difficult to reason about

their state and their correlations statically. To allow LOCKSMITH to model such use of
data structures precisely, we developed a generic system for analyzing data structures
using existential quantification. In Chapter 4, we first describe our solution as a label flow
analysis with support for existential context sensitivity and describe its proof of soundness
(presented in full in Appendix B). We discuss how we applied this general system to add
existential context sensitivity to the correlation analysis used in LOCKSMITH in Chapter 6.

1.2.3 Contextual effects
When inferring “guarded-by” correlations in LOCKSMITH, we only need to con-

sider memory locations that are shared between two or more threads, as there can be no
concurrent accesses of thread-local memory. To infer the shared memory locations in the
program, we intersect at each thread creation point the the set of locations accessed by
the child thread (its standard effect) with the set of locations accessed by the parent after
that child thread is created (the future effect of the parent). In collaboration with Neamtiu
et al [113] we generalize standard type and effect systems with contextual effects, which
capture the effect of the computation before (prior effect), during (standard effect) and
after (future effect) evaluating a program expression. Chapter 5 formalizes the contextual
effect system and describes the interesting and unusual techniques used in its soundness
proof (presented in full in Appendix C). We describe how we apply this generic solu-
tion back to our problem in LOCKSMITH to compute locations shared between threads in
Chapter 6.

1.2.4 LOCKSMITH implementation
To tackle some of the issues created by the unsoundness and complexity of the

C language in general and our benchmarks in particular, we employ several additional
optimizations in building LOCKSMITH. Chapter 6 discusses in detail the engineering
aspects of scaling the basic algorithms for race detection to the full C language, and
also presents any additional optimizations we used. In many cases we tried several al-
ternative algorithms with varying performance and precision. We perform a systematic
exploration of the tradeoffs between precision and efficiency in the analysis algorithms
used in LOCKSMITH both in terms of the algorithm itself, and in terms of its effects on
LOCKSMITH as a whole. We performed measurements on a range of benchmarks, includ-
ing C applications that use POSIX threads and Linux kernel device drives. Across more
than 200,000 lines of code, we found many data races, including ones that cause potential
crashes.

Put together, our results illuminate some of the key engineering challenges in build-
ing LOCKSMITH in particular, and constraint-based program analyses in general. We dis-
covered interesting—and sometimes unexpected—conclusions about the configuration of
analyses that lead to the best precision with the best performance, and we believe that
our findings will prove valuable for other static analysis designers. We found that con-
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text sensitivity is very important for the precision of LOCKSMITH and greatly reduces
false warnings, albeit at significant cost on the running time. Also, we found the sharing
analysis to be very important for precision, as erroneously inferring a memory location as
thread-shared always results in a false warning. Moreover, we found that field-sensitivity
for the aliasing analysis is an important factor for the overall precision of LOCKSMITH,
and although it slows down the aliasing analysis, the extra precision results in overall
speedup by causing less work for subsequent phases.
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Chapter 2

Label flow analysis

LOCKSMITH uses static analysis to find data races. Static analysis reasons about
all possible run-time behaviors of a program, by examining its code. To model the mem-
ory used at run time, LOCKSMITH uses an abstract memory location for any variable or
expression in the program that represents memory, as is standard in static analysis. Each
such abstract location possibly represents many run-time locations; for example a local
variable in a function is newly allocated in memory every time the function is called at run
time. When an abstract location only corresponds to a single run-time memory location it
is linear. Conversely, two abstract locations might correspond to the same run-time mem-
ory location; for example two pointer variables that point to two abstract locations might
point to the same memory location at run time. Thus, an important part of static analy-
sis concerns reasoning about the possible aliasing between abstract memory locations or
values.

This chapter presents the theoretical foundations of the static analyses used in
LOCKSMITH. First, we present an example to motivate label flow analysis in general, and
we explain how to generate and solve label flow constraints to answer points-to queries,
using types. We motivate context-sensitive label flow, present it using constrained poly-
morphic types, and show how to encode it as a problem of context-free language reacha-
bility (CFLR), which can be solved more efficiently.

Readers familiar with type based label flow analysis can safely skip this chapter.
For a very detailed presentation of type-based label flow analysis with copying context-
sensitivity, we refer the reader to the dissertation by Mossin [109], and for its encoding as
CFLR to Fähndrich et al [38, 132].

2.1 A simple language
Figure 2.1 presents a simple functional language. This language consists of the

standard lambda calculus constructs (variables x, functions λx : t.e, and function appli-
cation e e) extended in several ways. To model conditional control flow, we add integers n
and the conditional form if0 e0 then e1 else e2, which evaluates to e1 if e0 evaluates to 0,
and to e2 otherwise. To model structured data (i.e., C structs) we introduce pairs (e, e)
along with projection e.j. The latter form returns the jth element of the pair (j ∈ 1, 2).
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e ::= v | x | e1 e2 | if0 e0 then e1 else e2 | (e1, e2) | e.j
| let f = e1 in e2 | fixi f : t.e | f i

v ::= n | λx : t.e | (v1, v2)
t ::= int | t× t | t → t

Figure 2.1: A simple functional language

1 let id = λ a . a in
2 if L3 (idi @ 1L1) then e1 else e2;
3 if L4 (idk @ 2L2) then e3 else e4

id

La

L1

L2
Lr

L3

L4

→

(a) Source program (b) Monomorphic analysis

LaiL1 Lri L3

id

La Lr

→

LakL2 Lrk L4

copy

copy

id

La

L1
(i

L2 (k

Lr

L3
)i

L4)k

→

(c) Copying-based analysis (d) CFLR-based analysis

Figure 2.2: Universal Types Example

The language also includes name binding construct let f = e1 in e2 that binds the name
f to expression e1 in the scope of expression e2, and construct fixi f : t.e1 that recursively
binds the name f to expression e1 in the scope of expression e1. Finally, the syntax f i

annotates an occurrence of a let- or fix-bound name f with an index i. We use this in-
dex (also in the fix expression) to specifically refer to each occurrence of a name f in a
program.

We call the expressions that create a value constructors, and the expressions that
consume a value destructors. For example, expression λa.a constructs a function value,
expression 1 constructs a number value, expression if0 e0 then e1 else e2 consumes a
number, and expression e1 e2 consumes a function value at run-time.

Source language types t include the integer type int , pair types t × t and function
types t → t. Note that our source language is monomorphically typed, and that in a
function λx : t.e, the type t of the formal argument x is supplied by the programmer.

7



e ::= v | x | e1@Le2 | if0L e0 then e1 else e2 | (e1, e2)
L | e.Lj

| let f = e1 in e2 | fixi f : t.e | f i

v ::= n | λLx : t.e | (v1, v2)
L

τ ::= intl | τ ×l τ | τ →l τ
C ::= | ` ≤ `
` ::= L | l

〈〈int〉〉 = intl l fresh
〈〈t× t′〉〉 = 〈〈t〉〉 ×l 〈〈t′〉〉 l fresh
〈〈t → t′〉〉 = 〈〈t〉〉 →l 〈〈t′〉〉 l fresh

〈〈intl〉〉 = int l′ l′ fresh
〈〈τ ×l τ ′〉〉 = 〈〈τ〉〉 ×l′ 〈〈τ ′〉〉 l′ fresh
〈〈τ →l τ ′〉〉 = 〈〈τ〉〉 →l′ 〈〈τ ′〉〉 l′ fresh

Figure 2.3: The annotated language

2.2 Monomorphic label flow
Label flow analysis aims to answer queries of the form “does the value of the ex-

pression e1 flow to expression e2?”, by annotating every program expression with a label,
and using constraints among labels to model all possible run-time behaviors. For exam-
ple, the program in Figure 2.2(a) defines the identity function id that simply returns its
argument. It then applies it twice on values 1 and 2, and checks the results in two if ex-
pressions. In this program, to correctly infer that the values 1 and 2 reach the first and
second if expressions at run time, we annotate the values with constant labels L1 and
L2, and the if expressions with labels L3 and L4, respectively. Then, label flow analysis
should show that L1 flows to L3 and L2 flows to L4.

To infer the flow of values using labels, we use a type-based, constraint-based analy-
sis, i.e. we annotate all types with label variables l, and then use a type system to generate
and solve flow constraints among constant labels and label variables. We refer to constant
labels L and label variables l as labels ` of the form ` ≤ `′ (` “flows to” `′). The goal of
the analysis is to determine which constructor labels flow to which destructor labels. For
example, in the expression (λLx.e)@L′

e′, the label L flows to the label L′.
The top of Figure 2.3 presents the language, annotated with labels. Like the lan-

guage in Figure 2.1, it includes integers, variables, functions, function application (written
with @ to provide a position on which to write a label), conditionals, pairs, and projec-
tion, which extracts a component from a pair, and also binding constructs let and fix,
which introduce simple or recursive definitions respectively. We annotate each construc-
tor and destructor expression with a constant label L. We also extend the source types t
to labeled types τ annotated with label variables l. During type inference, our type rules
generate constraints C of the form ` ≤ `′ whenever a label ` (either constant L or variable
l) flows to a label `′. We discuss constraints further below. The bottom half of Fig. 2.3
defines a function 〈〈·〉〉 that annotates either a standard type t or a labeled type τ with
fresh labels at each position.

Fig. 2.4 gives our type inference rules which are as in the standard λ-calculus except
for the addition of labels and subtyping. These rules prove judgments of the form C; Γ `
e : τ , meaning in type environment Γ (a mapping from variable names to labeled types),
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[VAR]
C; Γ, x : τ ` x : τ

[INT]
C ` L ≤ l

C; Γ ` nL : intl

[LAM]

τ = 〈〈t〉〉
C; Γ, x : τ ` e : τ ′

C ` L ≤ l

C; Γ ` λLx : t.e : τ →l τ ′
[APP]

C; Γ ` e1 : τ →l τ ′

C; Γ ` e2 : τ
C ` l ≤ L

C; Γ ` e1@Le2 : τ ′

[PAIR]

C; Γ ` e1 : τ1 C; Γ ` e2 : τ2
C ` L ≤ l

C; Γ ` (e1, e2)
L : τ1 ×l′ τ2

[PROJ]

C; Γ ` e : τ1 ×l τ2
j ∈ 1, 2 C ` l ≤ L

C; Γ ` e.Lj : τj

[COND]

C; Γ ` e0 : intl C ` l ≤ L
C; Γ ` e1 : τ C; Γ ` e2 : τ

C; Γ ` if0L e0 then e1 else e2 : τ

[LET]

C; Γ ` e1 : τ1
C; Γ, f : τ1 ` e2 : τ2

C; Γ ` let f = e1 in e2 : τ2
[FIX]

τ = 〈〈t〉〉
C; Γ, f : τ ` e : τ

C; Γ ` fixi f : t.e : τ

[INST]
C; Γ, f : τ ` f : τ

[SUB]
C; Γ ` e : τ1 C ` τ1 ≤ τ2

C; Γ ` e : τ2

Figure 2.4: The monomorphic type rules
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[SUB-INT]
C ` l ≤ l′

C ` intl ≤ intl
′

[SUB-PAIR]
C ` l ≤ l′ C ` τ1 ≤ τ ′1 C ` τ2 ≤ τ ′2

C ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

[SUB-FUN]
C ` l ≤ l′ C ` τ ′1 ≤ τ1 C ` τ2 ≤ τ ′2

C ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

Figure 2.5: Subtyping

C ∪ {`1 ≤ `2} ∪ {`2 ≤ `3} ∪ ⇒ {`1 ≤ `3}

Figure 2.6: Monomorphic closure rule

expression e has type τ under the constraints C.
The constructor rules ([INT], [LAM] and [PAIR]) require C ` L ≤ l, i.e., that the

constructor label Lmust flow to the corresponding label variable l of the constructed type.
The destructor rules ([COND], [APP] and [PROJ]) require the converse, i.e., that the label
of the destructed type flows to the label of the destructor. We discuss the subsumption
rule [SUB] below. In this system, the rules [LET] and [FIX] are equivalent to combining
function definition and application, and [INST] is equivalent to [VAR].

Rule [SUB] in Figure 2.4 uses the subtyping relation shown in Figure 2.5. These
rules are standard subtyping rules extended to labeled types. We reduce every subtyping
relation to flow constraints among the corresponding labels in the two types. Although
the rules are formed as a type checking system, we interpret the judgement C ` ` ≤ ` as
adding the flow constraint ` ≤ ` to the set C of all constraints. Rule [SUB-INT] simply
generates the constraint l ≤ l′, rule [SUB-PAIR] similarly generates l ≤ l′ and also
descends in both elements of the pairs, and rule [SUB-FUN] generates constraint l ≤ l′

and similarly descends the subtyping relation in the argument (contravariantly) and the
return type (covariantly).

Finally, we solve the generated constraints C using the simple transitivity closure
rule shown in Figure 2.6.

2.3 Copying context sensitivity
Applying these rules to our example, the function id is given the type intLa →

intLr, where La and Lr label the argument and return types, respectively. The body of
id returns its argument, which is modeled by the constraint La ≤ Lr. The call idi yields
constraints L1 ≤ La and Lr ≤ L3, and the call idk yields constraints L2 ≤ La and
Lr ≤ L4. Pictorially, constraints form the directed edges in a flow graph, as shown in
Figure 2.2(b), and flow is determined by graph reachability. Thus the graph accurately
shows that L1 flows to L3 and L2 flows to L4.
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Notice, however, that the graph conflates the two calls to id and therefore suggests
possible flows from L1 to L4 and from L2 to L3, which is sound but imprecise. The
precision of the analysis can be improved by adding context sensitivity, to differentiate,
that is, between the two calls to the function id, at the contexts i and j.

The standard approach [109] to adding context sensitivity, is to capture the body of
function id and inline a fresh copy at each call. This is based on that the labels local to
function id represent different values for each invocation of id at run-time. We do that by
defining type schemes

σ ::= τ | ∀~l[C].τ

that are either annotated types τ or universally quantified types (or universal types) written
as ∀~l[C].τ . Universal types contain the set of quantified label variables ~l, a constraint set
C, and an annotated type τ . Note that constant labels are not quantified. For a variable
f which has type ∀~l[C].τ in the environment, the set ~l includes all the label variables
that are certain to represent different values for every occurrence of f in the program; the
constraints C capture the label flow in the expression that f represents (e.g., the function
body), and τ is the type of f and might contain labels from~l. In other words, The universal
type ∀~l[C].τ stands for any type S(τ) where S(C) is satisfied, for any substitution S. We
redefine rules [LET] and [FIX] that introduce universal types in Γ, and rule [INST] that
instantiates a universal type. Figure 2.7 shows the new rules.

Rule [LET] types expression e1 (usually a function) under flow constraintsC ′, yield-
ing type τ1. It then abstracts this type creating a universally polymorphic type ∀~l[C ′].τ1.
The set of abstract labels ~l is a subset of the labels in C ′ and τ1, except all labels that
are also in the environment Γ, because labels in Γ correspond to the same values for ev-
ery instance of f . We then bind f to the new universal type and type e2 under the new
environment, yielding type τ2, which is also the type of the let expression.

Rule [INST] instantiates the universal type ∀~l[C ′].τ of f . We instantiate the univer-
sal type using a substitution Si that maps all labels in ~l to fresh labels. The premise of
[INST] adds a fresh copy of the constraints C ′ in f ’s type to C, where all labels in ~l have
been replaced with fresh labels. Finally, the instance type of f i is Si(τ), i.e., the abstract
type where all labels in ~l are replaced by fresh.

Similar to both, [FIX] types the expression e under Γ with the additional assumption
that f has universal type ∀~l[C ′].τ . Note that the constraintsC ′ of e are also in the universal
type of f . The last premise of [FIX] instantiates the constraints C ′ in C.

Returning to the example of Figure 2.2(a), we apply these rules to generate the
flow graph shown in Figure 2.2(c). Function id now has a polymorphically constrained
universal type ∀La, Lr[La ≤ Lr].intLa → intLr, where we have annotated id’s type
with the flow constraints needed to type its body. Each time id is used, we instantiate its
type and constraints, effectively “inlining” a fresh copy of id’s body. At the call idi, we
instantiate the constraint with the substitution [La 7→ Lai, Lr 7→ Lri], and then apply the
constraints from the call site, yielding L1 ≤ Lai ≤ Lri ≤ L3, as shown. Similarly, at the
call idk we instantiate again, this time yielding L2 ≤ Lak ≤ Lrk ≤ L4. Thus we see that
L1 could flow to L3, and L2 could flow to L4, but we avoid the spurious flows from the
monomorphic analysis.
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[LET]

C ′; Γ ` e1 : τ1 C; Γ, f : ∀~l[C ′].τ1 ` e2 : τ2
~l ⊆ (fl(τ1) ∪ fl(C ′)) \ fl(Γ)

C; Γ ` let f = e1 in e2 : τ2

[FIX]

τ = 〈〈t〉〉 C ′; Γ, f : ∀~l[C ′].τ ` e : τ
~l ⊆ (fl(τ) ∪ fl(C ′)) \ fl(Γ) C ` Si(C ′)

C; Γ ` let f i : t = e in i : τ

[INST]
C ` Si(C ′)

C; Γ, f : ∀~l[C ′].τ ` f i : Si(τ)

Figure 2.7: The copying type rules

2.4 Context sensitivity as CFLR
While this technique is effective, explicit constraint copying can be difficult to

implement, because it requires juggling various sets of constraints as they are dupli-
cated and instantiated, and may require complicated constraint simplification techniques
[44, 35, 41] for efficiency.

An alternative approach is to encode the problem in terms of a slightly different
graph and use CFL reachability to compute flow, as suggested by Rehof et al [132]. This
solution adds call and return edges to the graph and labels them with parentheses indexed
by the call site. Intuitively, we add an edge annotated with (i for label flow entering the
function f at instantiation i, and an edge annotated with )i for label flow exiting f at
instantiation i. Then, label flow is restricted to paths in the flow graph with matching
parentheses, and excludes mismatched paths. This in turn achieves the goal of differenti-
ating between different instantiations of f , but without replicating all the constraints of f
every time.

To encode context sensitivity as a parenthesis-matching problem, we extend con-
straints C to include special parenthesis-annotated edges, using instantiation constraints:

C ::= . . . | τ �i
p τ | l �i

p l

An instantiation constraint L �i
p L

′ indicates that the abstract label variable l is renamed
to the instance label variable l′ at instantiation i. The polarity p encodes the direction of

flow, so that l �i
+ l′ represents the edge l

(i−→ l′ and l �i
− l

′ represents l′
)i−→ l. We also

redefine universal types in type schemes σ to:

σ ::= (∀~l.τ,~l′)

Here, ~l are the labels in τ that are quantified, and ~l′ are the labels that are not quantified.
We write ~l in the type for clarity, although it is always the case that ~l = fl(τ) \ ~l′. Finally,
Figure 2.8 shows the new rules for [LET], [FIX] and [INST].

Rules [LET] and [FIX] bind f to a universal type. As before, we cannot quantify
over labels in Γ, as they do not represent different values for every instance of f , repre-
sented by ~L′ = fl(Γ) in the type. We also limit the quantified labels to the labels in τ ,
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[LET]

C; Γ ` e1 : τ1 C; Γ, f : (∀~l.τ1, ~l′) ` e2 : τ2
~l = fl(τ1) \ ~l′ ~l′ = fl(Γ)

C; Γ ` let f = e1 in e2 : τ2

[FIX]

τ = 〈〈t〉〉 τ ′ = 〈〈t〉〉 C; Γ, f : (∀~l.τ,~l′) ` e : τ
~l = fl(τ1) \ ~l′ ~l′ = fl(Γ) C ` τ �i

+ τ ′ C ` ~l′ �i
±
~l′

C; Γ ` let f i : t = e in i : τ ′

[INST]
τ ′ = 〈〈τ〉〉 C ` τ �i

+ τ ′ C ` ~l′ �i
±
~l′

C; Γ, f : (∀~l.τ,~l′) ` f i : τ ′

Figure 2.8: The CFLR type rules

[INST-CONST]
C ` L �i

p L

[INST-INT]
C ` l �i

p l
′

C ` intl �i
p int

l′

[INST-PAIR]
C ` l �i

p l
′ C ` τ1 �i

p τ
′
1 C ` τ2 �i

p τ
′
2

C ` τ1 ×l τ2 �i
p τ

′
1 ×l′ τ ′2

[INST-FUN]
C ` l �i

p l
′ C ` τ1 �i

p̄ τ
′
1 C ` τ2 �i

p τ
′
2

C ` τ1 →l τ2 �i
p τ

′
1 →l′ τ ′2

Figure 2.9: Instantiation relation

regardless of the other labels in the body of the expression bound to f . For every instance
of a name f in the program, rules [FIX] and [INST] instantiate universal type (∀~L.τ, ~L′).
We instantiate every label in τ to the corresponding label in τ ′, a freshly annotated type,
with the constraint τ �i

+ τ ′. Figure 2.9 defines the instantiation relation on types. Again,
the judgement C ` l �i

p l
′ adds the constraint l �i

p l
′ to the set C. Each instantiation also

implicitly defines a label substitution Si that maps labels in τ to the corresponding labels
in τ ′. All non-quantifiable labels, i.e., all labels in ~l′, are not renamed, which we model
by instantiating each label in ~l′ to itself with both positive and negative polarity.

To solve the constraints C in this case, we introduce two additional closure rules,
shown in Figure 2.10. Rule [CONSTANT] adds a “self-loop” that permits matching flows

C ∪ {`1 �i
− `0} ∪ {`1 ≤ `2} ∪ {`2 �i

+ `3} ∪ ⇒ {`0 ≤ `3}

Figure 2.10: Additional closure rule for CFLR

13



to or from any constant label. We generate these edges because constant labels are global
names and thus context-insensitive.

We show instantiation edges in Figure 2.2(d) with dashed lines. Edges from idi are
labeled with (i for inputs and )i for outputs, and similarly for idk. To compute flow in this
graph, we find paths with no mismatched parentheses. In this case the paths from L1 to
L3 and from L2 to L4 are matched, while the other paths are mismatched and hence not
considered.
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Chapter 3

Context-sensitive correlation inference

This chapter formalizes the correlation inference system used in LOCKSMITH. The
core algorithm used by LOCKSMITH is an analysis that can automatically infer the rela-
tionship between locks and the locations they protect. We call this relationship correla-
tion, and a key contribution of our approach is a new technique for inferring correlation
context-sensitively. We present our correlation analysis algorithm for a formal language
λ� that abstracts away some of the complications of operating directly on C code. Our
analysis is constraint-based, using context-free language reachability (CFLR) [132, 135]
and semi-unification [71] for context-sensitivity. Because each location must be consis-
tently correlated with at least one lock, we use ideas from linear types to maintain a tight
correspondence between abstract locks used by the static analysis and locks created at run
time. We allow locks created in polymorphic functions to be treated distinctly at different
call sites, and we use a novel type and effect system to ensure that this is safe.

Although here we focus on locking, we believe that the concept of correlation may
be of independent interest. For example, a program may correlate a variable containing
an integer length with a array having that length [168]; it may correlate an environment
structure with the closure that takes it as an argument [105]; or it may correlate a memory
location with the region in which that location is stored [65, 72].

3.1 Race-freedom as consistent correlation
Consider the C program in Figure 3.1. This program has two locks, L1 and L2,

and three integer variables, x, y, and z (we omit initialization code for simplicity). The
function munge takes a lock and a pointer and writes through the pointer with the lock
held. Suppose that the program makes the three calls to munge as shown, and that this
sequence of calls is invoked by two separate threads.

This program is race-free because for each location, there is a lock that is always
held when that location is accessed. In particular, L1 is held for all accesses to x, and L2 is
held for all accesses to both y and z. More formally, we say that a location ρ is correlated
with a lock ` if at some point a thread accesses ρ while holding `. We say that a location ρ
and a lock ` are consistently correlated if ` is always held by the thread accessing ρ. Thus
if all locations in a program are consistently correlated, then that program is race free.
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1 pthread mutex t L1 = ..., L2 = ...;
2 int x, y, z;
3

4 void munge(pthread mutex t ∗l, int ∗p) {
5 pthread mutex lock(l);
6 ∗p = 3;
7 pthread mutex unlock(l);
8 }
9 . . .

10 munge(&L1, &x);
11 munge(&L2, &y);
12 munge(&L2, &z);

Figure 3.1: Locking Example in C

e ::= v | x | e1 e2 | if0 e0 then e1 else e2 | (e1, e2) | e.j
| let f = v in e2 | fixi f : t. v | f i

| newlock | ref e | !e2 e1 | e1 :=e3 e2
v ::= n | λx : t.e | (v1, v2)

t ::= int | t× t | t→ t′ | lock | ref (t)

Figure 3.2: λ� Syntax

Establishing consistent correlation is a two-step process. First, we determine what
locks ` are held when the thread accesses some location ρ. Having gathered this informa-
tion, we can then ask whether ρ is consistently correlated with some lock.

To simplify our presentation, we present the core of our algorithm for a small lan-
guage λ� in which locations can be guarded by at most one lock (rather than a set of
locks), and in which the lock correlated with a memory read or write is made explicit in
the program text. This allows us to defer the problem of determining what locks are held
at each dereference and focus on checking for consistent correlation.

3.2 The language λ�

Figure 3.2 extends the simple language presented in chapter 2 with a primitive for
generating mutual exclusion locks and updateable references. We have highlighted the
main differences for clarity. As in chapter 2, we annotate function occurrences f i with
an instantiation site i. Dereferences !e e1 and assignments e1 :=e e2 take as an additional
argument an expression e that evaluates to a lock, which is acquired for the duration of the
memory access and released afterward. Note that the addition of updateable references
forces the abstracted expression in let and fix expressions to be values, to maintain type
safety.
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1 let L1 = newlock in
2 let L2 = newlock in
3 let x = ref 0 in
4 let y = ref 1 in
5 let z = ref 2 in
6

7 let munge l p =
8 p :=l 3
9 in

10 munge1 L1 x;
11 munge2 L2 y;
12 munge3 L2 z

munge

lp

xyz L2L1

(1(2 31 2(3

Figure 3.3: Locking example in λ� and its constraint graph

3.2.1 Example
The left side of Figure 3.3 gives the program in Figure 3.1 modeled in λ�. The

body of munge has been reduced to the expression p :=l 3, indicating that l will be held
during the assignment to p.

To check whether this program is consistently correlated, a natural approach would
be to perform a points-to analysis for all of the pointers and locks in the program. At the
assignment p :=l 3 in the program, we could correlate all of the locations ρ to which p
may point with the singleton lock ` to which l points. The lock l must point to a single `
or else some location ρ might be accessed sometimes with one lock and sometimes with
another. Unfortunately, this condition is not satisfied in our example: the points-to set of
l is {L1, L2}, since it will be L1 at the first call to munge and L2 at the second call. Thus
our hypothetical algorithm would erroneously conclude that no single lock is held for all
accesses, leading to false reports of possible races.

The problem is that the correlation between l and p is not being treated context-
sensitively. Even if we were to use a context-sensitive alias analysis [29], the points-to
sets mentioned above would be the same, assuming that within the body of the function
we summarized all calls, which is a standard technique.

3.2.2 Correlation constraints
We address this problem in two steps. First, we introduce correlation constraints of

the form ρ� `, which indicate that the location ρ is correlated with the lock `. Here, ρ and
` are location and lock labels, used to represent locations and locks that arise at run time.
Our analysis generates correlation constraints based on occurrences of !e e1 and e1 :=e e2
in the program. Second, we formalize an analysis to propagate correlation constraints
in a context-sensitive way throughout the program, by creating a variety of other (flow)
constraints and solving them to determine whether correlations are consistent. We define
consistent correlation precisely as follows.

Definition 3.2.1 (Correlation Set) Given a location ρ and a set of constraints C, we
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define the correlation set of ρ in C as

S(C, ρ) = {` | C ` ρ� `}

Here we write C ` ρ� ` to say that ρ� ` can be proven from the constraints in C.

Definition 3.2.2 (Consistent Correlation) A set of constraints C is consistently corre-
lated if ∀ρ. |S(C, ρ)| ≤ 1.

Thus, a constraint set C is consistently correlated if all abstract locations ρ are either
correlated with one lock, or are never accessed and so are correlated with no locks.

The right side of Figure 3.3 shows a graph of the constraints that our analysis gen-
erates for this example code. Each label in the program forms a node in the graph, and
labeled, directed edges indicate dataflow. Location flow edges corresponding to a func-
tion call are labeled with (i for the parameters at call site i, and any return values (not
shown) are labeled with )i. Locks are modeled with unification in our system, and we
label such edges simply with the call site, with the direction of the arrow into the type that
was instantiated. For example, both L1 and x are passed in at call site 1, so they connect
to the parameters using edges labeled with (1. Undirected edges represent correlation. In
this case, the body of munge requires that l and p are correlated.

After generating constraints we perform constraint resolution to propagate corre-
lation constraints context-sensitively through the call graph. In this example, we copy
munge’s correlation constraint out to each of the call sites, resulting in the three correla-
tion constraints shown with dashed edges:

x� L1 y � L2 z � L2

It is easy to see that these constraints are consistently correlated according to Defini-
tion 3.2.2.

3.3 Context-sensitivity as CFLR
We use a type and effect system for generating constraints C to check for consistent

correlation. Our type system proves judgments of the form C; Γ ` e : τ ; ε, which means
that expression e has type τ and effect ε under type assumptions Γ and constraint set C.

3.3.1 Typing
Figure 3.4 gives the type language and constraints used by our analysis. Types

include integers, pairs, function types annotated with an effect ε, lock types with a label
`, and reference types with a label ρ. Again, we highlight the main differences in the
type language compared to chapter 2. Effects are used to enforce linearity for locks (see
below), and consist of the empty effect ∅, a singleton effect {`}, effect variables χ which
are solved for during resolution, and both disjoint and non-disjoint unions of effects ε]ε′
and ε ∪ ε′, respectively. λ� models context-sensitivity over labels using polytypes σ,
introduced by let and fix. In our type language, polytype (∀.τ,~l) represents a universally
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types τ ::= int | τ × τ | τ → ε τ ′ | lock ` | ref ρ(τ)
labels l ::= ` | ρ
effects ε ::= ∅ | {`} | χ | ε ] ε′ | ε ∪ ε′

schemes σ ::= (∀.τ,~l)
constr. sets C ::= ∅ | {c} | C ∪ C
constraints c ::= τ ≤ τ ′ (subtyping)

| ` = `′ (lock unification)
| ρ ≤ ρ′ (location flow)
| ρ� ` (correlation)
| ε ≤ χ (effect flow)
| ε ≤~l χ (effect filtering)
| effect(τ) = ∅ (effect emptiness)
| τ �i

p τ
′ (type instantiation)

| ` �i `′ (lock instantiation)
| ρ �i

p ρ
′ (location inst.)

| ε �i χ (effect inst.)

Figure 3.4: Types and Constraints

quantified type, where τ is the base type and~l is the set of non-quantified labels [71, 132].
Finally, C is a set of atomic constraints c. Within the type rules, the judgment C ` c
indicates that c can be proven by the constraint set C; in our algorithm, such judgments
cause us to “generate” constraint c and add it C.

Linearity effects Linearity effects ε form an important part of λ�’s type system by en-
forcing linearity for lock labels. Roughly speaking, a lock label ` is linear if it never
represents two different run-time locks that could reside in the same storage or are si-
multaneously live. To understand why this is important, consider the following code,
where hypothetical types and generated constraints are marked in comments, eliding the
constraints for the references to locks. We use e1; e2 as the standard abbreviation for
(λx.e2) e1 where x 6∈ fv(e2).

1 let l = ref (newlock) in // l : refρ′
((lock `))

2 let x = ref 0 in // x : refρ(int)
3 x :=! l 1; // ρ � `
4 l := newlock;
5 x :=! l 2 // ρ � `

This code violates consistent correlation because x is correlated with two different run-
time locks due to the assignment. However, to give l a consistent type, ` is used to model
both locks, violating linearity. As a result, the constraints mistakenly suggest the program
is safe, because ρ is only ever correlated with `.

Typing Rules We now turn to the monomorphic type rules for λ�, shown in Figure 3.5.
The [NEWLOCK] rule in this system requires that when we create a lock labeled ` we
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generate an effect {`}. The other rules, like [PAIR], join the effects of their subexpressions
with disjoint union ], thus requiring that chosen lock labels not conflict. For example,
with the given labeling, the above code has the effect {`} ] {`}. We implicitly require
that disjoint unions are truly disjoint—during constraint resolution, we will check that
this holds—and thus we would forbid L1 and L2 from being given the same label. On the
other hand, location labels ρ, introduced in the rule [REF] for typing memory allocation,
do not add to the effect as memory locations need not be linear.

Some other type-based systems for race detection [42, 64] and related systems for
modeling dynamic memory allocation [149] avoid the need for this kind of effect by
forcing newly-allocated locks (and/or locations) to be valid only within a lexical scope.
That is, newlock is replaced with a construct newlock x in e, which at run time generates
a new lock and substitutes it for x within e. When typing this construct, x’s label `
is only valid in the expression e, ensuring the allocated lock cannot escape. Therefore
subsequent invocations of the same newlock x in e (e.g., within a recursive function)
cannot be confused. We can achieve the same effect using the [DOWN] rule, described
below, and our approach matches the usage of newlock as it occurs in practice.

Turning to the remaining rules in Figure 3.5, [ID], [INT], and [PROJ] are standard.
[LAM] types a function definition, and the effect on the function arrow is the effect of
the body. Notice that we always place effect variables χ on function arrows; this ensures
constraints involving effects always have a variable on their right-hand side, simplifying
constraint resolution. In [APP] we apply a function e1 to argument e2, and the effect in-
cludes the effect of evaluating e1, the effect of evaluating e2, and the effect of the function
body.

The [SUB] rule and subtyping rules, shown in Figure 3.7(a), are also standard. Note
that in rule [SUB-LOCK], we require ` and `′ to be equal. Thus we have no subtyping on
lock labels, which makes it easier to enforce linearity by forcing lock labels that “flow”
together to be unified. The rules in Figure 3.7(a) can be seen as judgments for reducing
subtyping on types to constraints on labels, and during constraint resolution we assume
that all subtyping constraints have been reduced in this way and thus eliminated.

[COND] is mostly standard, except we use a non-disjoint union to join the effects
of the two branches, since only one of e1 or e2 will be executed at run time. [DEREF] ac-
cesses a location e1 while holding lock e2, and generates a correlation constraint between
the lock and location label, as does [ASSIGN].

Polymorphism Figure 3.6 gives the rules for polymorphism. [LET] introduces poly-
types. As is standard we only generalize the types of values. In [LET] the name f is
bound to a quantified type where ~l is the set of free labels of Γ, i.e., the labels that cannot
be generalized.

In [INST], we use instantiation constraints to model a type instantiation. The con-
straint τ �i

+ τ ′ means that there exists some substitution φi such that φi(τ) = τ ′, i.e., that
at the use of f labeled by index i in the program, τ is instantiated to τ ′. We also generate
the constraint ~l �i

±
~l, which requires that all of the variables we could not quantify are

renamed to themselves by φi, i.e., they are not instantiated.
The subscript +’s and −’s in an instantiation constraint are polarities, which repre-
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[ID]
C; Γ, x : τ ` x : τ ; ∅

[INT]
C; Γ ` n : int ; ∅

[LAM]

C; Γ, x : τ ` e : τ ′; ε
C ` ε ≤ χ χ fresh
C; Γ ` λx.e : τ →χ τ ′; ∅

[APP]

C; Γ ` e1 : τ →ε τ ′; ε1

C; Γ ` e2 : τ ; ε2

C; Γ ` e1 e2 : τ ′; ε1 ] ε2 ] ε

[PAIR]

C; Γ ` e1 : τ1; ε1

C; Γ ` e2 : τ2; ε2

C; Γ ` (e1, e2) : τ1 × τ2; ε1 ] ε2

[PROJ]

C; Γ ` e : τ1 × τ2; ε
j = 1, 2

C; Γ ` e.j : τj; ε

[SUB]

C; Γ ` e : τ1; ε
C ` τ1 ≤ τ2
C; Γ ` e : τ2; ε

[NEWLOCK]
` fresh

C; Γ ` newlock : lock `; {`}

[COND]

C; Γ ` e0 : int ; ε0

C; Γ ` e1 : τ ; ε1 C; Γ ` e2 : τ ; ε2

C; Γ ` if0 e0 then e1 else e2 : τ ; ε0 ] (ε1 ∪ ε2)

[REF]
C; Γ ` e : τ ; ε ρ fresh
C; Γ ` ref e : ref ρ(τ); ε

[DEREF]

C; Γ ` e1 : ref ρ(τ); ε1

C; Γ ` e2 : lock `; ε2

C ` ρ� `

C; Γ ` !e2 e1 : τ ; ε1 ] ε2

[ASSIGN]

C; Γ ` e1 : ref ρ(τ); ε1 C; Γ ` e2 : τ ; ε2

C; Γ ` e3 : lock `; ε3 C ` ρ� `

C; Γ ` e1 :=e3 e2 : τ ; ε1 ] ε2 ] ε3

Figure 3.5: λ� Monomorphic Rules

sent the direction of subtyping through a constraint, either covariant (+) or contravariant
(−). Instantiation constraints correspond to the edges labeled with parentheses in Fig-
ure 3.3. A constraint ρ �i

+ ρ′ corresponds to an output (i.e., a return value), and in
constraint graphs we draw it as a directed edge ρ →)i ρ′. A constraint ρ �i

− ρ′ corre-
sponds to an input (i.e., a parameter), and we draw it with a directed edge ρ′ →(i ρ. We
draw a constraint ` �i `′ as an edge `′ →i `, where there is no direction of flow since lock
labels are unified but the arrow indicates the reverse direction of instantiation.

Instantiation constraints on types can be reduced to instantiation constraints on la-
bels, as shown in Figure 3.7(b). In these rules we use p to stand for an arbitrary polarity,
and in [INST-FUN] we flip the direction of polarity for the function domain with the nota-
tion p̄. For example, to generate the graph in Figure 3.3, we generated three instantiation
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[LET]

C; Γ ` v1 : τ1; ∅ ~l = fl(Γ)

C; Γ, f : (∀.τ1,~l) ` e2 : τ2; ε

C; Γ ` let f = v1 in e2 : τ2; ε
[INST]

C ` τ �i
+ τ ′ C ` ~l �i

±
~l

C; Γ, f : (∀.τ,~l) ` f i : τ ′; ∅

[FIX]

C; Γ, f : (∀.τ,~l) ` v : τ ′; ∅
~l = fl(Γ) C ` τ ′ ≤ τ

C ` τ �i
+ τ ′′ C ` ~l �i

±
~l

C ` effect(τ) = ∅
C; Γ ` fix: f.vτ ′′; ∅

[DOWN]

C; Γ ` e : τ ; ε
~l = fl(Γ) ∪ fl(τ)

C ` ε ≤~l χ χ fresh
C; Γ ` e : τ ;χ

Figure 3.6: λ� Polymorphic Rules (plus [DOWN])

constraints
(l× p) → int �1

+ (L1× x) → int
(l× p) → int �2

+ (L2× y) → int
(l× p) → int �3

+ (L2× z) → int

corresponding to the three instantiations and calls of munge. For full details on polarities,
see Rehof et al [132].

Hiding Effects [FIX] introduces polymorphic recursion, which is decidable for label
flow [109, 132]. However, in our system we instantiate effects and that may cause disjoint
unions to grow without bound if a recursive function allocates a lock. Thus in [FIX], we
require that recursive functions have an empty effect on their top-most arrow with the
constraint effect(τ) = ∅.

This is a strong restriction, and we would like to be able to infer correlations for
recursive functions that allocate locks. For example, consider the two code snippets in
Figure 3.8. Here f is a recursive function that creates a lock l and accesses a location y.
In both cases the lock does not escape the function, and therefore the linear labels corre-
sponding to the locks in different iterations of the function cannot interfere. However, in
the second case the location y is allocated outside the function, meaning that with each
iteration it will be accessed with a different lock held, violating consistent correlation. We
want to allow the first case while rejecting the second.

Thus we add a final rule [DOWN] to our type system to hide effects on lock la-
bels that are purely local to a block of code [59]. In [DOWN], we generate a “filtering”
constraint ε ≤~l χ, which means that χ should contain labels in ε that escape through ~l,
but not necessarily any other label. We determine escaping during constraint resolution.
Formally, C ` escapes(l,~l), where l is either a ρ or `, if

l ∈ ~l ∨ ∃c, l′.
(
C ` c ∧ l, l′ ∈ c ∧ C ` escapes(l′,~l)

)
In other words, l escapes through ~l if it is in ~l or if it appears in a constraint in C with an
l′ that escapes in ~l. For example, if ρ � ` and ρ escapes, then ` escapes. This prevents l
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[SUB-INT]
C ` int ≤ int

[SUB-LOCK] C ` ` = `′

C ` lock ` ≤ lock `
′

[SUB-PAIR]

C ` τ1 ≤ τ ′1
C ` τ2 ≤ τ ′2

C ` τ1 × τ2 ≤ τ ′1 × τ ′2
[SUB-REF]

C ` τ ≤ τ ′ C ` τ ′ ≤ τ
C ` ρ ≤ ρ′

C ` ref ρ(τ) ≤ ref ρ
′
(τ ′)

[SUB-FUN]
C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2 C ` ε1 ≤ ε2

C ` τ1 →ε1 τ ′1 ≤ τ2 →ε2 τ ′2

(a) Subtyping

[INST-INT]
C ` int �i int

[INST-LOCK]
C ` ` �i `′

C ` lock ` �i
p lock `

′

[INST-PAIR]

C ` τ1 �i
p τ

′
1

C ` τ2 �i
p τ

′
2

C ` τ1 × τ2 �i
p τ

′
1 × τ ′2

[INST-REF]

C ` ρ �i
p ρ

′

C ` τ �i
± τ

′

C ` ref ρ(τ) �i
p ref ρ

′
(τ ′)

[INST-FUN]
C ` τ1 �i

p̄ τ2 C ` τ ′1 �i
p τ

′
2 C ` ε1 �i ε2

C ` τ1 →ε1 τ ′1 �i
p τ2 →ε2 τ ′2

(b) Instantiation

Figure 3.7: Subtyping and Instantiation Constraints

from being hidden in our second example above, while in the first example we can apply
[DOWN] to hide the allocation effect successfully. Although [DOWN] is not a syntax-
directed rule, it is only useful to apply it to terms whose effect may be duplicated in the
type system. Hence we can make the system syntax-directed by assuming that [DOWN]
is always applied once to e in rule [LAM], so that the effect on the function arrow has
as much hidden as possible. Also note that we can easily encode the lexically-scoped
lock allocation primitive newlock x in e as (λx.e) newlock and applying [DOWN] to the
application.

Uses of [DOWN] are rare in C programs in our experience, which tend to use global
locks. Some C programs also store locks in data structures, and in this case [DOWN]
allows us to hide locks that are created and then packed inside of an existential type
(Section 6.13) that contains the only reference to them.
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1 fix f = λ x .
2 let l = newlock in
3 let y = ref 0 in
4 y :=l 42;
5 . . .
6 f 0
7 . . .

1 let y = ref 0 in
2 fix f = λ x .
3 let l = newlock in
4 y :=l 42;
5 . . .
6 f 0
7 . . .

Figure 3.8: Example demonstrating the need for [DOWN]

3.3.2 Constraint resolution
After we have applied the rules in Figures 3.5, 3.6, and 3.7 to a λ� program, we are

left with a set of constraints C. To check that a program is consistently correlated, we first
reduce the constraints C into a solved form, from which we can easily extract correlations
between locks and locations.

Figure 3.9 gives a series of left-to-right rewrite rules that we apply exhaustively to
the constraints to compute their solution. Figure 3.9(a) gives rules to compute the “flow”
of locations and locks; part (b) gives the rules for propagating correlations; and part (c)
propagates effects so that we can check that disjoint unions are truly disjoint. The rules
in part (a) are mostly standard, while parts (b) and (c) are new. Here, C ∪ ⇒ C ′ means
C ⇒ C ∪ C ′.

The first rule of part (a) resolves equality constraints on lock labels and the second
transitively closes subtyping constraints on location labels. The next rule is the standard
semi-unification rule [71]: If a lock label `0 is instantiated at site i to two different lock
labels `1 and `2, then `1 and `2 must be equal (because the substitution at site i has to
substitute for `0 consistently). The final rule is for “matched flow.” Recall the [INST] rule
from Figure 3.6: if f has polytype (∀.ref ρ1(τ1) →∅ ref ρ2(τ1), ∅), then instantiating this
polytype at site i to the type ref ρ0(τ1) →∅ ref ρ3(τ1) requires that C contain instantiation
constraints ρ1 �i

− ρ0 and ρ2 �i
+ ρ3 (according to [INST-FUN] and [INST-REF]). The

negative constraint corresponds to context-sensitive flow from the caller’s argument to
the function’s parameter while the positive constraint corresponds to the returned value.
Say that f is the identity function; thenC would contain the constraint ρ1 ≤ ρ2, indicating
the function’s parameter flows to its returned value. Thus the argument at site i should
flow to the value returned at site i, and so the matched flow rule permits the addition of a
flow edge ρ0 ≤ ρ3. For a full discussion of this rule, see Rehof et al [132].

In the correlation propagation rules in part (b), the first rule says that if location ρ
flows to a location ρ′ that is correlated with `, then ρ is correlated with ` also. Notice
that there is no similar rule for flow on the right-hand side of a correlation, because we
unify lock labels. The next rule propagates correlations at instantiation sites. Similarly to
location propagation, if we have a correlation constraint ρ� ` on the labels in a polymor-
phic function, and we instantiate ` to `′ and ρ to ρ′ at some site i, then we propagate the
correlation to `′ and ρ′. For example, Figure 3.3 depicts the following three constraints,
among others (recall an edge l′ →(i l in the figure corresponds to a constraint l �i

− l
′):

l �1
− L1 p �1

− x p � l
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C ∪ {` = `′} ⇒ C[` 7→ `′]
C ∪ {ρ0 ≤ ρ1} ∪ {ρ1 ≤ ρ2} ∪ ⇒ {ρ0 ≤ ρ2}
C ∪ {`0 �i `1} ∪ {`0 �i `2} ⇒ C[`2 7→ `1] ∪ {`0 �i `1}
C ∪ {ρ1 �i

− ρ0} ∪ {ρ1 ≤ ρ2} ∪ {ρ2 �i
+ ρ3} ∪ ⇒ {ρ0 ≤ ρ3}

(a) Flow of lock and location labels

C ∪ {ρ ≤ ρ′} ∪ {ρ′ � `} ∪ ⇒ {ρ� `}
C ∪ {ρ �i

p ρ
′} ∪ {ρ� `} ∪ {` �i `′} ∪ ⇒ {ρ′ � `′}

(b) Correlation propagation

C ∪ {∅ ≤ χ} ⇒ C
C ∪ {ε ∪ ε′ ≤ χ} ⇒ C ∪ {ε ≤ χ} ∪ {ε′ ≤ χ}

C ∪ {ε ≤ χ} ∪ {χ ≤ χ′} ∪ ⇒ {ε ≤ χ′}
C ∪ {ε ≤ χ} ∪ {χ ≤~l χ′} ∪ ⇒ {ε ≤~l χ′}
C ∪ {ε ≤ χ} ∪ {χ �i χ′} ∪ ⇒ {ε �i χ′}

—————
C ∪ {∅ �i χ} ⇒ C

C ∪ {{`} �i χ} ⇒ C ∪ {` �i `′} ∪ {{`′} ≤ χ}
`′ fresh

C ∪ {ε ] ε′ �i χ0} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ′}
∪ {χ ] χ′ ≤ χ0}
χ, χ′ fresh

C ∪ {ε ∪ ε′ �i χ} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ}
C ∪ {χ �i χ′} ∪ {χ �i χ′′} ⇒ C[χ′ 7→ χ′′] ∪ {χ �i χ′′}

—————
C ∪ {∅ ≤~l χ} ⇒ C

C ∪ {{`} ≤~l χ} ⇒ C ∪ {{`} ≤ χ}
if C ` escapes(`,~l)

C ∪ {ε ] ε′ ≤~l χ0} ⇒ C ∪ {ε ≤~l χ} ∪ {ε′ ≤~l χ′}
∪ {χ ] χ′ ≤ χ0}

C ∪ {ε ∪ ε′ ≤~l χ} ⇒ C ∪ {ε ≤~l χ} ∪ {ε′ ≤~l χ}

(c) Effect propagation

Figure 3.9: Constraint resolution

Using our resolution rule yields the constraint x � L1, shown in Figure 3.3 with a dashed
line. Note that the polarity of the instantiation constraint on ρ is irrelevant for this prop-
agation step, because locks can correlate with both inputs (parameters) and output (re-
turns).

Part (c), presented as three blocks of rules, propagates effect constraints. The first
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block of rules discards useless effect subtyping, replaces standard unions by two separate
constraints, and computes transitivity of subtyping on effects. The next block of rules
handles instantiation constraints. The constraint ∅ �i χ can be discarded, because it
places no constraint on χ. (It is not even the case that χ must be empty, because it
may have subtyping constraints on it from other effects.) In the next rule we model
instantiation of a function with a single effect {`}. In our system, each time we call a
function that invokes newlock we wish to treat the locks from different calls differently.
Thus we create a fresh lock label `′ that flows to χ and require that ` is instantiated to `′.
The remaining rules copy disjoint unions across an instantiation site, expand non-disjoint
unions, and require that effect variables are instantiated consistently.

The last block of rules propagates effects across filtering constraints. The only
interesting rule is the second one, which propagates an effect {`} to χ only if ` escapes in
the set ~l; this corresponds to “hiding” effects χ that are only used within a lexical scope.

After applying the rewrite rules, there are three conditions we need to check. First,
we need to ensure that all disjoint unions formed during type inference and constraint
resolution are truly disjoint. We define occurs(`, ε) to be the number of times label `
occurs disjointly in ε:

occurs(`, ∅) = 0
occurs(`, χ) = maxε≤χ occurs(`, ε)

occurs(`, {`}) = 1
occurs(`, {`′}) = 0 ` 6= `′

occurs(`, ε ] ε′) = occurs(`, ε) + occurs(`, ε′)
occurs(`, ε ∪ ε′) = max(occurs(`, ε), occurs(`, ε′))

We require for every effect ε created during type inference (including constraint resolu-
tion), and for all `, that occurs(`, ε) ≤ 1. We enforce the constraint effect(τ) = ∅ by
extracting the effect ε from the function type τ and ensuring that occurs(`, ε) = 0 for all
`.

Finally, we ensure that locations are consistently correlated with locks. We compute
S(C, ρ) for all locations ρ and check that it has size ≤ 1. This computation is easy with
the constraints in solved form; we simply walk through all the correlation constraints
generated in Figure 3.9(b) to count how many different lock labels appear correlated with
each location ρ.

We now analyze the running time of our algorithm for each part of constraint res-
olution. Let n be the number of constraints generated by walking over the source code
of the program. Then the rules in Figure 3.9(a) take time O(n3) [132], as do the rules
in Figure 3.9(b), since given n constraints there can be only O(n2) correlations among
locations and locks mentioned in the constraints. Constraint resolution rules like those
given in parts (a) and (b) have been shown to be efficient in practice [29].

There exist constraint sets C for which the rules in Figure 3.9(c) will not termi-
nate. This is because a cycle in the instantiation constraints might result in a single effect
being repeatedly copied and renamed. We believe that this cannot occur in our type sys-
tem, however, because we forbid recursive functions from having effects. Even so, effect
propagation can still be O(2n), because a single effect might be copied through a chain of
instantiations that double the effect each time.
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3.4 Soundness
We have proven that a version of our type system λcp

� based on polymorphically
constrained types [109] is sound, and that the system presented here reduces to that sys-
tem. We define a call-by-value operational semantics as a series of rewriting rules, using
evaluation contexts E to define evaluation order, as is standard. The evaluation rule for
newlock generates a fresh lock constant L, and ref v generates a fresh location constant
R. We extend labels l to include L and R and define typing rules for them. We also intro-
duce allocation constraints L ≤1 ` to indicate that lock variable ` has been allocated as
constant L. We then refine S(C, ρ) to Sg(C, ρ), which only refers to concrete lock labels:

Sg(C, ρ) = {L | C ` ρ� ` ∧ C ` L ≤1 `}

Thus Sg(C, ρ) is the set of concrete locks correlated with ρ in C.
Next we define valid evaluation steps, which are those such that if a location R is

accessed with lock L, then L ∈ Sg(C,R).

Definition 3.4.1 (Valid Evaluation) We write C ` e −→ e′ if-f e ≡ E[![L] vR] or e ≡
E[v′R :=[L] v] implies L ∈ Sg(C,R).

Notice that this still allows a location to be correlated with more than one lock. We
define an auxiliary judgment ε `ok C, which holds if in C all locations are consistently
correlated and no lock labels in ε have been allocated.

We write `cp for the type judgment in λcp
� . We then show preservation, which

implies soundness.

Lemma 3.4.2 (Preservation) If C; Γ `cp e : τ ; ε where ε `ok C and e −→ e′, then there
exists some C ′, ε′, such that (ε′ − ε) ∩ fl(C) = ∅; and C ′ ` C; and C ′ ` e −→ e′; and
ε′ `ok C

′; and C ′; Γ `cp e′ : τ ; ε′.

(The proof is by induction on C; Γ `cp e : τ ; ε.) This lemma shows that if we begin
with a consistently correlated constraint system and take a step for an expression e whose
effect is ε, then the evaluation is valid. Moreover, there is some consistently correlated
C ′ that entails C, where C ′ may contain additional constraints if the evaluation step al-
located any locks or locations. Notice that since C ′ entails C, any correlations that hold
in C also hold in C ′. Since at each evaluation step we preserve existing correlations and
maintain consistent correlation, a well-typed program is always consistently correlated
during evaluation.

Finally, we can prove that we can reduce judgments in λ� to λcp
� . This reduction-

based proof technique follows Fähndrich et al [38].

Lemma 3.4.3 (Reduction) Given a derivation of C; Γ ` e : τ ; ε, then C∗; Γ∗ `cp e :
τ ; ε∗.

where C∗ is the set of constraints closed according to the rules in Figure 3.9(a) and (b), ε∗

is the set of locks in ε according to the rules in Figure 3.9(c), and Γ∗ is a translation from
λ� to λcp

� type assumptions.
Full proofs can be found in Appendix A.
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Chapter 4

Label flow analysis with existential
context sensitivity

In programming languages, existential quantification is useful for describing rela-
tionships among members of a structured type. For example, we may have a list in which
there exists some mutual exclusion lock l in each list element such that l protects the
data stored in that element. With this information, a static analysis can reason about the
relationship between locks and locations in the list even when the precise identity of the
lock and/or location is unknown. To facilitate the construction of such static analyses, this
chapter extends the context-sensitive label flow analysis algorithm presented in Chapter 2
with support for existential quantification. Following Chapter 2, we use context-free lan-
guage reachability (CFLR) to develop an efficient O(n3) label flow inference algorithm.
We prove the algorithm sound by reducing its derivations to those in a system based on
polymorphically-constrained types.

4.1 Introduction
Many modern static program analyses are context-sensitive, meaning they can an-

alyze different calls to the same function without conservatively attributing results from
one call site to another, as shown in Chapter 2. While this technique is very useful, it
often aids little in the analysis of data structures. In particular, a typical alias analysis,
even a context-sensitive one, conflates all elements of the same data structure, resulting
in a “blob” of indistinguishable pointers [28] that cannot be precisely analyzed.

One way to solve this problem is to use existential quantification [107] to express
relations among members of each individual data structure element. For example, an
element might contain a buffer and the length of that buffer [168]; a pointer to data and the
lock that must be held when accessing it [125, 42]; or a closure, consisting of a function
and a pointer to its environment [105]. The important idea is that such relations are sound
even when the identity of individual data structure elements cannot be discerned.

This chapter extends the context-sensitive label flow analysis algorithm presented in
Chapter 2 to support existential quantification. Our goal is to provide a formal foundation
for augmenting static analyses with support for existential quantification. The core result
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presented in this chapter is a provably sound and efficient type inference system for label
flow that supports existential quantification. In summary:

• We present λcp
∃ , a subtyping-based label-flow system based on the copying system

presented in Chapter 2. Our contribution is to show how to support existential
quantification using existential types [107], applying the duality of ∀ and ∃. We
prove that the resulting system is sound. (Section 4.3)

• We present λcfl
∃ , an alternative to λcp

∃ that supports efficient inference. Our con-
tribution is to show that existentially-quantified flow can also be expressed as a
CFLR problem as in chapter 2, and to prove that λcfl

∃ is sound by reducing it to λcp
∃ .

These results are interesting because existential types are first-class in our system,
as opposed to universal types, which in the style of Hindley-Milner only appear
in type environments. To make inference tractable, we require the programmer to
indicate where existential types are used, and we restrict the interaction between
existentially bound labels and free labels in the program. (Section 4.4)

4.2 Existential context sensitivity
First, we demonstrate how to use existential quantification during static analysis

to efficiently model properties of data structures more precisely. We begin by sketching
our new technique for supporting first-class existential types, extending the label flow
analysis presented in Chapter 2. Sections 4.3 and 4.4 formally develop the label flow
systems introduced here.

4.2.1 Existential types and label flow
Consider the example shown in Figure 4.1(a). In this program, functions f and g

add an unspecified value to their argument. As before, we wish to determine which inte-
gers flow to which + operations. In the third line of this program we create existentially-
quantified pairs using pack operations in which f is paired with 1 and g with 2. Using an
if, we then conflate these two pairs, binding one of them to p. In the last line we use p by
applying its first component to its second component. (We use pattern matching in this
example for simplicity, while the language in Section 4.3 uses explicit projection.)

In this example, no matter which pair p is assigned, f is only ever applied to 1,
and g is only ever applied to 2. However, an analysis like the one described above would
conservatively conflate the types at the two pack sites, generating spurious constraints
L1 ≤ L4 and L2 ≤ L3. To solve this problem, Section 4.3 presents λcp

∃ , a system that
can model p precisely by giving it a polymorphically constrained existential type

∃Lx,Ly[Ly ≤ Lx].(intLx → int)× intLy

indicating that p contains a pair whose second element flows to the argument position of
its first element. (The uninteresting labels are omitted for clarity.) At packi, this type
is instantiated to yield L1 ≤ La, and since La ≤ L3 we have L1 ≤ L3 transitively.
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1 let f = λ a . a +L3 · · · in
2 let g = λ b . b +L4 · · · in
3 let p = if · · · then
4 packi (f, 1L1)
5 else
6 packj (g, 2L2)
7 in
8 unpack (p1, p2) = p in
9 p1 @ p2

f

La

L3

•

→
Lxi

•

→

×

Lyi

L1

)i (i

Lx •

→

×

Ly

p

g

Lb

L4

•

→
Lxk

•

→ Lyk

L2

)k (k

×∃ ∃

(a) Source program (b) Flow graph

Figure 4.1: Existential types example

Instantiating at packk yields L2 ≤ Lb ≤ L4. Thus we precisely model that 1L1 only flows
to +L3 and 2L2 only flows to +L4.

To support existential types, we have extrapolated on the duality of universal and
existential quantification. Intuitively, we give a universal type to id in Figure 2.2 because
id is polymorphic in the label it is called with—whatever it is called with, it returns.
Conversely, in Figure 4.1 we give an existential type to p because the rest of the program
is polymorphic in the pairs—no matter which pair is used, the first element is always
applied to the second.

Section 4.4 shows in detail how to perform inference with existential types effi-
ciently using CFLR. Figure 4.1(b) shows the flow graph generated for our example pro-
gram. When packing the pair (f, 1L1), instead of normal flow edges we generate edges
labeled by i-parentheses, and we generate edges labeled by k-parentheses when packing
(g, 2L2). Flow for this graph again corresponds to paths with no mismatched parentheses.
For example, in this graph there is a matched path from L2 to L4, indicating that the value
2L2 may flow to +L4, and there is similarly a path from L1 to L3. Notice that restricting
flow to matched paths again suppresses spurious flows from L2 to L3 and from L1 to L4.
Thus, the two existential packages can be conflated without losing the flow relationships
of their members.

4.2.2 Existential quantification and race detection
Our interest in studying existential label flow arose during the development of

LOCKSMITH. LOCKSMITH uses label flow analysis to determine what locations ρ may
flow to each assignment or dereference in the program, and we use a combination of label
flow analysis and linearity checking to determine which locks ` are definitely held at that
point. Here ρ and ` are just like any other flow labels, and we use different symbols only
to emphasize the quantities they label.

Each time a location ρ is accessed with lock ` held, LOCKSMITH generates a corre-
lation constraint ρ�`. After analyzing the whole program, LOCKSMITH ensures that, for
each location ρ, there is one lock consistently held for all accesses. Correlation constraints
can be easily integrated into flow graphs, and we use a variant of the CFLR closure rules
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1 struct cache entry {
2 int refs ;
3 pthread mutex t refs mutex;
4 ...
5 };
6

7 void cache entry addref(cache entry ∗entry) {
8 ...
9 pthread mutex lock(&entry−>refs mutex);

10 entry−>refs++;
11 pthread mutex unlock(&entry−>refs mutex);
12 ...
13 }

Figure 4.2: Example code with a per-element lock

to solve for correlations context-sensitively, as shown in chapter 3.
During our experiments we found several examples of code similar to Figure 4.2,

which is taken from the knot multi-threaded web server [160]. Here cache entry is a
linked list with a per-node lock refs mutex that guards accesses to the refs field. With-
out existential quantification, LOCKSMITH conflates all the locks and locations in the
data structure. As a result, it does not know exactly which lock is held at the write to
entry−>refs, and reports that entry−>refs may not always be accessed with the same
lock held, falsely indicating a potential data race.

With existential quantification, however, LOCKSMITH is able to model this idiom
precisely. We add annotations to specify that in type cache entry, the fields refs and
refs mutex should be given existentially quantified labels. Then we add pack annota-
tions when cache entry is created and unpack annotations wherever it is used, e.g., within
cache entry addref. The result is that, in terms of polymorphically constrained types, the
entry parameter of cache entry addref is given the type

∃`, ρ[ρ� `].{refs : ref ρ()int, refs mutex : lock `, . . .}

and thus LOCKSMITH can verify that the lock refs mutex always guards the refs field in
a given node. The remainder of this chapter focuses exclusively on existential types for
label flow in general, not its particular application used in LOCKSMITH.

4.3 λcp
∃ : Context sensitivity with constraint copying

We begin our formal presentation by studying label flow in the context of a poly-
morphically-constrained type system λcp

∃ , which is essentially the copying system pre-
sented in chapter 2, extended to include existential types. Note that λcp

∃ supports label
polymorphism but not polymorphism in the type structure.
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e ::= v | x | e1@Le2 | if0L e0 then e1 else e2 | (e1, e2)L | e.Lj
| let f = e1 in e2 | fixi f : t.e | f i

| packL,i e | unpackL x = e1 in e2

v ::= n | λLx : t.e | (v1, v2)
L

τ ::= intl | τ ×l τ | τ →l τ | ∃l~l[C].τ

C ::= | ` ≤ `
` ::= L | l

Figure 4.3: A language for label flow analysis with existentials

4.3.1 A language with existential packages
Figure 4.3 extends the (annotated) source language from Figure 2.3 with constructs

for creating and using existential packages. Again, we highlight the differences to im-
prove readability.

We annotate the new constructor pack and destructor unpack expressions with con-
stant labels. As in chapter 2, the goal of our type system is to determine which constructor
labels flow to which destructor labels. Expressions include existential packages, which
are created with packL,i and consumed with unpack. Here L labels the package itself,
since existentials are first-class and can be passed around the program just like any other
value, and i identifies this pack as an instantiation site. Instantiation sites are ignored in
this section, but are used in Section 4.4.

The types and environments used by λcp
∃ extend the types in Figure 2.3 to add

existential types:
τ ::= . . . | ∃l~l[C].τ

The new type ∃l~l[C].τ stands for the type S(τ) where constraints S(C) are satisfied for
some substitution S. Note that universal types may only appear in type environments
while existential types may appear arbitrarily.

4.3.2 Typing
The expression typing rules are presented in Figures 4.4 and 4.5. Judgments have

the form C; Γ `cp e : τ , meaning in type environment Γ with flow constraints C, ex-
pression e has type τ . As in chapter 2, in these type rules C ` l ≤ l′ means that the
constraint l ≤ l′ is in the transitive closure of the constraints in C, and C ` C ′ means that
all constraints in C ′ are in the transitive closure of C.

Figure 4.4 contains the monomorphic typing rules, which are as in chapter 2, re-
peated here for clarity.

Figure 4.5 contains the polymorphic typing rules. Universal types are as in chap-
ter 2, introduced by [LET] and [FIX]. In both these rules, the constraints C ′ used to type
e1 become the bound constraints in the polymorphic type. Whenever a variable f with
a universal type is used in the program text, written f i where i identifies this occurrence
of f , it is type checked by [INST]. This rule instantiates the type of f , and the premise
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[ID]
C; Γ, x : τ `cp x : τ

[INT]
C ` L ≤ l

C; Γ `cp nL : intl

[LAM]

C; Γ, x : τ `cp e : τ ′

C ` L ≤ l

C; Γ `cp λLx.e : τ →l τ ′
[APP]

C; Γ `cp e1 : τ →l τ ′

C; Γ `cp e2 : τ C ` l ≤ L

C; Γ `cp e1@Le2 : τ ′

[PAIR]

C; Γ `cp e1 : τ1 C; Γ `cp e2 : τ2
C ` L ≤ l

C; Γ `cp (e1, e2)
L : τ1 ×l τ2

[PROJ]

C; Γ `cp e : τ1 ×l τ2
C ` l ≤ L j ∈ {1, 2}

C; Γ `cp e.Lj : τj

[COND]

C; Γ `cp e0 : intl C ` l ≤ L
C; Γ `cp e1 : τ C; Γ `cp e2 : τ

C; Γ `cp if0L e0 then e1 else e2 : τ
[SUB]

C; Γ `cp e : τ1
C; ∅ ` τ1 ≤ τ2
C; Γ `cp e : τ2

Figure 4.4: λcp
∃ Monomorphic Rules

C ` S(C ′) effectively inlines the constraints of f function into the caller’s context.
Existential types are manipulated using pack and unpack. To understand [PACK]

and [UNPACK], recall that ∀ and ∃ are dual notions. Notice that ∀ introduction ([LET])
restricts what can be universally quantified, and instantiation occurs at ∀ elimination
([INST]). Thus ∃ introduction ([PACK]) should perform instantiation, and ∃ elimination
([UNPACK]) should restrict what can be existentially quantified.

In [PACK], an expression e with a concrete type S(τ) is abstracted to an existential
type ∃l~l[C ′].τ . Notice that the substitution maps abstract τ and C ′ to concrete S(τ) and
S(C ′)—creating an existential corresponds to passing an argument to “the rest of the pro-
gram,” as if that were universally quantified in ~l, and the constraints C ′ are determined by
how the existential package is used after it is unpacked. Similarly to [INST], the [PACK]
premise C ` S(C ′) inlines the abstract constraints S(C ′) into the current constraints.

Rule [UNPACK] binds the contents of the type to x in the scope of e2. This rule
places two restrictions on the existential package. First, e2 must type check with the
constraints C ∪ C ′.1 Thus, any constraints among the existentially bound labels ~l needed
to check e2 must be in C ′. Second, the labels ~l must not escape the scope of the unpack
(as is standard [107]), which is ensured by the subset constraint.

The [SUB] rule in Figure 4.4 uses the subtyping relation shown in Figure 4.6. These
rules are standard structural subtyping rules extended to labeled types. We use a simple
approach to decide whether one existential is a subtype of another. Rule [SUB-∃] requires
C1 ` C2, since an existential type can be used in any position inducing the same or fewer
flows between labels. We allow subtyping among existentials of a “similar shape.” That

1Note that we could have chosen this hypothesis to be C ′; Γ, x : τ `cp e2 : τ ′ and still had a sound
system, but this choice simplifies the reduction from λcfl

∃ to λcp
∃ discussed in Section 4.4.
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[LET]

C ′; Γ `cp e1 : τ1 C; Γ, f : ∀~l[C ′].τ1 `cp e2 : τ2
~l ⊆ (fl(τ1) ∪ fl(C ′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2

[FIX]

C ′; Γ, f : ∀~l[C ′].τ `cp e : τ C ` S(C ′)
~l ⊆ (fl(τ) ∪ fl(C ′)) \ fl(Γ)

C; Γ `cp fix: f.eS(τ)

[INST]
C ` S(C ′)

C; Γ, f : ∀~l[C ′].τ `cp f i : S(τ)

[PACK]
C; Γ `cp e : S(τ) C ` S(C ′) C ` L ≤ l

C; Γ `cp packL,i e : ∃l~l[C ′].τ

[UNPACK]

C; Γ `cp e1 : ∃l~l[C ′].τ C ∪ C ′; Γ, x : τ `cp e2 : τ ′

~l ⊆ (fl(τ) ∪ fl(C ′)) \ (fl(Γ) ∪ fl(C) ∪ fl(τ ′)) C ` l ≤ L

C; Γ `cp unpackL x = e1 in e2 : τ ′

Figure 4.5: λcp
∃ Polymorphic Rules

is, they must have exactly the same (alpha-convertible) bound variables, and there must
be no constraints between variables bound in one type and free in the other. We use a
set D to track the set of bound variables, updated in [SUB-∃].2 Rule [SUB-LABEL-2]
permits subtyping between identical bound labels (l ∈ D), whereas rule [SUB-LABEL-1]
allows subtyping among non-identical labels only if neither is bound.

These restrictions on existentials forbid some clearly erroneous judgments such as
C ` ∃l[∅].intl ≤ ∃l[∅].intl′ . The two existential types in this example quantify over the
same label; however, the subtyping is invalid because it would create a constraint between
a bound label and an unbound label. However, these restrictions also forbid some valid
existential subtyping, such as C ` (∃l, l′[].l ≤ l′intl → intl

′
) ≤ (∃l, l′[].∅intl → intl),

which is permissible because l′ is a bound variable with no other lower bounds except
l, hence it can be set to l without losing information. However, our typing rules do not
allow this. In our experience with LOCKSMITH we have not found this restriction to be an
issue, and we leave it as an open question whether it can be relaxed while still maintaining
efficient CFLR-based inference.

4.3.3 Soundness
We prove soundness for λcp

∃ using subject reduction. Using a standard small-step
operational semantics e −→ e′, we define a flow-preserving evaluation step as one whose
flow is allowed by some constraint set C. Then we prove that if a program is well-typed

2The appendix B uses an equivalent version of D that makes the reduction proof easier.
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[SUB-LABEL-1]
l, l′ 6∈ D C ` l ≤ l′

C;D ` l ≤ l′
[SUB-LABEL-2]

l ∈ D
C;D ` l ≤ l

[SUB-PAIR]
C;D ` l ≤ l′ C;D ` τ1 ≤ τ ′1 C;D ` τ2 ≤ τ ′2

C;D ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

[SUB-FUN]
C;D ` l ≤ l′ C;D ` τ ′1 ≤ τ1 C;D ` τ2 ≤ τ ′2

C;D ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[SUB-INT]
C;D ` l ≤ l′

C;D ` intl ≤ intl
′ [SUB-∃]

C1 ` C2 D′ = D ∪~l
C;D′ ` τ1 ≤ τ2 C;D ` l1 ≤ l2

C;D ` ∃l1~l[C1].τ1 ≤ ∃l2~l[C2].τ2

Figure 4.6: λcp
∃ Subtyping

according to C then it always preserves flow.

Definition 4.3.1 (Flow-preserving Evaluation Step) Suppose e −→ e′ and in this re-
duction a destructor (if0, @, .j, unpack) labeled L′ consumes a constructor (n, λ, (·, ·),
pack, respectively) labeled L. Then we write C ` e −→ e′ if C ` L ≤ L′. We also write
C ` e −→ e′ if no value is consumed during reduction (for let or fix).

Theorem 4.3.2 (Soundness) If C; Γ `cp e : τ and e −→∗ e′, then C ` e −→∗ e′.

Here, −→∗ denotes the reflexive and transitive closure of the −→ relation. The proof is
by induction on C; Γ `cp e : τ and is presented in Appendix B.

4.4 λcfl
∃ : Context sensitivity as CFLR

The λcp
∃ type system is relatively easy to understand and convenient for proving

soundness, but experience suggests it is awkward to implement directly as an inference
system. This section presents a label flow inference system λcfl

∃ based on CFLR, in the
style of Rehof et al [132, 38]. This system uses a single, global set of constraints, which
correspond to flow graphs like those shown in Figures 2.2(d) and 4.1. Given a flow graph,
we can answer queries “Does any value labeled l1 flow to a destructor labeled l2?”, written
l1 ≤ l2, by using CFLR. We first present type checking rules for λcfl

∃ and then explain how
they are used to interpret the flow graph in Figure 4.1. Then we explain how the rules can
be interpreted to yield an efficient inference algorithm. Finally, we prove that λcfl

∃ reduces
to λcp

∃ and thus is sound.
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4.4.1 Typing
Types in λcfl

∃ are similar to the CFLR system in chapter 2 with the addition of
existential types, and are defined as follows:

τ ::= intl | τ →l τ | τ ×l τ | ∃l~l.τ

In contrast to λcp
∃ , universal types (∀~l.τ,~l) and existential types ∃l~l.τ do not include a

constraint set, since we generate a single, global flow graph. Universal types contain a
set ~l of labels that are not quantified. For clarity universal types also include ~l, the set of
labels that are quantified, but it is always the case that ~l = fl(τ) \~l, as in chapter 2. Exis-
tential types do not include a set ~l, because we assume that the programmer has specified
which labels are existentially quantified. We check that the specification is correct when
existentials are unpacked (more on this below).

Typing judgments in λcfl
∃ have the form C; Γ ` e : τ , where C describes the edges

in the flow graph. The constraint set C has the same form as in λcp
∃ . It contains subtyping

constraints l ≤ l′ (shown as unlabeled directed edges in Figures 2.2 and 4.1) and it also
contains instantiation constraints [132] of the form l �i

p l
′. Such a constraint indicates

that l is renamed to l′ at instantiation site i. (Recall that each instantiation site corresponds
to a pack or a use of a universally quantified type.) As in chapter 2, the p indicates a
polarity, which describes the flow of data. When p is + then l flows to l′, and so in our

examples we draw the constraint l �i
+ l′ as an edge l

)i−→ l′. When p is − the reverse

holds, and so we draw the constraint l �i
− l

′ as an edge l′
(i−→ l. Instantiation constraints

correspond to substitutions in λcp
∃ , and they enable context-sensitivity without the need to

copy constraint sets.
The monomorphic rules for λcfl

∃ are presented in Figure 4.7. With the exception of
[SUB], these are identical to the rules in Figure 4.4. Figure 4.8 presents the polymorphic
λcfl
∃ rules. We define fl(τ) to be the free labels of a type as usual, except fl(∀~l.τ,~l) =

(fl(τ) \ ~l) ∪ ~l. Rules [LET] and [FIX] bind f to a universal type as in chapter 2. As is
standard we cannot quantify label variables that are free in the environment Γ, which we
represent by setting ~l = fl(Γ) in type (∀~l.τ1,~l). The [INST] rule instantiates the type τ
of f to τ ′ using an instantiation constraint C ` τ �i

+ τ ′ : S. This constraint represents
a renaming S, analogous to that in λcp

∃ ’s [INST] rule, such that S(τ) = τ ′. All non-
quantifiable labels, i.e., all labels in ~l, should not be instantiated, which we model by
requiring that any such label instantiate to itself, both positively and negatively.

Rule [PACK] constructs an existential type by abstracting a concrete type τ ′ to ab-
stract type τ . In λcp

∃ ’s [PACK], there is a substitution such that τ ′ = S(τ), and thus
λcfl
∃ ’s [PACK] has a corresponding instantiation constraint τ �i

− τ ′. The instantiation
constraint has negative polarity because although the substitution is from abstract τ to
concrete τ ′, the direction of flow is the reverse, since the packed expression e flows to the
packed value. In [PACK] the choice of ~l is not specified. As in other systems for inferring
first-class existential and universal types [13, 90, 134, 146], we expect the programmer
to choose this set. In contrast to [INST], we do not generate any self-instantiations in
[PACK], because we enforce a stronger restriction for escaping variables in [UNPACK].
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[ID]
C; Γ, x : τ `cfl x : τ

[INT]
C ` L ≤ l

C; Γ `cfl n
L : intl

[LAM]

C; Γ, x : τ `cfl e : τ ′

C ` L ≤ l

C; Γ `cfl λ
Lx.e : τ →l τ ′

[APP]

C; Γ `cfl e1 : τ →l τ ′

C; Γ `cfl e2 : τ C ` l ≤ L

C; Γ `cfl e1@
Le2 : τ ′

[PAIR]

C; Γ `cfl e1 : τ1 C; Γ `cfl e2 : τ2
C ` L ≤ l

C; Γ `cfl (e1, e2)
L : τ1 ×l τ2

[PROJ]

C; Γ `cfl e : τ1 ×l τ2
C ` l ≤ L j ∈ {1, 2}

C; Γ `cfl e.
Lj : τj

[COND]

C; Γ `cfl e0 : intl C ` l ≤ L
C; Γ `cfl e1 : τ C; Γ `cfl e2 : τ

C; Γ `cfl if0L e0 then e1 else e2 : τ
[SUB]

C; Γ `cfl e : τ1
C; ∅; ∅ ` τ1 ≤ τ2
C; Γ `cfl e : τ2

Figure 4.7: λcfl
∃ Monomorphic Rules

Rule [UNPACK] treats the abstract existential type as a concrete type within e2, and
thus any uses of the unpacked value place constraints on its existential type. The last
premise of [UNPACK] ensures that abstract labels do not escape, and moreover abstract
labels may not constrain any escaping labels in any way. Specifically, we require that
there are no flows after solving the constraints (see below) between any labels in ~l and
any labels in ~l, which is the set of labels that could escape. If this condition is violated,
then the existentially quantified labels ~l chosen by the programmer are invalid and the
program is rejected. The [UNPACK] rule in λcp

∃ does not forbid interaction between free
and bound labels, and therefore λcfl

∃ is strictly weaker than λcp
∃ . However, without this

restriction we can produce cases where mixing existentials and universals produces flow
paths that should be valid but have mismatched parentheses. Section 4.4.4 contains one
such example. In practice we believe the restriction is acceptable, as we have not found it
to be an issue with LOCKSMITH. We leave it as an open question whether the restriction
can be relaxed while still maintaining efficient CFLR-based inference.

Figure 4.9 defines the subtyping relation used in [SUB]. The only interesting dif-
ference with λcp

∃ arises because of alpha-conversion. In λcp
∃ alpha-conversion is implicit,

and only trivial constraints are allowed between bound labels (by [SUB-LABEL-2] of Fig-
ure 4.6). We cannot use implicit alpha-conversions in λcfl

∃ , however, because we are pro-
ducing a single, global set of constraints. Thus instead of the single D used in λcp

∃ ’s[SUB]
rule, λcfl

∃ uses two ∆i, which are sequences of ordered vectors of existentially-bound la-
bels, updated in [SUB-∃]. In the rules, the syntax ∆⊕{l1, ..., ln} means to append vector
{l1, ..., ln} to sequence ∆. Rule [SUB-IND-2] in Figure 4.9, which corresponds to [SUB-
LABEL-2] in Figure 4.6, does allow subtyping between bound labels lj and l′j—but only
if they occur in exactly the same quantification position. Thus these subtyping edges ac-
tually correspond to alpha-conversion. We could also allow this in the λcp

∃ system, but it
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[LET]

C; Γ `cfl e1 : τ1 C; Γ, f : (∀~l.τ1,~l) `cfl e2 : τ2
~l = fl(τ1) \~l ~l = fl(Γ)

C; Γ `cfl let f = e1 in e2 : τ2

[FIX]

C; Γ, f : (∀~l.τ,~l) `cfl e : τ ~l = fl(τ) \ fl(Γ) ~l = fl(Γ)

C ` τ �i
+ τ ′ : S C ` ~l �i

+
~l C ` ~l �i

−
~l

C; Γ `cfl fix: f.eτ ′

[INST]
C ` τ �i

+ τ ′ : S C ` ~l �i
+
~l C ` ~l �i

−
~l

C; Γ, f : (∀~l.τ,~l) `cfl f
i : τ ′

[PACK]
C; Γ `cfl e : τ ′ C ` τ �i

− τ
′ : S dom(S) = ~l C ` L ≤ l

C; Γ `cfl packL,i e : ∃l~l.τ

[UNPACK]

C; Γ `cfl e1 : ∃l~l.τ C; Γ, x : τ `cfl e2 : τ ′

~l = fl(Γ) ∪ fl(∃l~l.τ) ∪ fl(τ ′) ∪ L ~l ⊆ fl(τ) \~l C ` l ≤ L

∀l ∈ ~l, l′ ∈ ~l.(C 6 `l ≤ l′ and C 6 `l′ ≤ l)

C; Γ `cfl unpackL x = e1 in e2 : τ ′

Figure 4.8: λcfl
∃ Polymorphic Rules

adds no expressive power and complicates proving soundness.
Figure 4.10 defines instantiation constraints on types in terms of instantiation con-

straints on labels. Judgments have the formC;D ` τ �i
p τ

′ : Si, where Si is the renaming
defined by the instantiation and D is the same as in Figure 4.6—we do not need to allow
alpha-conversion here, because we can always apply [SUB] if we wish to alpha-rename.
Thus [INST-IND-1] permits instantiation of unbound labels, and [INST-IND-2] forbids
renaming bound labels. For example, if we have an ∃ type nested inside a ∀ type, instan-
tiating the ∀ type should not rename any of the bound variables of the ∃ type. Aside from
this the rules in Figure 4.10 are standard.

Given a flow graph described by constraints C, we use the closure rules presented
in Figures 2.6 and 2.10 in chapter 2 to compute the closure of the relation l1 ≤ l2, which
means label l1 flows to label l2.

Our flow relation≤ in the closure of C, corresponds to the m relation from Rehof
et al [132], where m stands for “matched paths.” The Rehof et al system also includes
so-called PN paths, which allow extra parentheses that are not matched by anything, e.g.,
extra open parentheses at the beginning of the path, or extra closed parentheses at the end.
In our system we concern ourselves only with constants, which by [CONSTANT] have all
possible self-loops (this rule is not included in the Rehof et al system). These self-loops
mean that any flow from one constant to another via a PN path is also captured by a
matched path between the constants. Thus for purposes of showing soundness, matched
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[SUB-IND-1]
C ` l ≤ l′

C; ∅; ∅ ` l ≤ l′
[SUB-INT]

C; ∆1; ∆2 ` l ≤ l′

C; ∆1; ∆2 ` intl ≤ intl
′

[SUB-IND-2]
C ` lj ≤ l′j

C; ∆1 ⊕ {l1, . . . , ln}; ∆2 ⊕ {l′1, . . . , l′n} ` lj ≤ l′j

[SUB-IND-3]
C; ∆1; ∆2 ` l ≤ l′ l 6= li l′ 6= l′j ∀i, j ∈ [1..n]

C; ∆1 ⊕ {l1, . . . , ln}; ∆2 ⊕ {l′1, . . . , l′n} ` l ≤ l′

[SUB-PAIR]
C; ∆1; ∆2 ` l ≤ l′ C; ∆1; ∆2 ` τ1 ≤ τ ′1 C; ∆1; ∆2 ` τ2 ≤ τ ′2

C; ∆1; ∆2 ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

[SUB-FUN]
C; ∆1; ∆2 ` l ≤ l′ C; ∆1; ∆2 ` τ ′1 ≤ τ1 C; ∆1; ∆2 ` τ2 ≤ τ ′2

C; ∆1; ∆2 ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[SUB-∃]

∆′
1 = ∆1 ⊕ ~l1 ∆′

2 = ∆2 ⊕ ~l2 S(~l2) = ~l1
C; ∆′

1; ∆
′
2 ` τ1 ≤ τ2 C; ∆1; ∆2 ` l1 ≤ l2

C; ∆1; ∆2 ` ∃l1~l1.τ1 ≤ ∃l2~l2.τ2

Figure 4.9: λcfl
∃ Subtyping

paths suffice. We could add PN paths to our system with no difficulty to allow queries on
intermediate flows, but have not done so for simplicity.

4.4.2 Example
Consider again the example in Figure 4.1. The expression packi(f, 1L1) is given the

type
∃Lxi, Lyi.(intLxi → int)× intLyi

by the [PACK] rule. [PACK] also instantiates the pair’s abstract type to its concrete type
using the judgment

C ` (intLxi → int)× intLyi �i
− (intLa → int)× intL1

Proving this judgment requires appealing in several places to [INST-IND-1], whose pre-
mise C ` l �i

p l
′ requires that C contain constraints Lyi �i

− L1 and Lxi �i
+ La, among

others. These are shown as dashed, labeled edges in the figure. Notice that the direction
of the renaming is opposite the direction of flow: The concrete labels flow to the abstract
labels, but the abstract type is instantiated to the concrete type. Hence the instantiation
has negative polarity. This instantiated existential type flows via subtyping to the type of
p shown at the center of the figure. The directed edges between the type components are
induced by subtyping (applying [SUB-∃] at the top level).
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[INST-IND-1]
l, l′ 6∈ D C ` l �i

p l
′

C;D ` l �i
p l

′ : ∅
[INST-IND-2]

l ∈ D
C;D ` l �i

p l : S

[INST-INT]
C;D ` l �i

p l
′ : S

C;D ` intl �i
p int

l′ : S

[INST-PAIR]
C;D ` l �i

p l
′ : S C;D ` τ1 �i

p τ
′
1 : S C;D ` τ2 �i

p τ
′
2 : S

C;D ` τ1 ×l τ2 �i
p τ

′
1 ×l′ τ ′2 : S

[INST-FUN]
C;D ` l �i

p l
′ : S C;D ` τ1 �i

p̄ τ
′
1 : S C;D ` τ2 �i

p τ
′
2 : S

C;D ` τ1 →l τ2 �i
p τ

′
1 →l′ τ ′2 : S

[INST-∃]
D′ = D ∪~l C;D′ ` τ1 �i

p τ2 : S C;D ` l1 �i
p l2 : S

C;D ` ∃l1~l.τ1 �i
p ∃l2~l.τ2 : S

Figure 4.10: λcfl
∃ Instantiation

The unpack of p is typed by the [UNPACK] rule. Within the body of the unpack,
we apply the second part of the pair (p2) to the first part (p1). Here, p2 has type intLy

while p1 has type intLx → int, and thus to apply the [APP] rule, we must first prove
(among other things) that C; ∅; ∅ ` intLy ≤ intLx. This requires that Ly ≤ Lx be in
C according to [SUB-IND-1], and is shown as an unlabeled edge in the figure. With this
edge we have C ` L1 ≤ L3 and C ` L2 ≤ L4 (but C 6 `L1 ≤ L4). The final premises of
[UNPACK] are satisfied because the bound labels Ly and Lx only flow among themselves
or to variables bound in existential types, which are not free.

4.4.3 An inference algorithm
λcfl
∃ has been presented thus far as a checking system in which the flow graph,

described by C, is assumed to be known. To infer this flow graph automatically requires
a simple reinterpretation of the rules, as in chapter 2. The algorithm has three stages and
runs in time O(n3), where n is the size of the type-annotated program.

First, we type the program according to the rules in Figures 4.7-4.10. As usual the
non-syntactic rule [SUB] can be incorporated into the remaining rules to produce a syntax-
directed system [106]. During typing, we interpret a premise C ` l ≤ l′ or C ` ~l �i

p
~l

as generating a constraint; i.e., we add l ≤ l′ (or ~l �i
p
~l) to the set of global constraints

C. Free occurrences of l in the rules are interpreted as fresh label variables. For example,
in [INT] we interpret l as a fresh variable l and add L ≤ l to C. When choosing types
(e.g., τ in [LAM] or τ ′ in [INST]) we pick a type τ of the correct shape with fresh label
variables in every position. After typing we have a flow graph defined by constraint sets
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1 let g = λ z .
2 let f = λ x . unpack y = x in y in
3 let p = packk z in
4 f i p
5 in
6 gm 1L1 +L2 · · ·

→

Lz

(k

int∃

Lp

Louti

Lz'

→

int∃

Lx

Lout

)i ffi

L1 L2(m )m

(a) Source program (b) Flow graph

Figure 4.11: Example with Mismatched Flow

C.
Next, we compute all flows according to the rules in Figures 2.6 and 2.10. Ex-

cluding the final premise of [UNPACK] and the D’s in [SUB] and [INST], performing
typing and computing all flows takes time O(n3) [132]. To implement [SUB-IND-i] ef-
ficiently, rather than maintain D sets explicitly and repeatedly traverse them, we tem-
porarily mark each variable with a pair (i, j) indicating its position in D and its position
in ~l as we traverse an existential type. We can assume without loss of generality that
|~l| ≤ |fl(τ)| in an existential type, so traversing ~l does not increase the complexity. Then
we can select among [SUB-IND-1] and [SUB-IND-2] in constant time for each constraint
C; ∆1; ∆2 ` l ≤ l′, so this does not affect the running time, and similarly for [INST-IND-
i].

Finally, we check the last reachability condition of [UNPACK] to ensure the pro-
grammer chose a valid specification of existential quantification. Given that we have
computed all flows, we can easily traverse the labels in ~l and check for paths to ~l and
vice-versa. Since each set is of size O(n), this takes O(n2) time, and since there are
O(n) uses of [UNPACK], in total this takes O(n3) time. Thus the algorithm as a whole is
O(n3) +O(n3) = O(n3).

4.4.4 Differences between λcp
∃ and λcfl

∃

As mentioned in Section 4.4, if we weaken λcfl
∃ ’s [UNPACK] rule to permit exis-

tentially bound labels to interact with free labels, then we can construct examples with
mismatched flow. Figure 4.11(a) shows one such example. Here the function g takes an
argument z, packs it, and then returns the result of calling function f with the package.
Function f unpacks the existential and returns its contents. Thus g is the identity func-
tion, but with complicated dataflow. On the last line, the function g is applied to 1L1, and
the result is added using +L2. Thus L1 flows to L2. Let us assume that at packk, the
programmer wishes to quantify the type of the packed integer, and then compare λcp

∃ and
λcfl
∃ as applied to the program.

The λcp
∃ types rules assign f the type scheme

f : ∀Lout[∅].
(
∃Lx[Lx ≤ Lout].intLx

)
→ intLout

Notice that since f unpacks its argument and returns the contents, there is a constraint
between Lx, the label of the packed integer, and Lout, the label on f ’s result type. The
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interesting thing here is that Lx is existentially bound and Lout is not, which is acceptable
in λcp

∃ (technically, we need an application of [SUB] to achieve this), but not allowed in
λcfl
∃ . At the call to f , we instantiate f ’s type as

f i :
(
∃Lx[Lx ≤ Louti].int

Lx
)
→ intLouti

Let Lz be the label on g’s parameter, and let Lz′ be the label on g’s return type. Then
when we pack z and bind the result to p, we instantiate the abstract Lx to concrete Lz
and thus generate the constraint Lz ≤ Louti. Then g returns the result of f i, and hence
we have Louti ≤ Lz′. Putting these together and generalizing g’s type, we get

g : ∀Lz, Lz′, Louti[Lz ≤ Louti, Louti ≤ Lz′].intLz → intLz
′

Finally, we instantiate this type at gm, and we get L1 ≤ Lzm ≤ Loutim ≤ Lz′m ≤ L2,
and thus we have flow from L1 to L2.

Now consider applying λcfl
∃ to the same program. Figure 4.11(b) shows the resulting

flow graph. The type of f , shown at the right of the figure, is (∀Lout.(∃Lx.intLx) →
intLout, ∅) where in the global flow graph there is a constraint Lx ≤ Lout. As before,
this is a constraint between an existentially bound and free variable, which is forbidden
by the strong non-escaping condition in λcfl

∃ ’s [UNPACK] rule. However, assume for the
moment that we ignore this condition. Then the type of f i, shown in the left of the figure,
is

(
∃Lp.intLp

)
→ intLouti where we have an instantiation constraint Lout �i

+ Louti,
drawn as a dashed edge labeled )i in the figure. (Note that we have also applied an
extra step of subtyping to make the figure easier to read and drawn an edge Lp ≤ Lx,
although we could also set Lp = Lx.) Since the result of calling f i is returned, we
have Louti ≤ Lz′, where again Lz′ is the label on the return type of g. Moreover, at
packk, we instantiate the abstract type of p to its concrete type, resulting in the constraint
Lp �k

− Lz, where Lz is the label on g’s parameter. Finally, at the instantiation of g we
generate constraints Lz �m

− L1 and Lz′ �m
+ L2.

Notice that there is no path from L1 to L2, because (k does not match )i. The prob-
lem is that instantiation i must not rename Lp, and instantiation k must not rename Louti.
In CFLR, we prevent instantiations from renaming labels by adding “self-loops,” as in
[INST] in Figure 4.8. In this case, we should have Lp �i

± Lp and Louti �k
± Louti. We

expended significant effort trying to discover a system that would add exactly these self-
loops, but we were unable to find a solution that would work in all cases. For example,
adding a self-loop on Louti seems particularly problematic, since Louti is created only
after f i is instantiated, and not at the pack or the unpack points. Moreover, because we
have (m and )m at the beginning and end of the mismatched path, the self-loops on L1
and L2 do not help. Thus in [UNPACK] in Figure 4.8, we require existentially-quantified
labels to not have any flow with escaping labels to forbid this example.

4.4.5 Soundness
We have proven that programs that check under λcfl

∃ are reducible to λcp
∃ . The first

step is to define a translation function ΨC,I that takes λcfl
∃ types and transforms them to

λcp
∃ types. For monomorphic types ΨC,I is simply the identity. To translate a polymorphic
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λcfl
∃ type (∀~l.τ,~l) or ∃l~l.τ into a λcp

∃ type ∀~l[C ′].τ or ∃l~l[C ′].τ , respectively, ΨC,I needs to
produce a bound constraint set C ′. Rehof et al [132, 38] were able to choose C ′ = {l1 ≤
l2 | C ` l1 ≤ l2}, i.e., the closure of C. However, the addition of first class existentials
causes this approach to fail, because, for example, instantiating a ∀ type containing a type
∃l~l[C].τ could rename some variables in C (since C contains all variables used in the
program) and thereby violate the inductive hypothesis. Thus we introduce a projection
function ψS , where we define

ψS(l) =

{
l l ∈ S ∪ L⊔
{l′ ∈ S ∪ L | C ` l′ ≤ l} otherwise

where t represents the union of two labels. Then for a universal type, ΨC,I sets C ′ =
ψ(~l∪~l)(C), and for an existential type ΨC,I sets C ′ = ψ~l(C). We extend ΨC,I to type
environments in the natural way and define CS = ψS(C). Now we can show:

Theorem 4.4.1 (Reduction from λcfl
∃ to λcp

∃ ) Let D be a normal λcfl
∃ derivation

D :: C; Γ `cfl e : τ

Then
Cfl(Γ)∪fl(τ); ΨC,I(Γ) `cp e : ΨC,I(τ)

Proof: The proof is by induction on the derivation D. There are two key parts of the
proof. The first is a lemma that shows that the bound constraint sets chosen by ΨC,I

for universal and existential types are closed under substitutions at instantiation sites, so
that when we translate an occurrence of [INST] or [PACK] from λcfl

∃ to λcp
∃ we can prove

the hypothesis C ` S(C ′). The other key part occurs in translating an occurrence of
[UNPACK] from λcfl

∃ to λcp
∃ . In this case, by induction on the typing derivation for e2 we

have Cfl(Γ)∪fl(τ)∪fl(τ ′); ΨC,I(Γ), x : ΨC,I(τ) `cp e2 : ΨC,I(τ
′). By the last hypothesis of

[UNPACK] in λcfl
∃ , we know that there are no constraints between the quantified labels ~l

and any other labels. Thus we can partition the constraints on the left-hand side of the
above typing judgment into two disjoint sets: C(fl(Γ)∪fl(τ)∪fl(τ ′))\~l and C~l. The former are
the constraints needed to type check e1 in λcp

∃ , and the latter are those bound in the exis-
tential type of e1 by ΨC,I . These two constraint sets form the sets C and C ′, respectively,
needed for the [UNPACK] rule of λcp

∃ . A full, detailed proof can be found in Appendix B.
2 By combining Theorems 4.3.2 and 4.4.1, we then have soundness for the flow relation
≤ computed by λcfl

∃ . Notice that we have shown reduction but not equivalence. Rehof et
al [132, 38] also only show reduction, but conjecture equivalence of their systems. In our
case, equivalence clearly does not hold, because of the extra non-escaping condition on
[UNPACK] in λcfl

∃ . We leave it as an open question whether this condition can be relaxed
to yield provably equivalent systems.
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Chapter 5

Mechanizing the soundness of
contextual effects

5.1 Introduction
Type and effect systems are used to reason about a program’s computational ef-

fects [100, 116, 154]. Such systems have various applications in program analysis, e.g.,
to compute the set of memory accesses, I/O calls, function calls or new threads that occur
in any given part of the program. Generally speaking, a type and effect system proves
judgments of the form ε; Γ ` e : τ where ε is the effect of expression e. We proposed
generalizing such systems to track what we call contextual effects, which capture the ef-
fects of the context in which an expression occurs [113]. In our contextual effect system,
judgments have the form Φ; Γ ` e : τ , where Φ is a tuple [α; ε;ω] containing ε, the
standard effect of e, and α and ω, the effects of the program evaluation prior to and after
computing e, respectively.

This chapter presents the formalization and proof of soundness of contextual ef-
fects, which we have mechanized using the Coq proof assistant [26]. Intuitively, for all
subexpressions e of a given program ep, a contextual effect [α; ε;ω] is sound for e if (1) α
contains the actual, run-time effect of evaluating ep prior to evaluating e, (2) ε contains the
run-time effect of evaluating e itself, and (3) ω contains the run-time effect of evaluating
the remainder of ep after e’s evaluation has finished. (Discussed in Section 5.2.)

There are two main challenges with formalizing this intuition to prove that our
contextual effect system is sound. First, we must find a way to define what constitute
the actual prior and future effects of e when it is evaluated as part of ep. Interestingly,
these effects cannot be computed compositionally (i.e., by considering the subterms of
e), as they depend on the relative position of the evaluation of e within the evaluation
of ep, and not on the evaluation of e itself. Moreover, the future effect of e models the
evaluation after e has reduced to a value. In a small-step semantics, specifying the future
effect by finding the end of e’s computation would be possible but awkward. Thus we
opt for a big-step operational semantics, in which we can easily and naturally define the
prior, standard, and future effect of every subterm in a derivation. (Section 5.3)

The second challenge, and the main novelty of our proof, is specifying how to
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match up the contextual effect Φ of e, as determined by the original typing derivation of
Φp; Γ ` ep : τp, with the run-time effects of e recorded in the evaluation derivation. The
difficulty here is that, due to substitution, e may appear many times and in different forms
in the evaluation of ep. In particular, a value containing e may be passed to a function
λx.e′ such that x occurs several times in e′, and thus after evaluating the application, e
will be duplicated. Moreover, variables within e itself could be substituted away by other
reductions. Thus we cannot just syntactically match a subterm e of the original program
ep with its corresponding terms in the evaluation derivation.

To solve this problem, we define a typed operational semantics in which each sub-
derivation is annotated with two typing derivations, one for the term under consideration
and one for its final value. Subterms in the original program ep are annotated with sub-
derivations of the original typing derivation Φp; Γ ` ep : τp. As subterms are duplicated
and have substitutions applied to them, our semantics propagates the typing derivations
in the natural way to the new terms. In particular, if Φ is the contextual effect of sub-
term e of ep, then all of the terms derived from e will also have contextual effect Φ in
the typed operational semantics. Given this semantics, we can now express soundness
formally, namely that in every subderivation of the typed evaluation of a program, the
contextual effect Φ in its typing contains the run-time prior, standard, and future effects
of its computation. (Section 5.4)

We mechanized our proof using the Coq proof assistant, starting from the frame-
work developed by Aydemir et al [8]. We found the mechanization process worthwhile,
because our proof structure, while conceptually clear, required getting a lot of details
right. Most notably, typing derivations are nested inside of evaluation derivations in the
typed operational semantics, and thus the proofs of each case of the lemmas are somewhat
messy. Using a proof assistant made it easy to ensure we had not missed anything. We
found that, modulo some typos, our paper proof was correct, though the mechanization
required that we precisely define the meaning of “subderivation.” (Section 5.5)

This approach to proving soundness of contextual effects could be useful for other
systems, in particular ones in which properties of subderivations depend on their position
within the larger derivation in which they appear.

5.2 Background: contextual effects
This section reviews our type and effect system, and largely follows our previous

presentation [113]. Readers familiar with the system can safely skip this section.

5.2.1 Language
Figure 5.1 presents our source language, a simple calculus with expressions that

consist of values v (integers, functions or pointers), variables and call-by-value function
application. Our language also includes updateable references, created with refL e, along
with dereference and assignment. We annotate each syntactic occurrence of ref with a
label L, which serves as the abstract name for the locations allocated at that program
point. Evaluating refL e creates a pointer rL, where r is a fresh name in the heap and
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Expressions e ::= v | x | e e | refL e | ! e | e := e
Values v ::= n | λx.e | rL
Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effects Φ ::= [α; ε;ω]
Types τ ::= int | ref ε(τ) | τ →Φ τ
Environments Γ ::= · | (Γ, x 7→ τ) | (Γ, r 7→ τ)
Labels L

Figure 5.1: Syntax

L is the declared label. Dereferencing or assigning to rL during evaluation has effect
{L}. Note that pointers rL do not appear in the syntax of the program, but only during
its evaluation. For simplicity we do not model recursive functions directly, but they can
be encoded using references. Also, due to space constraints we omit let and if. They are
included in the mechanized proof; supporting them is straightforward.

An effect, written α, ε, or ω, is a possibly-empty set of labels, and may be 1, the set
of all labels. A contextual effect, written Φ, is a tuple [α; ε;ω]. If e′ is a subexpression of
e, and e′ has contextual effect [α; ε;ω], then

• The current effect ε is the effect of evaluating e′ itself.

• The prior effect α is the effect of evaluating e until we begin evaluating e′.

• The future effect ω is the effect of the remainder of the evaluation of e after e′ is
fully evaluated.

Thus ε is the effect of e′ itself, α ∪ ω is the effect of the context in which e′ appears, and
therefore α ∪ ε ∪ ω is the effect of evaluating e.

To make contextual effects easier to work with, we introduce some shorthand. We
write Φα, Φε, and Φω for the prior, current, and future effect components, respectively, of
Φ. We also write Φ∅ for the empty effect [1; ∅; 1]—by subsumption, discussed below, an
expression with this effect may appear in any context. For brevity, whenever it is clear we
will refer to contextual effects simply as effects.

5.2.2 Typing
Figure 5.2 presents our contextual type and effect system. The rules prove judg-

ments of the form Φ; Γ ` e : τ , meaning in type environment Γ, expression e has type τ
and contextual effect Φ.

Types τ , listed in Figure 5.1, include the integer type int ; reference types ref ε(τ),
which denote a reference to memory location of type τ where the reference itself is an-
notated with a label L ∈ ε; and function types τ →Φ τ ′, where τ and τ ′ are the domain
and range types, respectively, and the function has contextual effect Φ. Environments Γ,
defined in Figure 5.1, are maps from variable names or (unlabeled) pointers to types.

The first two rules, [TINT] and [TVAR], assign the expected types and the empty
effect, since values have no effect. Rule [TLAM] types the function body e and anno-
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[TINT]
Φ∅; Γ ` n : int

[TVAR]
Γ(x) = τ

Φ∅; Γ ` x : τ

[TLAM]
Φ; Γ, x : τ ′ ` e : τ

Φ∅; Γ ` λx.e : τ ′ →Φ τ
[TAPP]

Φ1; Γ ` e1 : τ1 →Φf τ2
Φ2; Γ ` e2 : τ1

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

[TREF]
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L}(τ)
[TDEREF]

Φ1; Γ ` e : ref ε(τ)
Φε

2 = ε Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

[TASSIGN]

Φ1; Γ ` e1 : ref ε(τ) Φ2; Γ ` e2 : τ Φε
3 = ε

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

[TLOC]
Γ(r) = τ

Φ∅; Γ ` rL : ref {L}(τ)
[TSUB]

Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

[XFLOW-CTXT]

Φ1 = [α1; ε1; (ε2 ∪ ω2)] Φ2 = [(ε1 ∪ α1); ε2;ω2]
Φ = [α1; (ε1 ∪ ε2);ω2]

Φ1 � Φ2 ↪→ Φ

[SINT]
int ≤ int

[SREF]
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε(τ) ≤ ref ε
′
(τ ′)

[SFUN]

τ ′1 ≤ τ1 τ2 ≤ τ ′2
Φ ≤ Φ′

τ1 →Φ τ2 ≤ τ ′1 →Φ′
τ ′2

[SCTXT]

α2 ⊆ α1 ε1 ⊆ ε2

ω2 ⊆ ω1

[α1; ε1;ω1] ≤ [α2; ε2;ω2]

Figure 5.2: Typing

tates the function’s type with the effect of e. The expression as a whole has no effect,
since the function produces no run-time effects until it is actually called. Rule [TAPP]
types function application, which combines Φ1, the effect of e1, with Φ2, the effect of
e2, and Φf , the effect of the function. We specify the sequencing of effects with the
combinator Φ1 � Φ2 ↪→ Φ, defined by [XFLOW-CTXT]. Since e1 evaluates before e2,
this rule requires that the future effect of e1 be ε2 ∪ ω2, i.e., everything that happens
during the evaluation of e2, captured by ε2, plus everything that happens after, captured
by ω2. Similarly, the past effect of e2 must be ε1 ∪ α1, since e2 is evaluated just after e1.
Lastly, the effect Φ of the entire expression has α1 as its prior effect, since e1 is evaluated
first; ω2 as its future effect, since e2 is evaluated last; and ε1 ∪ ε2 as its current effect,
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since both e1 and e2 are evaluated. We write Φ1 � Φ2 � Φ3 ↪→ Φ as shorthand for
(Φ1 � Φ2 ↪→ Φ′) ∧ (Φ′ � Φ3 ↪→ Φ).

[TREF] types memory allocation, which has no effect but places the annotation L
into a singleton effect {L} on the output type. This singleton effect can be increased as
necessary by using subsumption. [TDEREF] types the dereference of a memory location
of type ref ε(τ). In a standard effect system, the effect of ! e is the effect of e plus the
effect ε of accessing the pointed-to memory. Here, the effect of e is captured by Φ1, and
because the dereference occurs after e is evaluated, [TDEREF] puts Φ1 in sequence just
before some Φ2 such that Φ2’s current effect is ε. Therefore by [XFLOW-CTXT], Φε is
Φε

1 ∪ ε, and e’s future effect Φω
1 must include ε and the future effect of Φ2. On the other

hand, Φω
2 is unconstrained by this rule, but it will be constrained by the context, assuming

the dereference is followed by another expression. [TASSIGN] is similar to [TDEREF],
combining the effects Φ1 and Φ2 of its subexpressions with a Φ3 whose current effect is
ε. [TLOC] gives a pointer rL the type of a reference to the type of r in Γ.

Finally, [TSUB] introduces subsumption on types and effects. The judgments τ ′ ≤
τ and Φ′ ≤ Φ are defined at the bottom of Figure 5.2. [SINT], [SREF], and [SFUN] are
standard, with the usual co- and contravariance where appropriate. [SCTXT] defines sub-
sumption on effects, which is covariant in the current effect, as expected, and contravari-
ant in both the prior and future effects. To understand the contravariance, first consider
an expression e with future effect ω1. Since ω1 should contain (i.e., be a superset of) the
locations that may be accessed in the future, we can use e in any context that accesses at
most locations in ω1. Similarly, since past effects should contain the locations that were
accessed in the past, we can use e in any context that accessed at most locations in α1.

5.3 Operational semantics
As discussed in the introduction, to establish the soundness of the static semantics

we must address two concerns. First, we must give an operational semantics that specifies
the run-time contextual effects of each subterm e appearing in the evaluation of a term ep.
Second, we must find a way to match up subterms e that arise in the evaluation of ep with
the corresponding terms e′ in the unevaluated ep, to see whether the effects ascribed to
the original terms e′ by the type system approximate the actual effects of the subterms
e. This section defines an operational semantics that addresses the first concern, and the
next section augments it to address the second concern, allowing us to prove our system
sound.

5.3.1 The problem of future effects
Consider an expression e appearing in program ep. We write ep = C[e] for a context

C, to make this relationship more clear. Using a small-step operational semantics, we can
intuitively view the contextual effects of e as follows:

C[e] → · · · →︸ ︷︷ ︸
prior effect α

C ′[e]

evaluation of e︷ ︸︸ ︷
→ C ′[e′] → · · · →︸ ︷︷ ︸

standard effect ε

C ′[v]→ · · · → vp︸ ︷︷ ︸
future effect ω
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(The evaluation of ep could contain several evaluations of e, each of which could dif-
fer from e according to previous substitutions of e’s free variables, but we ignore these
difficulties for now and consider them in the next section.)

For this evaluation, the actual, run-time prior effect α of e is the effect of the eval-
uation that occurs before e starts evaluating, the actual standard effect ε of e is the effect
of the evaluation of e to a value v, and the actual future effect ω of e is the effect of the
remainder of the computation. For every expression in the program, there exist similar
partitions of the evaluation to define the appropriate contextual effects.

However, while this picture is conceptually clear, formalizing contextual effects,
particularly future effects, is awkward in small-step semantics. Suppose we have some
contextual effect Φ associated with subterm e in the context C ′[e] above. Then Φω, the
future effect of subterm e, models everything that happens after we evaluate to C ′[v]—
but that happens some arbitrary number of steps after we begin evaluating C ′[e], making
it difficult to associate with the subterm e. We could solve this problem by inserting
“brackets” into the semantics to identify the end of a subterm’s evaluation, but that adds
complication, especially since there are many different subterms whose contextual effects
we wish to track and prove sound.

Our solution to this problem is to use big-step semantics, since in big-step seman-
tics, each subderivation is a full evaluation. This lets us easily identify both the beginning
and the end of each sub-evaluation in the derivation tree, and gives us a natural specifica-
tion of contextual effects.

5.3.2 Big-step semantics
Figure 5.3 shows key rules in a big-step operational semantics for our language.

Reductions operate on configurations 〈α, ω,H, e〉, where α and ω are the sets of locations
accessed before and after that point in the evaluation, respectively; H is the heap (a map
from locations r to values); and e is the expression to be evaluated. Evaluations have the
form

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, R〉

where ε is the effect of evaluating e and R is the result of reduction, either a value v or
err, indicating evaluation failed. Intuitively, as evaluation proceeds, labels move from
the future effect ω to the past effect α.

With respect to the definitions of Section 5.3.1, the prior effect α in Section 5.3.1
corresponds to α here, and the future effect ω in Section 5.3.1 corresponds to ω′ here. The
future effect ω before the evaluation of e contains both the future and the standard effect
of e, i.e., ω = ω∪ ε. Similarly, the past effect α′ after the evaluation of e contains the past
effect α and the effect of e, i.e., α′ = α∪ ε. We prove below that our semantics preserves
this property.

The reduction rules are straightforward. [ID] reduces a value to itself without
changing the state or the effects. [REF] generates a fresh location r, which is bound
in the heap to v and evaluates to rL. [DEREF] reads the location r in the heap and adds L
to the standard evaluation effect. This rule requires that the future effect after evaluating
e have the form ω′ ∪ {L}, i.e., L must be in the future effect after evaluating e, but prior
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to dereferencing the result. Then L is added to α′ in the output configuration of the rule.
Notice that ω′ ∪ {L} is a standard union, hence L may also be in ω′, which allows the
same location to be accessed multiple times. Also note that we require L to be in the
future effect just after the evaluation of e, but do not require that it be in ω. However,
this will actually hold—below we prove that ω = ω′ ∪ {L} ∪ ε, and in general when
the semantics takes a step, effects move from the future to the past. [ASSIGN] behaves
similarly to [DEREF]. [CALL] evaluates the first expression to a function, the second
expression to a value, and then the function body with the formal argument replaced by
the actual argument. Our semantics also includes rules [CALL-W], [DEREF-H-W] and
[DEREF-L-W] that produce err when the program tries to access a location that is not
in the future effect of the input, or when values are used at the wrong type. Our system
includes similar error rules for assignment (not shown).

5.3.3 Standard effect soundness
We can now prove standard effect soundness. First, we prove an adequacy property

of our semantics that helps ensure they make sense:

Lemma 5.3.1 (Adequacy of Semantics) If

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉

then
α′ = α ∪ ε

and
ω = ω′ ∪ ε

This lemma formalizes our intuition that labels move from the future to prior effect during
evaluation.

We can then prove that the static Φε associated to a term by our type and effect
system soundly approximates the actual effect ε of an expression. We ignore actual effects
α and ω by setting them to 1. We say heap H is well-typed under Γ, written Γ ` H , if
dom(Γ) = dom(H) and for every r ∈ dom(H), we have Φ∅; Γ ` H(r) : Γ(r). The
standard effect soundness lemma is:

Theorem 5.3.2 (Standard Effect Soundness) If

1. Φ; Γ ` e : τ ,

2. Γ ` H and

3. 〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, R〉

then there is a Γ′ such that:

1. R is a value v for which Φ∅; (Γ
′,Γ) ` v : τ ,

2. (Γ′,Γ) ` H ′ and
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3. ε ⊆ Φε.

Here (Γ′,Γ) is the concatenation of environments Γ′ and Γ. The proof of this theorem is
by induction on the evaluation derivation, and follows traditional type-and-effect system
proofs, adapted for our semantics.

Next, we prove that if the program evaluates to a value, then there is a canonical
evaluation in which the program evaluates to the same value, but starting with an empty
α and ending with an empty ω. This will produce an evaluation derivation with the most
precise α and ω values for every configuration, which we can then prove we soundly
approximate using our type and effect system.

Lemma 5.3.3 (Canonical Evaluation) If

〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, v〉

then there exists a derivation

〈∅, ε,H, e〉 ε−→ 〈ε, ∅, H ′, v〉

5.4 Contextual effect soundness
Now we turn to proving contextual effect soundness. We aim to show that the

prior and future effect of some subterm e of a program ep approximate the evaluation
of ep before and after, respectively, the evaluation of e. Suppose for the moment that ep
contains no function applications. As a result, an evaluation derivationDp of ep according
to the operational semantics in Figure 5.3 will be isomorphic to a typing derivation Tp of
ep according to the rules in Figure 5.2. In this situation, soundness for contextual effects
is easy to define. For any subterm e of ep, we have an evaluation derivationD and a typing
derivation T :

D :: 〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉 T :: Φ; Γ ` e : τ

whereD is a subderivation ofDp and T is a subderivation of Tp. Then the prior and future
effects computed by our contextual effect system are sound if α ⊆ Φα (the effect of the
evaluation before e is contained in Φα) and ω′ ⊆ Φω (the effect of the evaluation after v
is contained in Φω).

For example, consider the evaluation of ! (refL n).

[DEREF]

[REF]

[ID]
〈∅, ∅ ∪ {L}, H, n〉 −→ 〈∅, ∅ ∪ {L}, H, n〉

〈∅, ∅ ∪ {L}, H, refL n〉 −→ 〈∅, ∅ ∪ {L}, (H, rL 7→ n), rL〉

〈∅, ∅ ∪ {L}, H, ! (refL n)〉 {L}−−→ 〈∅ ∪ {L}, ∅, (H, rL 7→ n), n〉
Here is the typing derivation (where we have rolled a use of [TSUB] into [TINT]):

[TDEREF]

[TREF]

[TINT’]
[∅; ∅; {L}]; · ` n : int

[∅; ∅; {L}]; · ` refL n : refL(int)
[∅; {L}; ∅]ε = {L} [∅; ∅; {L}] � [∅; {L}; ∅] ↪→ [∅; {L}; ∅]

[∅; {L}; ∅]; · ` ! (refL n) : int
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We can see that these derivations are isomorphic, and thus it is easy to read the contextual
effect from the typing derivation for refL n and to match it up with the actual effect of
the corresponding subderivation of the evaluation derivation.

Unfortunately, function applications add significant complication because Dp and
Tp are no longer isomorphic. Indeed, a subterm e of the original program ep may appear
multiple times in Dp, possibly with substitutions applied to it. For example, consider the
term (λx. !x; !x) refL n (where we introduce the sequencing operator ; with the obvious
semantics, for brevity), typed as:

[TAPP]

[TLAM]
Φf ; Γ, x : ref {L}(int) ` !x; !x : int

Φ∅; Γ ` λx. !x; !x : ref {L}(int) →Φf int (T1 )
Φ2; Γ ` refL n : ref {L}(int) (T2 )

Φ∅ � Φ2 � Φf ↪→ Φ

Φ; Γ ` (λx. !x; !x) refL n : int

The evaluation derivation has the following structure:

[CALL]

〈∅, ∅ ∪ {L}, H, (λx. !x; !x)〉 −→ 〈∅, ∅ ∪ {L}, H, (λx. !x; !x)〉 (1 )
〈∅, ∅ ∪ {L}, H, refL n〉 −→ 〈∅, ∅ ∪ {L}, H ′, rL〉 (2 )

〈∅, ∅ ∪ {L}, H ′, [rL 7→ (!x; !x)]x〉 {L}−−→ 〈∅ ∪ {L}, ∅, H ′, n〉 (3 )

〈∅, ∅ ∪ {L}, H, (λx. !x; !x) refL n〉 {L}−−→ 〈∅ ∪ {L}, ∅, H ′, n〉

where H ′ = (H, rL 7→ n). Subderivations (1) and (2) correspond to the two subderiva-
tions (T1) and (T2) of [TAPP], but there is no analogue for subderivation (3), which
captures the actual evaluation of the function. Clearly this relates to the function’s effect
Φf , but how exactly is not structurally apparent from the derivation. Returning to our
example, we must match up the effect in the typing derivation for !x, which is part of the
typing of the function (λx. !x; !x), with evaluation of ! rL that occurs when the function
evaluates in subderivation (3).

To do this, we instrument the big-step semantics from Figure 5.3 with typing deriva-
tions, and define exactly how to associate a typing derivation with each derived subterm
in an evaluation derivation. The key property of the resulting typed operational semantics
is that the contextual effect Φ associated with a subterm e in the original typing deriva-
tion Tp is also associated with all terms derived from e via copying or substitution. In
the example, the relevant typing subderivation for !x in Tp will be copied and substituted
according to the evaluation so that it can be matched with ! rL in subderivation (3).

5.4.1 Typed operational semantics
In our typed operational semantics, evaluations have the form:

〈T, α, ω,H, e〉 ε−→ 〈T ′, α′, ω′, H ′, v〉

where T is a typing derivation for the expression e, and T ′ is a typing derivation for v:

T :: Φ; Γ ` e : τ T ′ :: Φ∅; (Γ
′,Γ) ` v : τ
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Note that we include T ′ in our rules mostly to emphasize that v is well-typed with the
same type as e. The only information from T ′ we need that is not present in T is the
new environment (Γ′,Γ), which may contain the types of pointers newly allocated in the
heap during the evaluation of e. Also, the environments Γ and Γ′ only refer to heap
locations, since e and v have no free variables and could always be typed under the empty
environment.

Figure 5.4 presents the typed evaluation rules. New hypotheses are highlighted with
a gray background. While these rules look complicated, they are actually quite easy to
construct. We begin with the original rules in Figure 5.3, add a typing derivation to each
configuration, and then specify appropriate hypotheses about each typing derivation to
connect up the derivation of the whole term with the derivation of each of the subterms.
We discuss this process for each of the rules.

[ID-A] is the same as [ID], except we introduce typing derivations Tv and T ′
v for the

left- and right-hand sides of the evaluation, respectively. Tv may be any typing derivation
that assigns a type to v. Here, and in the other rules in the typed operational semantics,
we allow subsumption in the typing derivations on the left-hand side of a reduction. Thus
Tv may type the value v under some effect Φ that is not Φ∅. The output typing derivation
T ′
v is the same as Tv, except it uses the effect Φ∅ (recall the only information we use from
T ′
v is the new environment, which is this case is unchanged from Tv).

[REF-A] is a more complicated case. Here the typing derivation T must (by ob-
servation of the rules in Figure 5.2) assign refL e a type ref ε(τ) and some effect Φ. By
inversion, then, we know that T must in fact assign the subterm e the type τ as witnessed
by some typing derivation T ′, which we use in the typed evaluation of e. We allow Φ′ ≤ Φ
to account for subsumption applied to the term refL e. Note that this rule does not spec-
ify how to construct T ′ from T . Later on, we will prove that if there is a valid standard
reduction of a well-typed term, then there is a valid typed reduction of the same term.
Continuing with the rule, our semantics assigns some typing derivation Tv to v. Then the
output typing derivation Tr should assign a type to rL. Hence we take the environment Γ′

from Tv, which contains types for locations in the heap allocated thus far, and extend it
with a new binding for r of the correct type.

[DEREF-A] follows the same pattern as above. Given the initial typing derivation T
of the term ! e, we assume there exists a typing derivation T ′ of the appropriate shape for
subterm e. Reducing e yields a new typing derivation Tr, and the final typing derivation
Tv assigns the type τ to the value H ′(r) returned by the dereference. As above, we add
subtyping constraints Φ′ ≤ Φ and τ ′ ≤ τ to account for subsumption of the term ! e. The
most interesting feature of this rule is the last constraint, Φ1 � [α1; ε

′;ω1] ↪→ Φ′, which
states that the effect Φ ≥ Φ′ of the whole expression ! e (from typing derivation T ) must
contain the effect Φ1 of e followed by some contextual effect containing standard effect
ε′. Again, we will prove below that it is always possible to construct a typed derivation
that satisfies this constraint, intuitively because [DEREF] from Figure 5.2 enforces exactly
the same constraint. [ASSIGN-A] is similar to [DEREF].

[CALL-A] is the most complex of the four rules, but the approach is exactly the
same as above. Starting with typing derivation T for the function application, we require
that there exist typing derivations T1 and T2 for e1 and e2, where the type of e2 is the do-
main type of e1. Furthermore, Tf and Tv2 assign the same types as T1 and T2, respectively.
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Then by the substitution lemma, we know there exists a typing derivation T3 that assigns
type τ to the function body e in which the formal x is mapped to the actual v2. The output
typing derivation Tv assigns v the same type τ as T3 assigns to the function body. We
finish the rule with the usual effect sequencing and subtyping constraints.

5.4.2 Soundness
The semantics in Figure 5.4 precisely associate a typing derivation—and most im-

portantly, a contextual effect—with each subterm in an evaluation derivation. We prove
soundness in two steps. First, we argue that given a typing derivation of a program and
an evaluation derivation according to the rules in Figure 5.3, we can always construct a
typed evaluation derivation.

Lemma 5.4.1 (Typed evaluation derivations exist) If T :: Φ; Γ ` e : τ and D ::
〈α, ω,H, e〉 ε−→ 〈α′ω′, H ′, v〉 where Γ ` H , then there exists Tv such that

〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

The proof is by induction on the evaluation derivation D. For each case, we show we
can always construct a typed evaluation by performing inversion on the typing derivation
T , using T ’s premises to apply the corresponding typed operational semantics rule. Due
to subsumption, we cannot perform direct inversion on T . Instead, we used a number of
inversion lemmas (not shown) that generalize the premises of the syntax-driven typing
rule that applies to e, for any number of following [TSUB] applications.

Next, we prove that if we have a typed evaluation derivation, then the contextual
effects assigned in the derivation soundly model the actual run-time effects. Since con-
textual effects are non-compositional, we reason about the soundness of contextual ef-
fects in a derivation in relation to its context inside a larger derivation. To do that, we
use E1 ∈ E2 to denote that E1 is a subderivation of E2. We define the subderivation re-
lation inductively on evaluation derivations in the typed operational semantics, with base
cases corresponding to each evaluation rule, and one inductive case for transitivity. For
example, given an application of [CALL-A] (uninteresting premises omitted):

. . .
E1 :: 〈T1, α, ω,H, e1〉

ε1−→ 〈Tf , α1, ω1, H1, λx.e〉
E2 :: 〈T2, α1, ω1, H1, e2〉

ε2−→ 〈Tv2 , α2, ω2, H2, v2〉
E3 :: 〈T3, α2, ω2, H2, [x 7→ e]v2〉

ε3−→ 〈Tv, α′, ω′, H ′, v〉

E :: 〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈T ′, α′, ω′, H, v〉

we have E1 ∈ E, E2 ∈ E and E3 ∈ E. The subderivation relationship is also transitive,
i.e., if E1 ∈ E2 and E2 ∈ E3 then E1 ∈ E3.

The following lemma states that if E2 is an evaluation derivation whose contextual
effects are sound (premises 2, 5, and 6) and E1 is a subderivation of E2 (premise 3), then
the effects of E1 are sound (conclusions 2 and 3).

Lemma 5.4.2 (Soundness of sub-derivation contextual effects) If
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1. E1 :: 〈T1, α1, ω1, H1, e1〉
ε1−→ 〈Tv1 , α′1, ω′1, H ′

1, v1〉 with T1 :: Φ1; Γ1 ` e1 : τ1,

2. E2 :: 〈T2, α2, ω2, H2, e2〉
ε2−→ 〈Tv2 , α′2, ω′2, H ′

2, v2〉 with T2 :: Φ2; Γ2 ` e2 : τ2,

3. E1 ∈ E2

4. Γ2 ` H2

5. α2 ⊆ Φα
2

6. ω2 ⊆ Φω
2

then

1. Γ1 ` H1

2. α1 ⊆ Φα
1

3. ω1 ⊆ Φω
1

The proof is by induction onE1 ∈ E2. The work occurs in the base cases of the ∈ relation,
and the transitivity case trivially applies induction.

The statement of Lemma 5.4.2 may seem odd: we assume a derivation’s effects are
sound and then prove the soundness of the effects of its subderivation(s). Nevertheless,
this technique is efficacious. If E2 is the topmost derivation (for the whole program) then
the lemma can be trivially applied for E2 and any of its subderivations, as α2 and ω′2 will
be ∅, and thus trivially approximated by the effects defined in Φ2. Given this, and the fact
(from Lemma 5.4.1) that typed derivations always exist, we can easily state and prove
contextual effect soundness.

Theorem 5.4.3 (Contextual Effect Soundness) Given a program ep with no free vari-
ables, a typing derivation T and a (standard) evaluation D according to the rules in
Figure 5.3, we can construct a typed evaluation derivation

E :: 〈T, ∅, εp, ∅, ep〉
εp−→ 〈Tv, εp, ∅, H, v〉

such that for every subderivation E ′ of E:

E ′ :: 〈T ′, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

with T ′ :: Φ; Γ ` e : τ , it is always the case that α ⊆ Φα, ε ⊆ Φε, and ω′ ⊆ Φω.

This theorem follows as a corollary of Lemmas 5.3.3, 5.4.1 and 5.4.2, since the
initial heap and Γ are empty, and the whole program is typed under [∅; ε; ∅], where ε
soundly approximates the effect of the whole program by Theorem 5.3.2.

The full (paper) proof can be found in Appendix C.
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5.5 Mechanization
We encoded the above formalization and soundness proof using the Coq proof as-

sistant. We were pleased that the mechanization of the system largely followed the paper
proof, with only a few minor differences.

First, we used the framework developed by Aydemir et al. [8] for modeling bound
and named variables, whereas the paper proof assumes alpha equivalence of all terms and
does not reason about capturing and renaming.

Second, Lemma 5.4.2 states a property of all subderivations of a derivation. On
paper, we had left the definition of subderivation informal, whereas we had to formally
define it in Coq. This was straightforward if tedious. In Coq we definedE ∈ E ′, described
earlier, as an inductive relation, with one case for each premise of each evaluation rule.

While our mechanized proof is similar to our paper proof, it does have some awk-
wardness. Our encoding of typed operational semantics is dependent on typing deriva-
tions, and the encoding of the subderivation relation is dependent on typed evaluations.
This causes the definitions of typed evaluations and subderivations to be dependent on
large sets of variables, which decreases readability. We were unable to use Coq’s system
for implicit variables to address this issue, due to its current limitations.

In total, the formalization and proof scripts for the contextual effect system takes
5,503 lines of Coq, of which we wrote 2,692 lines and the remaining 2,811 lines came
from Aydemir et al [8]. It took approximately ten days to encode the definitions and
lemmas and do the proofs, starting from minimal Coq experience, limited to attending a
tutorial at POPL 2008. It took roughly equal time and effort to construct the encodings
as to do the actual proofs. In the process of performing the proofs, we discovered some
typographical errors in the paper proof, and we found some cases where we had failed
to account for possible subsumption in the type and effect system. Perhaps the biggest
insight we gained was that to prove Lemma 5.4.2, we needed to do induction on the
subderivation relation, rather than on the derivation itself.
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[ID]
〈α, ω,H, v〉 ∅−→ 〈α, ω,H, v〉

Heaps H ::= ∅ | H, r 7→ v

[REF]
〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉 r /∈ dom(H ′)

〈α, ω,H, refL e〉 ε−→ 〈α′, ω′, (H ′, r 7→ v), rL〉

[DEREF]
〈α, ω,H, e〉 ε−→ 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

〈α, ω,H, ! e〉 ε∪{L}−−−→ 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

[ASSIGN]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, rL〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω,H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[CALL]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, λx.e〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈α′, ω′, H ′, v〉

〈α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈α′, ω′, H ′, v〉

[CALL-W]
〈α, ω,H, e1〉

ε1−→ 〈α′, ω′, H ′, v〉 v 6= λx.e

〈α, ω,H, e1 e2〉
∅−→ 〈α, ω,H, err〉

[DEREF-H-W]
〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, rL〉 r /∈ dom(H ′)

〈α, ω,H, ! e〉 ∅−→ 〈α, ω,H, err〉

[DEREF-L-W]
〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, rL〉 r ∈ dom(H ′) L /∈ ω′

〈α, ω,H, ! e〉 ∅−→ 〈α, ω,H, err〉

Figure 5.3: Operational Semantics
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[ID-A]
Tv :: Φ; Γ ` v : τ T ′

v :: Φ∅; Γ ` v : τ

〈Tv, α, ω,H, v〉
∅−→ 〈T ′

v, α, ω,H, v〉

[REF-A]

〈T ′, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉 r /∈ dom(H)

T :: Φ; Γ ` refL e : ref ε(τ) T ′ :: Φ′; Γ ` e : τ

Tv :: Φ∅; Γ
′ ` v : τ Tr :: Φ∅; (Γ

′, r 7→ τ) ` rL : ref ε(τ) Φ′ ≤ Φ

〈T, α, ω,H, refL e〉 ε−→ 〈Tr, α′, ω′, (H ′, r 7→ v), rL〉

[DEREF-A]

〈T ′, α, ω,H, e〉 ε−→ 〈Tr, α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

T :: Φ; Γ ` ! e : τ T ′ :: Φ1; Γ ` e : ref ε
′
(τ ′)

Tr :: Φ∅; Γ
′ ` rL : ref ε

′
(τ ′) Tv :: Φ∅; Γ

′ ` H ′(r) : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 � [α1; ε
′;ω1] ↪→ Φ′

〈T, α, ω,H, ! e〉 ε∪{L}−−−→ 〈Tv, α′ ∪ {L}, ω′, H ′, H ′(r)〉

[ASSIGN-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tr, α1, ω1, H1, rL〉

〈T2, α1, ω1, H1, e2〉
ε2−→ 〈Tv, α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

T :: Φ; Γ ` e1 := e2 : τ T1 :: Φ1; Γ ` e1 : ref ε(τ ′)

Tr :: Φ∅; Γ1 ` rL : ref ε(τ ′) T2 :: Φ2; Γ1 ` e2 : τ ′

Tv :: Φ∅; Γ2 ` v : τ ′ T ′
v :: Φ∅; Γ2 ` v : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 � Φ2 � [α3; ε;ω3] ↪→ Φ′

〈T, α, ω,H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈T ′

v, α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[CALL-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tf , α1, ω1, H1, λx.e〉

〈T2, α1, ω1, H1, e2〉
ε2−→ 〈Tv2 , α2, ω2, H2, v2〉

〈T3, α2, ω2, H2, [x 7→ e]v2〉
ε3−→ 〈Tv, α′, ω′, H ′, v〉

T :: Φ; Γ ` e1 e2 : τ T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2

Tf :: Φ∅; Γ1 ` λx.e : τ1 →Φf τ2 T2 :: Φ2; Γ1 ` e2 : τ1

Tv2 :: Φ∅; Γ2 ` v2 : τ1 T3 :: Φf ; Γ2 ` [v2 7→ e]x : τ

Tv :: Φ∅; Γ3 ` v : τ Φ1 � Φ2 � Φf ↪→ Φ′ Φ′ ≤ Φ

〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈Tv, α′, ω′, H, v〉

Figure 5.4: Typed operational semantics

58



Chapter 6

Implementation

6.1 Implementation Overview
This chapter presents an overview of all the analyses in LOCKSMITH. Fig. 6.1

shows the architecture of LOCKSMITH, which is structured as a series of sub-analyses
that each generate and solve constraints. In this figure, plain boxes represent processes
and shaded boxes represent data. LOCKSMITH is implemented using CIL, which parses
the input C program and simplifies it to a core sub-language [114].

In the remainder of this chapter, we sketch each of LOCKSMITH’s components and
then summarize the results of applying LOCKSMITH to a benchmark suite. In the subse-
quent discussion, we will use the code in Fig. 6.2 as a running example.

The program in Fig. 6.2 begins by defining four global variables, locks lock1 and
lock2 and integers count1 and count2. Then lines 4–8 define a function atomic inc that
takes pointers to a lock and an integer as arguments, and then increments the integer while
holding the lock. The main function on lines 10–21 allocates an integer variable local,
initializes the two locks, and then spawns three threads that execute functions thread1,
thread2 and thread3, passing variable local to thread1 and NULL to thread2 and thread3.
We annotate each thread creation and function call site, except calls to the special mutex
initialization function, with an index i, whose use will be explained below. The thread
executing thread1 (lines 23–28) first extracts the pointer-to-integer argument into variable
y and then continuously increments the integer. The thread executing thread2 (lines 30–
37) consists of an infinite loop that increases count1 while holding lock lock1 and count2
without holding a lock. The thread executing thread3 (lines 39–45) consists of an infinite
loop that calls atomic inc twice, to increment count1 under lock1 and count2 under lock2.

There are several interesting things to notice about the locking behavior in this pro-
gram. First, observe that though the variable local is accessed both in the parent thread
(lines 12,17) and its child thread thread1 (via the alias ∗y on line 26), no race is possible
despite the lack of synchronization. This is because these accesses cannot occur simulta-
neously, because the parent only accesses local before the thread for thread1 is created,
and never afterward. Thus both accesses are local to a particular thread. Second, tracking
of lock acquires and releases must be flow-sensitive, so we know that the access on line 33
is guarded by a lock, and the access on line 35 is not. Lastly, the atomic inc function is
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Figure 6.1: LOCKSMITH architecture

called twice (lines 42–43) with two different locks and integer pointers. We need context
sensitivity to avoid conflating these two calls, which would lead to false alarms.

6.2 Labeling and constraint generation
The first phase of LOCKSMITH is labeling and constraint generation, which tra-

verses the CIL CFG and generates two key abstractions that form the basis of subsequent
analyses: label flow constraints, to model the flow of data within the program, and ab-
stract control flow constraints, to model the sequencing of key actions and relate them
to the label flow constraints. Because a set label flow constraints can be conveniently
visualized as a graph, we will often refer to them as a label flow graph, and do likewise
for a set of abstract control flow constraints. Chapter 2 presents the notion of label flow
analysis in detail.
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1 pthread mutex t lock1, lock2;
2 int count1 = 0, count2 = 0;
3

4 void atomic inc(pthread mutex t ∗lock, int ∗count) {
5 pthread mutex lock(lock);
6 ∗count++;
7 pthread mutex unlock(lock);
8 }
9

10 int main(void) {
11 pthread t1, t2 , t3 ;
12 int local = 0;
13

14 pthread mutex init(&lock1, NULL);
15 pthread mutex init(&lock2, NULL);
16

17 local++;
18 pthread create1(&t1, NULL, thread1, &local);
19 pthread create2(&t2, NULL, thread2, NULL);
20 pthread create3(&t3, NULL, thread3, NULL);
21 }
22

23 void ∗thread1(void ∗a) {
24 int ∗y = ( int ∗) a; /∗ int∗ always ∗/
25 while(1) {
26 ∗y++; /∗ thread local ∗/
27 }
28 }
29

30 void ∗thread2(void ∗c) {
31 while(1) {
32 pthread mutex lock(&lock1);
33 count1++;
34 pthread mutex unlock(&lock1);
35 count2++; /∗ access without lock ∗/
36 }
37 }
38

39 void ∗thread3(void ∗b) {
40 while(1) {
41 /∗ needs polymorphism for atomic inc ∗/
42 atomic inc4(&lock1, &count1);
43 atomic inc5(&lock2, &count2);
44 }
45 }

Figure 6.2: Example multi-threaded C program

6.2.1 Label flow graph
Fig. 6.3(a) shows the label flow graph for the example from Fig. 6.2. Nodes are

static representations of the run-time memory locations (addresses) that contain locks or
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Figure 6.3: Constraint graphs generated for example in Fig. 6.2

other data. Edges represent the “flow” of data through the program [109, 132, 88], e.g.,
according to assignment statements or function calls. The source of a path in the label
flow graph is an allocation site, e.g., it is the address of a global or local variable (e.g.,
&lock1, &count1, or &local in Fig. 6.2), or the representation of a program line which a
malloc() occurs. We distinguish addresses of locks from those of other data (which may
be subject to races); generally speaking we refer to the former using metavariable ` and
the latter using metavariable ρ.

LOCKSMITH’s label flow analysis is field-sensitive when modeling C struct types,
in which each field of each instance of a struct is modeled separately. We found that field-
sensitivity significantly improves precision. To make our algorithm sufficiently scalable,
we modeled fields lazily [58]—only if (and when) a field was actually accessed by the
program does LOCKSMITH model it, as opposed to eagerly tracking each field of a given
instance from the time the instance is created. We found that over all benchmarks only
35%, on average, of the declared fields of struct variables in the program are actually
accessed, and so the lazy approach afforded significant savings.
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LOCKSMITH also tries to model C’s void* types precisely, yet efficiently. In our
final design, when a void* pointer might point to two different types, we assume that it
is not used to cast between them, but rather that the programmer always casts the void*

pointer to the correct type before using it (in the style of an untagged union). We also
tried two alternative strategies. First, and most conservatively, if a type is cast to void*,
we conflate all pointers in that type with each other and the void*. While sound, this
technique is quite conservative, and the significant amount of false aliasing it produces
degrades LOCKSMITH’s subsequent analyses. A second alternative we considered be-
haves in exactly the same way, but only when more than one type is cast to the same
void* pointer. Assuming a given void* is only cast to/from a single type, we can relate
any pointers occurring within the type to the particular type instances cast to the void*,
as if the type was never cast to void* in the first place. We found that approximately one
third of all void* pointers in our benchmarks alias one type, so this strategy increased
the precision compared to simply conflating all pointers casted to a void*. Nevertheless,
we found that our final design is more precise and more efficient, in that it prunes several
superficial or imprecise constraints.

To achieve context-sensitivity, we incorporate additional information about function
calls into the flow graph. Input and output edges corresponding to a call indexed by i in the
program are labeled with (i and )i, respectively. During constraint resolution, we know
that two edges correspond to the same call only if they are labeled by the same index.
For example, in Fig. 6.3(a) the edges from &lock1 and &count1 are labeled with (4 since
they arise from the call on line 42, and analogously the edges from &lock2 and &count2
are labeled with (5 . We use a variation on context-free language reachability (CFLR) to
compute the flow of data through the program [125]. In this particular example, since
count is accessed with lock held, we would discover that counti is accessed with locki
held for i ∈ 1..2. Without the labeled edges, we could not distinguish the two call sites,
and LOCKSMITH would lose precision. In particular, LOCKSMITH would think that lock
could be either lock1 or lock2, and thus we would not know which one was held at the
access to count, causing us to report a potential data race on line 6.

Section 6.9 discusses the label flow analysis in detail, not considering context sensi-
tivity, while Section 6.11 discusses extensions to this analysis to handle struct and void*

types. We initially present context-insensitive algorithms for each LOCKSMITH phase,
and discuss context sensitivity for all parts in Section 6.12.

6.2.2 Abstract control flow graph
Fig. 6.3(b) shows the abstract control flow graph (ACFG) for the example from

Fig. 6.2. Nodes in the ACFG capture operations in the program that are important for
data race detection, and relate them to the labels from the label flow graph. ACFGs
contain 7 kinds of nodes (the notation [n] next to each node indicates the line number
n from which the node is induced). NewL(`) represents a statement that creates a new
lock at location `, and Acq(`) and Rel(`) denote the acquire and release, respectively, of
the lock `. Reads and writes of memory location ρ are represented by Acc(ρ). Thread
creation is indicated by Fork nodes, which have two successors: the next statement in the
parent thread, and the first statement of the child thread’s called function. The edge to the
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latter is annotated with an index just as in the label flow graph, to allow us to relate the
two graphs. For example, the child edge for the Fork corresponding to line 18 is labeled
with (1 , which is the same annotation used for the edge from &local to a in the label
flow graph. Lastly, function calls and returns are represented by Call and Ret nodes in
the graph. For call site i, we label the edge to the callee with (i, and we label the return
edge with )i, again to allow us to relate the label flow graph with the ACFG. The edges
from a Call to the corresponding Ret allow us to flow information “around” callees, often
increasing precision; we defer discussion of this feature to Section 6.9.3.

In addition to label flow constraints and the abstract control-flow graph, the first
phase of LOCKSMITH generates linearity constraints and contextual effect constraints,
which are discussed below.

6.3 Sharing analysis
The next LOCKSMITH phase determines the set of locations that could be poten-

tially simultaneously accessed by two or more threads during a program’s execution. We
refer to these as the program’s shared locations. We limit subsequent analysis for possi-
ble data races to these shared locations. In particular, if a location is not shared, then it
need not be consistently accessed with a particular lock held. Moreover, if an access site
(that is, a read or a write through a pointer) never targets a shared variable, it need not be
considered by the analysis.

As shown in Fig. 6.1, this phase takes as input contextual effect constraints, which
are also produced during labeling and constraint generation. In standard effect sys-
tems [155], the effect of a program statement is the set of locations that may be accessed
(read or written) when the statement is executed. Our contextual effect system addition-
ally determines, for each program state, the future effect, which contains the locations
that may be accessed by the remainder of the current thread. To compute the shared lo-
cations in a program, at each thread creation point we intersect the standard effect of the
created thread with the future effect of the parent thread. If a location is in both effects,
then the location is shared. Note that the future effect of the parent includes the effects
of any threads that the parent creates later. Chapter 5 presents the sharing analysis of
LOCKSMITH and the contextual effect system in detail.

For example, consider line 18 in Fig. 6.2. The spawned thread1 has standard effect
{&local}. The parent thread by itself has no future effect, since it accesses no interesting
variables. However, it spawns two child threads which themselves access count1 and
count2. Therefore, the future effect of line 18 is {&count1,&count2}. Since {&local1}∩
{&count1,&count2} = ∅, there are no shared locations created by this fork. In particular,
even though local was accessed in the past by the parent thread (line 17), our sharing
analysis correctly determines all its accesses to be thread local.

On the other hand, consider line 19. Here the effect of the spawned thread2 is
{&count1,&count2}, and the future effect at line 19 is also {&count1,&count2}. Thus
we determine from this call that count1 and count2 are shared. Notice that here it was
critical to include the effect of thread3 when computing the future effect of the parent,
since the parent thread itself does not access anything interesting.
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In our implementation, we also distinguish read and write effects, and only mark a
location ρ as shared if at least one of the accesses to ρ in the intersected effects is a write.

The analysis just described only determines if a location is ever shared. It could
be that a location starts off as thread local and only later becomes shared, meaning that
its initial accesses need not be protected by a consistent lock, while subsequent ones do.
For example, notice that &count1 in Fig. 6.2 becomes shared due to the thread creations
at lines 19 and 20, since both thread2 and thread3 access it. So while the accesses at
lines 33 and 26 (via line 42) must consider &count1 as shared, &count1 would not need
to be considered shared if it were accessed at, say, line 18. We can use a simple dataflow
analysis to distinguish these two cases, and thus avoid reporting a false alarm in the latter
case. Section 6.10 presents the sharing analysis and this variant in more detail.

6.4 Lock state analysis
In the next phase, LOCKSMITH computes the state of each lock at every program

point. To do this, we use the ACFG to compute the set of locks ` held before and after
each statement.

In the ACFG in Fig. 6.3(b), we begin at the entry node by assuming all locks are
released. In the subsequent discussion, we write Ai for the set of locks that are definitely
acquired after statement i. Since statements 15–21 do not affect the set of locks held, we
have A15 = A16 = A18 = A19 = A20 = A21 = AEntry = ∅.

We continue propagation for the control flow of the three created threads. Note that
even if a lock is acquired at a fork point, it is released in the new thread, so we should not
propagate the set of acquired locks along the child Fork edge. For thread1, we find simply
that A26 = ∅. For thread2, we have A32 = A33 = {&lock1}, and A34 = A35 = ∅. And
lastly for thread3, we have A42 = A43 = A8 = ∅ and A6 = A7 = {lock}. Notice
that this last set contains the name of the formal parameter lock. When we perform
correlation inference, discussed next, we will need to translate information about lock
back into information about the actual arguments at the two call sites.

6.5 Correlation inference
The next phase of LOCKSMITH is correlation inference, which is the core race

detection algorithm. For each shared variable, we intersect the sets of locks held at all
its accesses. We call this the guarded-by set for that location, and if the set is empty, we
report a possible data race. Chapter 3 presents the correlation inference system in detail.

We begin by generating initial correlation constraints at each Acc(ρ) node such that
ρ may be shared according to the sharing analysis. Correlation constraints have the form
ρ� {`1, . . . , `n}, meaning location ρ is accessed with locks `1 through `n held. We write
Cn for the set of correlation constraints inferred for statement n.

The first access in the program, on line 17, yields no correlation constraints (C18 =
∅) because, as we discussed above, the sharing analysis determines the &local is not a
shared variable. Similarly, C26 = ∅ because the only location that “flows to” y in the label
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flow graph is &local, which is not shared. On line 33, on the other hand, we have an access
to a shared variable, and so we initialize C33 = {&count1 � {&lock1}}, using the output
of the lock state analysis to report which locks are held. Similarly, C35 = {&count2�∅},
since no locks are held at that access. Finally, C7 = {count�{lock}}. Here we determine
count may be shared because at least one shared variable flows to it in the label flow graph.

Notice that this last correlation constraint is in terms of the local variables of func-
tion atomic inc. Thus at each call to atomic inc, we must instantiate this constraint in
terms of the caller’s variables. We use an iterative fixpoint algorithm to propagate corre-
lations through the control-flow graph, instantiating as necessary until we reach the entry
node of main. At this point, all correlation constraints are in terms of the names visi-
ble in the top-level scope, and so we can perform the set intersections to look for races.
Note that, as is standard for label flow analysis, when we label a syntactic occurrence
of malloc() or any other memory allocation or lock creation site, we treat that label as a
top-level name.

We begin by propagating C7 backwards, setting C6 = C7. Continuing the back-
wards propagation, we encounter two Call edges. For each call site i in the program,
there exists a substitution Si that maps the formal parameters to the actual parameters;
this substitution is equivalent to a polymorphic type instantiation [132, 124]. For call
site 4 we have S4 = [lock 7→ &lock1, count 7→ &count1]. Then when we propagate
the constraints from C7 backwards across the edge annotated (4 , we apply S4 to instan-
tiate the constraints for the caller. In this case we set C42 = S4({count � {lock}}) =
{&count1�{&lock1}} and thus we have derived the correct correlation constraint inside
of thread3. Similarly, when we propagate C6 backwards across the edge annotated (5 ,
we find C43 = {&count2 � {&lock2}}.

We continue backwards propagation, and eventually push all the correlations we
have mentioned so far back to the entry of main:

&count1 � {&lock1} from line 33
&count2 � ∅ from line 35
&count1 � {&lock1} from the call on line 42
&count2 � {&lock2} from the call on line 43

(Note that there are substitutions for the calls indexed by 1–3, but they do not rename
&counti or &locki, since those are global names.) We now intersect the lock sets from
each correlation, and find that &count1 is consistently correlated with (or guarded by)
lock1, whereas &count2 is not consistently correlated with a lock. We then report a race
on &count2.

One important detail we have omitted is that when we propagate correlation con-
straints back to callers, we need to interpret them with respect to the “closure” of the
label flow graph. For example, given a constraint x � {&lock}, if &y flows to x in the
label flow graph, then we also derive &y � {&lock}. More information about the closure
computation can be found elsewhere [125].

Propagating correlation constraints backwards through the ACFG also helps to im-
prove the reporting of potential data races. In our implementation, we also associate a
program path, consisting of a sequence of file and line numbers, with each correlation
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constraint. When we generate an initial constraint at an access in the ACFG, the asso-
ciated path contains just the syntactic location of that access. Whenever we propagate a
constraint backwards across a Call edge, we prepend the file and line number of the call
to the path. In this way, when the correlation constraints reach the main, they describe a
path of function calls from main to the access site, essentially capturing a stack trace of
a thread at the point of a potentially racing access, and developers can use these paths to
help understand error messages.

Section 6.9.3 presents the algorithm for solving correlation constraints and inferring
all correlations in the program. Since correlation analysis is an iterative fixpoint computa-
tion, in which we iteratively convert local names to their global equivalents, we compute
correlations using the same framework we used to infer the state of locks.

6.6 Linearity and escape checking
The constraint generation phase also creates linearity constraints, which we use to

ensure that a static lock name ` used in the analysis never represents two or more run-
time locks that are simultaneously live. Without this assurance, we could not model lock
acquire and release precisely. That is, suppose during the lock state analysis we encounter
a node Acq(`). If ` is non-linear, it may represent more than one lock, and thus we do
not know which one will actually be acquired by this statement. On the other hand, if ` is
linear, then it represents exactly one location at run time, and hence after Acq(`) we may
assume that ` is acquired.

Lock ` could be non-linear for a number of reasons. Consider, for example, a linked
list data structure where each node of the linked list contains a lock, meant to guard access
to the data reachable from that node. Standard label flow analysis will label each element
in such a recursive structure with the same name ρ whose pointed-to memory is a record
containing some lock `. Thus, ρ statically represents arbitrarily many run-time locations,
and consequently ` represents arbitrarily many locks. With such a representation, a naive
analysis would not complain about a program that acquires a lock contained in one list
element but then accesses data present in other elements.

To be conservative, LOCKSMITH treats locks ` such as these as non-linear, with the
consequence that nodes Acq(`) and Rel(`) of such non-linear ` are ignored. This approach
solves the problem of missing potential races, but is more likely to generate false posi-
tives, e.g., when there is an access that is actually guarded by ` at run time. LOCKSMITH

addresses this issue by using user-specified existential types to allow locks in data struc-
tures to sometimes be linear, and includes an escape checking phase to ensure existential
types are used correctly. Chapter 4 presents a generic analysis that uses existential types
to analyze data structures with precision, and its application in LOCKSMITH.

6.7 Results
Fig. 6.4 summarizes the results of running LOCKSMITH on a set of benchmarks

varying in size, complexity and coding style. The results shown correspond to the default
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POSIX
thread

programs

Linux
device
drivers

Benchmark Size Time Warnings Unguarded Races
(LOC) (sec)

aget 1,914 0.85 62 31 31
ctrace 2,212 0.59 10 9 2

engine 2,608 0.88 7 0 0
knot 1,985 0.78 12 8 8

pfscan 1,948 0.46 6 0 0
smtprc 8,624 5.37 46 1 1

3c501 17,443 9.18 15 5 4
eql 16,568 21.38 35 0 0

hp100 20,370 143.23 14 9 8
plip 19,141 19.14 42 11 11

sis900 20,428 71.03 6 0 0
slip 22,693 16.99 3 0 0

sundance 19,951 106.79 5 1 1
synclink 24,691 1521.07 139 2 0
wavelan 20,099 19.70 10 1 1

Figure 6.4: Benchmarks

configuration for all LOCKSMITH analyses, in particular: context-sensitive, field-sensitive
label flow analysis, with lazy field propagation and no conflation under void*; flow- and
context-sensitive sharing analysis; and context-sensitive lock state analysis and correla-
tion inference.

The first part of the table presents a set of applications that use POSIX threads,
whereas the second part of the table presents the results for a set of network drivers taken
from the Linux kernel. The first column gives the benchmark name and the second column
presents the number of preprocessed and merged lines of code for every benchmark. We
used the CIL merger to combine all the code for every benchmark into a single C file,
also removing comments and redundant declarations. The next column lists the running
time for LOCKSMITH. Experiments in this paper were performed on a dual-core, 3GHz
Pentium D CPU with 4GB of physical memory. All times reported are the median of
three runs. The fourth column lists the total number of warnings (shared locations that
are not protected by any lock) that LOCKSMITH reports. The next column lists how
many of those warnings correspond to cases in which shared memory locations are not
protected by any lock. The last column lists how many of those we believe correspond
to races. Note that in some cases there is a difference between the unguarded and races
columns, where an unguarded location is not a race. These are caused by the use of other
synchronization constructs, such as pthread join, semaphores, or inline atomic assembly
instructions, which LOCKSMITH does not model.
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Warning: Possible data race: &count2:example.c:2 is not protected!
 references:
  dereference of count:example.c:5 at example.c:7
    &count2:example.c:2 => atomic_inc.count:example.c:43
                        => count:example.c:5 at atomic_inc example.c:43
  locks acquired:
    *atomic_inc.lock:example.c:43
    concrete lock2:example.c:16
    lock2:example.c:1
  in: FORK at example.c:21  -> example.c:43

  dereference of &count2:example.c:2 at example.c:35
    &count2:example.c:2
  locks acquired:
    <empty>
  in: FORK at example.c:20 

(1)

(3)

(4)

(5)

(2)

Figure 6.5: Sample LOCKSMITH warning. Highlighting and markers added for expository
purposes.

6.7.1 Warnings
Each warning produced by LOCKSMITH contains information to explain the poten-

tial data race to the user. Fig. 6.5 shows a sample warning from the analysis of the example
program shown in Fig. 6.2, stored in file example.c. The actual output of LOCKSMITH

is pure text; here we have added some highlighting and markers (referred to below) for
expository purposes.

LOCKSMITH issues one warning per allocation site that is shared but inconsistently
(or un-)protected. In this example, the suspect allocation site is the contents of the global
variable count2, declared on line 2 of file example.c (1). After reporting the allocation
site, LOCKSMITH then describes each syntactic access of the shared location.

The text block indicated by (2) describes the first access site at line 6, accessing
variable count which is declared at line 4. The other text block shown in the error report
(each block is separated by a newline) corresponds to a different access site. Within a
block, LOCKSMITH first describes why the expression that was actually accessed aliases
the shared location (3). In this case, the shared location &count2 “flows to” (indicated
by ⇒) the argument count passed to the function call of atomic inc at line 43 (written as
atomic inc.count), in the label flow graph. That, in turn, flows to the formal argument
count of the function, declared at line 4, due to the invocation at line 43. If there is more
than one such path in the label flow graph, we list the shortest one.

Next, LOCKSMITH prints the set of acquired locks at the access (4). We specially
designate concrete lock labels, which correspond to variables initialized by pthread mutex init(),
from aliases of those variables. Aliases are included in the error report to potentially help
the programmer locate the relevant pthread mutex lock() and pthread mutex unlock()
statements. In this case, the second lock listed is a concrete lock created at line 15 and
named lock2, after the variable that stores the result of pthread mutex init(). The global
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variable lock2 itself, listed third, is a different lock that aliases the concrete lock created
at line 15. There is also an additional alias listed first, the argument ∗lock of the call
to function atomic inc at line 43 (denoted as ∗atomic inc.lock : example.c : 43). We do
not list aliasing paths for the lock sets, because we list all the aliases, and also printing
the paths between them would only add confusion by replicating the lock aliases’ names
many times.

Finally, LOCKSMITH gives stack traces leading up to the access site (5). Each
trace starts with the thread creation point (either a call to pthread create() or the start of
main()), followed by a list of function invocations. For this access site, the thread that
might perform the access is created at line 20 and then makes a call at example.c : 43 to
the function that contains the access. We generate this information during correlation in-
ference, as we propagate information from the access point backwards through the ACFG
(Section 6.9.3).

The other dereference listed has the same structure. Notice that the intersection of
the acquired lock sets of the two sites is empty, triggering the warning. In this case, the
warning corresponds to a true race, caused by the unguarded write to count2 at line 35,
listed as the second dereference in the warning message. To check whether a warning
corresponds to an actual race, the programmer has to verify that the listed accesses might
actually happen simultaneously, including the case where a single access occurs simulta-
neously in several threads. Also, the programmer would have to verify that the aliasing
listed indeed occurs during the program execution, and is not simply an artifact of impre-
cision in the points-to analysis. Moreover, the programmer must check whether the set
of acquired locks contains additional locks that LOCKSMITH cannot verify are acquired.
Last, but not least, the programmer needs to validate that the location listed in the warning
is in fact shared among different threads.

6.7.2 Races
We found races in many of the benchmarks. In knot, all of the races are on counter

variables always accessed without locks held. These variables are used to generate usage
statistics, which races could render inaccurate, but this would not affect the behavior of
knot. In aget, most of the races are due to an unprotected global array of shared infor-
mation. The programmer intended for each element of the array to be thread-local, but a
race on an unrelated memory location in the signal handling code can trigger erroneous
computation of array indexes, causing races that may trigger a program crash. The re-
maining two races are due to unprotected writes to global variables, which might cause
a progress bar to be printed incorrectly. In ctrace, two global flag variables can be read
and set at the same time, causing them to have erroneous values. In smtprc, a variable
containing the number of threads is set in two different threads without synchronization.
This can result in not counting some threads, which in turn may cause the main thread to
not wait for all child threads at the end of the program. The result is a memory leak, but
in this case it does not cause erroneous behavior since it occurs at the end of the program.
In most of the Linux drivers, the races correspond to integer counters or flags, but do not
correspond to bugs that could crash the program, as there is usually a subsequent check
that restores the correct value to a variable. The rest of the warnings for the Linux drivers
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can potentially cause data corruption, although we could not verify that any can cause the
kernel to crash.

6.7.3 False positives
The majority of false positives are caused by over-approximation in the sharing

analysis. The primary reason for this is conservativism in the label flow (points-to) anal-
ysis, which can cause many thread-local locations to be spuriously conflated with shared
locations. Since thread-local memory need not be, and usually is not, protected by locks,
this causes many false warnings of races on those locations. Overly-conservative aliasing
has several main causes: structural subtyping where the same data is cast between two
different types (e.g. different structs that share a common prefix), asm blocks, casting
to or from numerical types, and pointer arithmetic, in order of significance. One ap-
proach to better handling structural subtyping may be adapting physical subtyping [145]
to LOCKSMITH. Currently, when a struct type is cast to a different struct type, LOCKSMITH

does not compute field offsets to match individual fields, but rather conservatively as-
sumes that all labels of one type could alias all labels of the other.

The second largest source of false positives in the benchmarks is the flow-sensitivity
of the sharedness property, in more detail than our current flow-sensitive sharing propaga-
tion can capture. Specifically, any time that a memory location might be accessed by two
threads, we consider it shared immediately when the second thread is created. However,
in many cases thread-local memory is first initialized locally, and then becomes shared
indirectly, e.g., via an assignment to a global or otherwise shared variable. We eliminate
some false positives using a simple intra-procedural uniqueness analysis—a location via
a unique pointer as determined by this analysis is surely not shared—but it is too weak
for many other situations.

6.8 Implementation
We present the implementation of the LOCKSMITH analyses in detail, starting from

its core analysis engine (Section 6.9), with separate consideration of lock state analysis
(Section 6.9.3), correlation inference (Section 6.9.3), the sharing analysis (Section 6.10),
techniques for effectively modeling C struct and void* types (Section 6.11), and ex-
tensions to enable context-sensitive analysis (Section 6.12). For many of LOCKSMITH’s
analysis components, we implemented several possible algorithms, and measured the al-
gorithms’ effects on the precision and efficiency of LOCKSMITH. By combining a careful
exposition of LOCKSMITH’s inner workings with such detailed measurements, we have
endeavored to provide useful data to inform further developments in the static analysis of
C programs (multi-threaded or otherwise).
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e ::= x | v | e e | if0 e then e else e
| (e, e) | e.j | ref e | ! e | e := e
| newlock | acquire e | release e | fork e

v ::= n | λx : t.e | (v1, v2)
t ::= int | t× t | t→ t | ref (t) | lock

Figure 6.6: Source language

6.9 Labeling and constraint generation
We present LOCKSMITH’s key algorithms on the language in Figure 6.6. This lan-

guage extends the standard lambda calculus, which consists of variables x, functions
λx : t.e (where the argument x has type t), and function application e e. To model con-
ditional control flow, we add integers n and the conditional form if0 e0 then e1 else e2,
which evaluates to e1 if e0 evaluates to 0, and to e2 otherwise. To model structured data
(i.e., C structs) we introduce pairs (e, e) along with projection e.j. The latter form returns
the jth element of the pair (j ∈ 1, 2). We model pointers and dynamic allocation as using
references. The expression ref e allocates a fresh memory location m, initializing it with
the result of evaluating e and returning m. The expression ! e reads the value stored in
memory location e, and the expression e1 := e2 updates the value in location e1 with the
result of evaluating e2.

We model locks with three expressions: newlock dynamically allocates and returns
a new lock, and acquire e and release e acquire and release, respectively, lock e. Our
language also includes the expression fork e, which creates a new thread that evaluates e
in parallel with the current thread. The expression fork e is asynchronous, i.e., it returns
to the parent immediately without waiting for the child thread to complete.

Source language types t include the integer type int , pair types t × t, function
types t → t, reference (or pointer) types ref (t), and the type lock of locks. Note that
our source language is monomorphically typed and that, in a function λx : t.e, the type t
of the formal argument x is supplied by the programmer. This matches C, which in-
cludes programmer annotations on formal arguments. If we wish to apply LOCKSMITH

to a language without these annotations, we can always apply standard type inference to
determine such types as a preliminary step.

6.9.1 Labeling and constraint generation
As discussed in section 6.1, the first stage of LOCKSMITH is labeling and constraint

generation, which produces both label flow constraints, to model memory locations and
locks, and abstract control-flow constraints, to model control-flow. We specify the con-
straint generation phase using type inference rules. We discuss the label flow constraints
only briefly here, and refer the reader to prior work [109, 40, 132, 87, 82, 124], as well
as Chapter 3, for more details. In our implementation, we use BANSHEE [88], a set-
constraint solving engine, to represent and solve label flow constraints. For the time
being, we present a purely monomorphic (context-insensitive) analysis; Section 6.12 dis-
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τ ::= int | τ × τ | (τ, φ) →` (τ, φ) | ref ρ(τ) | lock `
C ::= C ∪ C | τ ≤ τ | ρ ≤ ρ | ` ≤ ` | φ ≤ φ | φ : κ
κ ::= Acc(ρ) | NewL(`) | Acq(`) | Rel(`)

| Fork | Call(`, φ) | Ret(`, φ)

ρ ∈ abstract locations
` ∈ abstract locks
φ ∈ abstract statement labels

〈〈int〉〉 = int
〈〈t1 × t2〉〉 = 〈〈t1〉〉 × 〈〈t2〉〉
〈〈t1 → t1〉〉 = (〈〈t1〉〉, φ1) →` (〈〈t2〉〉, φ2) φ1, φ2, ` fresh
〈〈ref (t)〉〉 = ref ρ(〈〈t〉〉) ρ fresh
〈〈lock 〉〉 = lock ` ` fresh
〈〈τ〉〉 = τ ′ where τ ′ is τ with fresh ρ, `, φ’s, as above

C ` φ ≤ (φ′ : κ) ≡ C ` φ ≤ φ′ and C ` φ′ : κ and φ′ fresh

Figure 6.7: Auxiliary definitions

cusses context-sensitivity.
We extend source languages types t to labeled types τ , defined by the grammar at

the top of Figure 6.7. The type grammar is mostly the same as before, with two main
changes. First, reference and lock types now have the forms ref ρ(τ) and lock `, where ρ
is an abstract location and ` is an abstract lock. As mentioned in the last section, each ρ
and ` stands for one or more concrete, run-time locations. Second, function types now
have the form (τ, φ) →` (τ ′, φ′), where τ and τ ′ are the domain and range type, and ` is
a lock, discussed further below. In this function type, φ and φ′ are statement labels that
represent the entry and exit node of the function. We will usually say statement φ instead
of statement label φ when the distinction is made clear by the use of a φ variable.

During type inference, our type rules generate constraints C, including flow con-
straints of the form τ ≤ τ ′, indicating a value of type τ flows to a position of type τ ′.
Flow constraints among types are ultimately reduced to flow constraints ρ ≤ ρ′ and ` ≤ `′

among locations and locks, respectively. When we draw a set of label flow constraints as
a graph, as e.g. in Figure 6.3(a), ρ’s and `’s form the nodes, and each constraint x ≤ y is
drawn as a directed edge from x to y.

We also generate two kinds of constraints that, put together, define the ACFG.
Whenever statement φ occurs immediately before statement φ′, our type system gener-
ates a constraint φ ≤ φ′. As above, we drawn such a constraint as an edge from φ
to φ′. We generate kind constraints of the form φ : κ to indicate that statement φ has
kind κ, where the kind indicates the statement label’s relevant behavior, as described in
Section 6.2. Note that our type rules assign at most one kind to each statement label, and
thus we showed only the kinds of statement labels in Figure 6.3(b). Statement labels with
no kind, including join points and function entries and exits, have no interesting effect.
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[VAR]
C;φ; Γ, x : τ ` x : τ ;φ

[INT]
C;φ; Γ ` n : int ;φ

[PAIR]

C;φ; Γ ` e1 : τ1;φ1

C;φ1; Γ ` e2 : τ2;φ2

C;φ; Γ ` (e1, e2) : τ1 × τ2;φ2
[PROJ]

C;φ; Γ ` e : τ1 × τ2;φ′

j ∈ 1, 2
C;φ; Γ ` e.j : τj ;φ′

[REF]

C;φ; Γ ` e : τ ;φ′

ρ fresh
C;φ; Γ ` ref e : refρ(τ);φ′

[DEREF]

C;φ; Γ ` e1 : refρ(τ);φ1

C ` φ1 ≤ (φ′ : Acc(ρ))
C;φ; Γ ` ! e1 : τ ;φ′

[FORK]

C;φ′; Γ ` e : τ ;φ′′

C ` φ ≤ (φ′ : Fork)
C;φ; Γ ` fork e : int ;φ

[NEWLOCK]

C ` φ ≤ (φ′ : NewL(`))
` fresh

C;φ; Γ ` newlock : lock `;φ′

[ACQUIRE]

C;φ; Γ ` e : lock `;φ′

C ` φ′ ≤ (φ′′ : Acq(`))
C;φ; Γ ` acquire e : int ;φ′′

[RELEASE]

C;φ; Γ ` e : lock `;φ′

C ` φ′ ≤ (φ′′ : Rel(`))
C;φ; Γ ` release e : int ;φ′′

[ASSIGN]

C;φ; Γ ` e1 : refρ(τ1);φ1

C;φ1; Γ ` e2 : τ2;φ2

C ` τ2 ≤ τ1

C ` φ2 ≤ (φ′ : Acc(ρ))
C;φ; Γ ` e1 := e2 : τ2;φ′

[LAM]

τ = 〈〈t〉〉 φλ fresh
C;φλ; Γ, x : τ ` e : τ ′;φ′λ
` = {locks e may access}

C;φ; Γ ` λx : t.e : (τ, φλ) →` (τ ′, φ′λ);φ

[APP]

C;φ; Γ ` e1 : (τ, φλ) →` (τ ′, φ′λ);φ1 φ1; Γ ` e2 : τ2;φ2 C ` τ2 ≤ τ
C ` φ2 ≤ (φ3 : Call(`, φ′)) C ` φ3 ≤ φλ C ` φ′λ ≤ (φ′ : Ret(`, φ3))

C;φ; Γ ` e1 e2 : τ ′;φ′

[COND]

C;φ; Γ ` e0 : int ;φ0 C;φ0; Γ ` e1 : τ1;φ1 C;φ0; Γ ` e2 : τ2;φ2

τ = 〈〈τ1〉〉 C ` τ1 ≤ τ C ` τ2 ≤ τ C ` φ1 ≤ φ′ C ` φ1 ≤ φ′ φ′ fresh
C;φ; Γ ` if0 e0 then e1 else e2 : τ ;φ′

Figure 6.8: Type inference rules

The bottom half of Figure 6.7 defines some useful shorthands. The notation 〈〈·〉〉
denotes a function that takes a either standard type or a labeled type and returns a new
labeled type with the same shape but with fresh abstract locations, locks, and statement
labels at each relevant position. By fresh we mean a variable that has not been introduced
elsewhere in the typing derivation. We also use the abbreviation C ` φ ≤ (φ′ : κ), which
stands for C ` φ ≤ φ′, C ` φ′ : κ, and φ′ fresh. These three operations often go together
in our type inference rules.

Figure 6.8 gives type inference rules that prove judgments of the form C;φ; Γ `
e : τ ;φ′, meaning under constraints C and type environment Γ (a mapping from variable
names to labeled types), if the preceding statement label is φ (the input statement label),
then expression e has type τ and has the behavior described by statement φ′ (the output
statement label). In these rules, the notation C ` C ′ means that C must contain the
constraints C ′. Viewing these rules as defining a constraint generation algorithm, we
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interpret this judgment as generating the constraint C ′ and adding it to C.
We discuss the rules briefly. [VAR] and [INT] are standard and yield no constraints.

The output statement labels of these rules are the same as the input statement labels, since
accessing a variable or referring to an integer has no effect.

In [PAIR], we type e1 with the input statement φ for the whole expression, yielding
output statement φ1. We then type e2 starting in φ1 and yielding φ2, the output statement
label for the whole expression. Notice we assume a left-to-right order of evaluation. In
[PROJ], we type check the subexpression e, and the output statement label of the whole
expression is the output of e.

[REF] types memory allocation, associating a fresh abstract location ρ with the
newly-created updateable reference. Notice that this rule associates ρ with a syntactic
occurrence of ref, but if that ref is in a function, it may be executed multiple times. Hence
the single ρ chosen by [REF] may stand for multiple run-time locations.

[DEREF] is the first rule to actually introduce a new statement label into the ab-
stract control-flow graph. We type e1, yielding a pointer to location ρ and an output
statement φ1. We then add a new statement φ′ to the control-flow graph, occurring imme-
diately after φ1, and give φ′ the kind Acc(ρ) to indicate the dereference. Statement φ′ is
the output of the whole expression. [ASSIGN] is similar, but also requires the type τ2 of
e2 be a subtype of the type τ1 of data referenced by the pointer e1.

[NEWLOCK] types a lock allocation, assigning it a fresh abstract lock `, similarly
to [REF]. [ACQUIRE] and [RELEASE] both require that their argument be a lock, and
both return some int (in C these functions typically return void). All three of these
rules introduce a new statement label of the appropriate kind into the control-flow graph
immediately after the output statement label of the last subexpression.

In [FORK], the control-flow is somewhat different than the other rules, to match
the asynchronous nature of fork. At run time, the expression e is evaluated in a new
thread. Hence we introduce a new statement φ′ with the special kind Fork, to mark thread
creation, and type e with input statement φ′. We sequence φ′ immediately after φ, since
that is their order in the control flow. The output statement label of the fork expression
as a whole is the same as the input statement φ, since no state in the parent changes after
the fork.

In [COND], we sequence the subexpressions as expected. We type both e1 and e2
with input statement φ0, since either may occur immediately after e0 is evaluated. We also
create a fresh statement φ′ representing the join point of the condition, and add appropriate
constraints to C. Since the join point has no effect on the program state, we do not
associate a kind with it. We also join the types τ1 and τ2 of the two branches, constraining
them to flow to a type τ , which has the same shape as τ1 but has fresh locations and locks.
Note that for the constraints in this rule to be satisfied, τ2 must have the same shape as τ1,
and so we could equivalently have written τ = 〈〈τ2〉〉.

[LAM] type checks the function body e in an environment with x bound to τ , which
is the standard type t annotated with fresh locations and locks. We create a new state-
ment φλ to represent the function entry, and use that as the input statement label when
typing the function body e. We place φλ and φ′λ, the output statement label after e has
been evaluated, in the type of the function. We also add an abstract lock ` to the function
type to represent the function’s lock effect, which is the set of locks that may be acquired
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C ∪ {int ≤ int} ⇒ C

C ∪ {refρ(τ) ≤ refρ′
(τ ′)} ⇒ C ∪ {ρ ≤ ρ′, τ ≤ τ ′, τ ′ ≤ τ}

C ∪ {lock ` ≤ lock `′
} ⇒ C ∪ {` ≤ `′}

C ∪ {τ1 × τ2 ≤ τ ′1 × τ ′2} ⇒ C ∪ {τ1 ≤ τ ′1, τ2 ≤ τ ′2}
C ∪ {(τ1, φ1) → (τ ′1, φ

′
1) ≤ (τ2, φ2) → (τ ′2, φ

′
2)} ⇒ C ∪ {τ2 ≤ τ1, τ

′
1 ≤ τ ′2}

C ∪ {ρ ≤ ρ′, ρ′ ≤ ρ′′} ∪ ⇒ {ρ ≤ ρ′′}
C ∪ {` ≤ `′, `′ ≤ `′′} ∪ ⇒ {` ≤ `′′}

Figure 6.9: Label flow constraint rewriting rules

or released when the function executes. For each lock `′ that either e acquires or releases
directly or that appears on the arrow of a function called in e, a separate effect analysis
(not shown) generates a constraint `′ ≤ `. Then during constraint resolution, we compute
the set of locks that flow to ` to compute the lock effect. We discuss the use of lock effects
in Section 6.5. The output statement label for the expression as a whole is the same as the
input statement label, since defining a function has no effect.

Finally, [APP] requires that e2’s type be a subtype of e1’s domain type. We also
add the appropriate statement labels to the control-flow graph. Statement φ2 is the output
of e2, and φλ is the entry node for the function. Thus clearly we need to add control flow
from φ2 to φλ. Moreover, φ′λ is the output statement label of the function body, and that
should be the last statement label in the function application as a whole. However, rather
than directly inserting φλ and φ′λ in the control-flow graph, we introduce two intermediate
statement labels, φ3 just before the call, and φ′ just after. Statement φ3 has kind Call(`, φ′),
and statement φ′ has kind Ret(`, φ3). Pictorially, the control-flow graph looks like the
following, where the φ’s in the kinds of the Call and Ret nodes are drawn with dashed
lines:

φ2 φ3 φλ φ'λ φ'

Call(l)

Ret(l)

Using this structure, we can propagate certain dataflow facts “around” functions—i.e.,
directly from Call to Ret, rather than through the function body—thereby improving pre-
cision and gaining some speed up. In particular, we use this for our lock state computation
(Section 6.4).

6.9.2 Label flow constraint resolution
After generating constraints using the rules in Figure 6.8, we can then solve the

constraints to compute various information about the analyzed program. We use flow
constraints to answer questions about which locations and locks are used by various state-
ments in the program, i.e., to perform a label flow analysis. These constraints have the
form c ≤ c′ where c and c′ are either locations ρ, locks `, or types τ .
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Similarly to the system in Chapter 3, we apply the rewriting rules in Figure 6.9
to translate the constraints to a simpler, solved form. The first group of rewriting rules
operate on constraints of the form τ ≤ τ ′. These rules are standard structural subtyping
rules, matching the shapes of the left- and right-hand sides of the constraints and then
propagating subtyping to the components in the usual way (e.g., invariant for references
and contravariant for function domains) [121]. We will assume that the source program
is type correct with respect to the standard types, so that these rewriting rules will never
encounter a constraint they cannot reduce further, i.e., in the constraint τ ≤ τ ′, the types
τ and τ ′ will always be the same modulo abstract locations and locks.

After applying these rewriting rules, we are left with constraints ρ ≤ ρ′ and ` ≤ `′.
The remaining rewrite rules add any transitively-implied constraints. Here the notation
C ∪ ⇒ C ′ means we add the constraints C ′ to C. We define Sol(C) to be the set of
constraints computed by exhaustively applying the rules in Figure 6.9 to C. We can then
define

Flow(C, ρ) = {ρ′ | ρ′ ≤ ρ ∈ Sol(C)}
Flow(C, `) = {`′ | `′ ≤ ` ∈ Sol(C)}

In other words, Flow(C, ρ) is the set of abstract locations that flow to ρ in the constraints
C, and similarly for Flow(C, `). LOCKSMITH uses BANSHEE to solve label flow con-
straints and compute the Flow(C, ρ) sets. We can use this information to answer ques-
tions about locations and locks in the program. For example, given a dereference site ! e,
if type inference assigns e the type ref ρ(int) and ref e′ the type ref ρ

′
(int), then if it is pos-

sible for e to evaluate to ref e′, then ρ′ ∈ Flow(C, ρ). In other words, the set Flow(C, ρ)
conservatively models the set of locations that may flow to the reference annotated with
ρ.

Consider the example of Section 6.1. In function thread1() (lines 23–28) the argu-
ment a corresponds to a variable with type ref ρ&a(ref ρa(int)) in this language, ignoring
for now the special void* type. (We follow the convention that the location name is sub-
scripted by the program variable that names the location.) Similarly, the local variable y
in f() corresponds to a variable with type ref ρ&y(ref ρy(int)). (Because in C variables can
be l-values, we consider all variables to be references to the corresponding type, adding
an extra level of reference that is implicit in the C program.) In C, variable names are
implicitly dereferenced when they occur in a read context. For example, the assignment
to y in thread1() (line 24) can be written as y = a, where the occurrence of y at the left
hand side of the assignment denotes the location y whereas the occurrence of a at the right
hand side denotes its contents. In our formal language, that assignment corresponds to
y := ! a. Typing this assignment with [ASSIGN] and [DEREF] creates the flow constraint
ref ρa(int) ≤ ref ρy(int). Then, the second and first rewriting rules in Figure 6.9 solve the
constraint reducing it to ρa ≤ ρy, and thus ρa ∈ Flow(C, ρy).

Note that the constraints in this section are monomorphic and do not include the (i
and )i edges we introduced in Section 6.1 for context-sensitivity. We will discuss how to
incorporate context-sensitivity into this system in Section 6.12.
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φ kind Acqout(φ)

Acc(ρ) Acq in(φ)

Fork ∅

NewL(`) Acq in(φ)

Acq(`) Acq in(φ) ∪ Flow(C, `)

φ kind Acqout(φ)

Rel(`) Acq in(φ) \ Flow(C, `)

Call(`, φ′) Acq in(φ) ∩ Flow(C, `)
Split(φ′) = Acq in(φ) \ Flow(C, `)

Ret(`, φ′) Acq in(φ) ∪ Split(φ)

Figure 6.10: Transfer functions for lock state inference

6.9.3 Data flow analysis with the abstract control flow graph
LOCKSMITH uses a generic, mostly-standard dataflow analysis engine to compute

per-program point information, such as which locks are held, by propagating dataflow
facts through the ACFG. To construct a dataflow analysis, the programmer specifies the
following characteristics of the target analysis [3]:

• The direction of the analysis (forwards or backwards)

• The type of the dataflow facts to propagate

• Initial dataflow facts at the program entry, and at each statement label

• A merge function to join dataflow facts

• Transfer functions for each kind of statement label

In the remainder of this section, we discuss two such dataflow analyses used by
LOCKSMITH—lock state analysis and correlation inference—and then compare the per-
formance of various strategies for implementing the fixpoint computation.

Lock State: Forwards dataflow

LOCKSMITH’s lock state analysis is a forwards dataflow analysis, where the sets
of dataflow facts are the set of acquired locks. The set of held locks is initially empty
for all statement labels, and the merge function is set intersection. Figure 6.10 lists the
transfer functions for each kind of statement label. Acc(ρ) and NewL(`) do not alter the
lock state, since neither acquires or releases a lock. The transfer function for Fork always
returns the empty set of locks, as every new thread starts with all locks released. (Recall
from Figure 6.8 that the first statement label in a thread has kind Fork.) The transfer
functions for Acq(`) and Rel(`) add and remove, respectively, Flow(C, `) from the lock
state. This latter set includes ` and all its aliases. The separate linearity check (mentioned
in Section 6.6) ensures this set contains only one run-time lock. In our implementation,
we also signal a warning at an attempt to acquire or release a lock that is already acquired
or released, respectively.

The transfer function for Call(`, φ′) partitions the acquired locks into two non-
overlapping sets. The transfer function sets the output set of acquired locks to be the
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1 let g () = !y in
2 acquire l ;
3 g ();
4 !x;
5 release l ;
6 g ()

Acq(l)
[2]

Call
[3]

Ret
[3]

{l}∅

∅

Acc(x)
[4]

Call
[6]

Ret
[6]

∅ ∅

{l}
{l} {l}

∅

Rel(l)
[5]

∅
∅

∅

Acc(y)
[1]

Figure 6.11: Splitting the lock state at a function call

input set intersected with Flow(C, `), which contains the lock effect of the function, i.e.,
the aliases of all locks that may be changed by the called function. It is this intersection
that will be propagated into the body of the function. The transfer function saves the re-
maining acquired locks in the set Split(φ′). Then the transfer function for Ret(`, φ′) adds
the saved locks back to the acquired set.

For example, consider the program in Figure 6.11. This program calls function g
twice, once with l held, and once with l released. It also accesses x with l held, just after
the first call to g. The function g itself accesses y. The right side of the figure shows the
ACFG for this example, annotated with the lock state Acqout(φ) at the end of each edge
from statement φ. Statement numbers are given below the statement kinds. Initially, no
locks are held (∅ on the edge to Acq(l) [2]), and after line 2 the lock state is {l} (shown
on the edge from Acq(l) [2]). Then at the call to g, we split the lock state into two parts.
Since g does not acquire or release any locks, we propagate {l} ∩ ∅ = ∅ from the Call [3]
to Acc(y) [11]. During correlation inference, we will recover the fact that y was accessed
with l held. We propagate the other part of the lock state, {l} \ ∅, from Call [3] to Ret [3].
Next, after Ret [3], the lock state is {l} ∪ ∅, i.e., the locks that flowed “around” g plus
the locks that flowed “through” g. Thus at Acc(x) [4], we see that l is held. Continuing
through the program, at the next call to g, the empty set of locks is held, and that is
propagated into g as before. This time after the Ret no locks are held, and the program
continues.

Critically, with this analysis we can discover that x is guarded by l. Imagine if
we had not split the lock state. Then we would have no dashed lines in the graph in
Figure 6.11, and we would directly connect the Call and Ret nodes to Acc(y). But then
we would have two edges flowing to Acc(y), one with state {l}, and one with state ∅. We
would then intersect these sets and decide that no locks were held at the entry to g. That
summarization is fine for g, but when we propagate this information, we would decide no
locks were held after the Ret statement labels in the ACFG, and thus we would think x
was accessed with no lock held.

In essence, by splitting the lock state, we make functions parametric in locks they
do not change; similar approaches have been used in other type systems [150, 59]. (We do
propagate information about changed locks into the function, since otherwise we would
not be able to track the state of those locks correctly.) We have found this kind of
lightweight polymorphism critical to LOCKSMITH’s precision. It is particularly impor-
tant for commonly called functions such as printf, which would otherwise almost always
cause the lock state to be empty upon their return.
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φ kind Corrout(φ)

Acc(ρ) Corr in(φ) ∪ {ρ � Acqout(φ)}
(ρ shared)

Fork Corr in(φ)

NewL(`) Corr in(φ)

φ kind Corrout(φ)

Acq(`) Corr in(φ)

Rel(`) Corr in(φ)

Call(`, φ′) (Corr in(φ) + Split(φ′)) ∪ Corr in(φ′)

Ret(`, φ′) ∅

Figure 6.12: Transfer functions for correlation inference

Precision Note that this analysis computes the set of locks that must be acquired at each
program point. Since the analysis is necessarily conservative, it may decide at a program
point that lock ` is not held even if it is at run time. This is safe because if our analysis
inaccurately determines that a lock is released, at worst it will report a data race where no
race is possible.

Correlation Inference: Backwards dataflow

LOCKSMITH also uses the dataflow-flow analysis engine to implement correla-
tion inference. Recall from Section 6.5 that a correlation constraint has the form ρ �

{`1, . . . , `n}, where the `i are the locks that are held during an access to ρ. To generate
such constraints the analysis uses a backwards propagation, where the per-φ state is a set
Corr of correlations. Initially the set of correlations is empty for all statement labels, and
the merge function is set union.

Figure 6.12 shows the transfer rules for correlation inference. Note that since
this is a backwards analysis, Corr in(φ) corresponds to the state after statement φ, and
Corr out(φ) corresponds to the state before φ.

The transfer function for Acc(ρ) adds ρ � Acqout(φ) to the set of correlations,
where ρ is determined to be shared according to the sharing analysis (Section 6.10), and
Acqout(φ) was computed by the lock state inference. The transfer functions for Fork,
NewL(`), Acq(`), and Rel(`) simply propagate the set of correlations. The last two trans-
fer functions are the most interesting. Recall that during the lock state computation, any
acquired locks that are not changed by a function are not propagated through the function
body. However, any lock that is acquired for the duration of a function call clearly is
correlated with all accesses that occur in the body of the function. Because of this, the
transfer function for Call(`, φ′) adds the set Split(φ′) of acquired locks that are “hidden”
from the function body, to the lock set of every correlation for the function. We define
Corr in(φ)+Split(φ′) to be the set of correlations {ρ� ({`1, . . . , `n} ∪ Split(φ′))} where
ρ� {`1, . . . , `n} ∈ Corr in(φ).

We also include in the output of Call(`, φ′) all correlations that occur after the func-
tion returns, Corr in(φ

′). Then, the transfer function for Ret(`, φ′) always returns the
empty set, as all correlations occurring after the function call are already propagated to
the point before it. This speeds up correlation inference, because we need not propagate
correlation information into called functions. Also, recall that due to the use of the spe-
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cial call and return kinds in the lock state analysis, we “hide” a set of acquired locks for
every function call. Clearly, as the locks in the split set are acquired during the function
call, they protect all dereferences that occur in this given evaluation of the function body.
We therefore need to add that “hidden” set of acquired locks to the set of correlations
that occur in the function. Propagating correlations this way facilitates that, as only the
correlations that occur in the function body are propagated through the Call(`, φ′) node.

To see these transfer functions in action, consider again the program in Figure 6.11.
There are two initial correlations in this program: x � {l} (generated at Acc(x) [4]) and
y � ∅ (generated at Acc(y) [1]). The correlation constraint x � {l} is first propagated
backward to Ret [3], then to Call [3], then Acq(l) [2], and then to the beginning of the
program. Notice that following the rule for Ret in Figure 6.12, we do not propagate this
constraint backwards into node [11] in the called function.

There are two backward paths for the second correlation, on y. When we propagate
it to the Call [3], we add the “hidden” lock l to the correlation, yielding y � {l} at Call [3].
When we propagate it to Call [6], there are no hidden locks, and so we get correlation
y � ∅. We propagate both of these constraints unchanged to the start of the program.
Thus we have that y is correlated with both {l} and ∅, and therefore y is not consistently
guarded by a lock.

In our implementation, we also associate a call stack with each correlation con-
straint. When we propagate information through a Call node, we add the name of the
called function to the call stack. In this way, once correlations reach the entry of the whole
program, we can report not only what locations are correlated with which locks, but also
on what paths the dereferences occurred. For example, for the code in Figure 6.11, if y
were shared, we would report a data race, indicating that the accesses were due to the
call on line 3 and the call on line 6. We have found that this “path” information makes
LOCKSMITH error reports much easier to understand.

Finding races from inferred correlations After solving the correlation constraints,
LOCKSMITH checks for consistent correlation among the inferred correlations in the set
Corr in(φ

main) which correspond to the initial state φ of function main(). We compute the
correlation set of a location label ρ to include every set of locks correlated with ρ:

S(C, ρ) = {{`1, . . . , `n} | C ` ρ� {`1, . . . , `n}}

A location labeled ρ is consistently correlated if

|
⋂

S(C, ρ)| ≥ 1

i.e., if there is at least one lock held every time ρ is accessed.

Fixpoint Computation Strategies

We implemented several strategies for finding a fixpoint of the sets computed by
our dataflow analyses. First, we experimented with worklist-based schemes. In these
approaches, each time the input set (i.e. the output of predecessors or successors, for a
forwards or backwards analysis, respectively) computed for some node φ changed, we
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Benchmark Queue Stack Double Stack Postorder Set No worklist

aget 0.84 0.82 0.83 0.80 0.85
ctrace 0.61 0.58 0.60 0.57 0.59

engine 0.88 0.88 0.87 0.89 0.88
knot 0.77 0.74 0.76 0.74 0.78

pfscan 0.43 0.43 0.41 0.43 0.46
smtprc 5.92 6.77 5.63 4.31 5.37

3c501 9.03 9.46 9.21 9.39 9.18
eql timeout timeout timeout timeout 21.38

hp100 timeout timeout timeout 2524.49 143.23
plip 30.73 30.21 28.53 25.11 19.14

sis900 85.07 82.89 84.97 79.37 71.03
slip timeout timeout timeout timeout 16.99

sundance 104.22 108.92 108.59 103.73 106.79
synclink timeout timeout timeout timeout 1521.07
wavelan 19.69 20.08 19.66 19.76 19.70

Figure 6.13: Time (in seconds) to perform correlation inference using several fixpoint
strategies

would add φ φ to the worklist for reconsideration. We tried four particular worklist im-
plementations, discussed in detail by Cooper et al [25]: Queue, Stack, Double Stack, and
Postorder Set. Initially, our implementations avoided adding duplicate nodes to the work-
list, but we found that the cost to detect and eliminate duplicates is comparable to the gain
from not processing the additional nodes. Thus, none of the implementations reported
here attempt to eliminate duplicate nodes.

Second, we implemented the following simple strategy for backwards (forwards)
analysis without a worklist:

1. Starting from the exit (entry) nodes, perform a postorder (reverse postorder) visit of
the whole graph, applying the transfer function at each node to propagate the state
to its predecessors (successors).

2. If anything changed during the last visit, then revisit the whole graph.

Using postorder for backwards analysis and reverse postorder for forwards analysis is
extremely important [3]. For example, postorder traversal visits successors of φ before a
node φ. Thus in a backwards analysis, a postorder traversal will (in the absence of cycles)
require only a single pass through the ACFG to reach a fixpoint.

Figure 6.13 shows the times to perform correlation inference using the various
strategies. A timeout indicates a run that did not terminate within one hour. We found
that for our benchmarks, the Queue, Stack, and Double Stack strategies take roughly the
same time, and the Postorder Set strategy is slightly faster. Surprisingly, we discovered
that getting rid of the worklist altogether is the optimal strategy, performing significantly
better on the larger benchmarks (the Linux kernel drivers). For example, on slip, all four
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[EFF-DEREF]

Φ1; Γ ` e : refρ(τ)
Φε

2 = Flow(C, ρ)
Φ1 � Φ2 ↪→ Φ
Φ; Γ ` ! e : τ

[XFLOW-CTXT]

Φ1 = [ε1; (ε2 ∪ ω2)]
Φ2 = [ε2;ω2]

Φ = [(ε1 ∪ ε2);ω2]
Φ1 � Φ2 ↪→ Φ

[EFF-FORK]

Φe; Γ ` e : τ
Φε

e ⊆ Φε

Φε
e ∩ Φω ⊆ SharLocs
Φ; Γ ` fork e : τ

Figure 6.14: Contextual effect rules for finding shared locations (selected)

worklist algorithms time out after one hour, whereas the no worklist strategy terminates
in 17 seconds.

One would expect that the worklist strategies would visit far fewer nodes than the
no-worklist strategy, and indeed this is the case for our benchmarks. However, LOCKSMITH

uses hashconsing of state data structures to memoize transfer functions on control-flow
nodes, and thus avoids re-computing the output state for every control-flow node visited,
if the input has not changed. As a result, the cost of maintaining the worklist far exceeds
the cost of redundant visits to nodes.

We do not present the respective measurements for the lock state analysis. We
found that because each benchmark includes a relatively small set of locks, the sets of
acquired locks at each program point are small. This makes the lock state analysis quite
fast, as little information needs to be propagated. Indeed, for all the benchmark programs
the running time for lock state analysis is negligible compared to the total running time,
and all five strategies work equally well.

6.10 Sharing analysis
As we discussed in Section 6.9.3, during correlation inference we can safely ignore

accesses to thread-local data, since such data need not be protected by locks. In this
section we show how we compute the set of thread-shared locations. We found that our
analysis allows LOCKSMITH to ignore a significant—usually dominant—fraction of the
accesses in the program as thread-local. To get good precision, we had to develop some
additional optimizations based on variable scoping and a simple uniqueness analysis. We
also developed a refinement to our core analysis that determines, for each access to a
thread-shared location, whether it occurs before or after the location becomes shared, so
that only the latter accesses need be protected by locks. We found that this analysis, while
potential useful, does not add much benefit in practice.

6.10.1 Contextual effects for finding shared locations
LOCKSMITH uses an effect system to infer which locations are thread-shared. Given

some expression e, the effect ε of e is the set of all locations ρ that e could dereference
during its evaluation [155]. In Chapter 5 we describe a generalization of effects that we
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call contextual effects [113]. The contextual effect of e consists not only of the effect
of e’s computation, but also the effect α of the computation that has already occurred—
called the prior effect—and the effect ω of the computation yet to take place—called the
future effect. At every occurrence of fork e in the program, we compute the effect ε of e,
the child thread, and the future effect ω of the parent thread. We consider as thread-shared
those locations in the intersection of these two sets.

Figure 6.14 contains selected typing rules from our contextual effect system as ap-
plied to this sharing analysis. Full details can be found in the paper introducing contextual
effects [113] and in Chapter 5. In these rules, a contextual effect Φ consists of a pair [ε;ω],
where the first element is the standard effect, and the second element is the future effect;
here, we ignore consideration of prior effects for simplicity. In our implementation, we
generate effect-related constraints along with label flow constraints. For simplicity, we
present effect typing rules here as a separate judgment, but it would be straightforward to
merge these rules with those in Figure 6.9.

[EFF-DEREF] types a dereference ! e. The first premise types expression e with
effect Φ1, and the second premise defines an effect Φ2 to capture the behavior of the
actual dereference, with a standard effect composed of the dereferenced location ρ and
any locations that flow to it according to the label flow analysis (written Flow(C, ρ)).
Here the syntax Φε refers to the ε (i.e., the first) component of Φ. Finally, the third premise
computes the contextual effect Φ of the entire expression by combining the effect Φ1 of the
subexpression ewith the effect Φ2 of the dereference itself, in the judgment Φ1�Φ2 ↪→ Φ,
defined by rule [XFLOW-CTXT].

[XFLOW-CTXT] defines the judgement Φ1 � Φ2 ↪→ Φ that combines two effects
Φ1 and Φ2 into effect Φ. We combine an effect Φ1 with an effect Φ2 when the expression
with effect Φ1 is evaluated immediately before the expression with effect Φ2. This creates
an effect Φ to describe the behavior of both expressions together. Specifically, since Φ1

occurs before Φ2, the future effect of Φ1 should include Φ2’s standard effect ε2 and its
future effect ω2, as shown in the first premise. The second premise is straightforward,
defining the effect Φ2. Since effect Φ describes both expressions with effects Φ1 and Φ2,
its standard effect must contain both standard effects, and its future effect is the future
effect of the last, namely Φ2, as shown in the third premise.

Finally, [EFF-FORK] type checks thread creation. The second premise of [FORK]
indicates that the standard effect Φε

e of the thread itself should be contained in the effect of
the parent. Notice the future effect Φω

e of the thread is unconstrained (effectively making
it ∅). In particular, as expected, it contains no information about the effect of the parent,
since the two will execute in parallel. Finally, the third premise adds to the set SharLocs
the locations that the parent and child thread (and threads they fork) could access in par-
allel: the intersection of the standard effect of the child thread Φε

e and the future effect Φω

of the parent.
We can see this analysis in action in Figure 6.15. The left side of the figure shows a

simple code example, and the right side shows the typing derivation for the last part of the
example, involving the two thread forks.1 Within this derivation, the boxed portion shows

1Note that the syntax e1; e2 can be treated as shorthand for (λx.e2) e1 for some x that does not occur
free in e2.
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1 let x = ref 1 in
2 let y = ref 2 in
3 !x;
4 !y;
5 fork (! x; !y );
6 fork (! x)

Φ11; Γ ` !x; ! y : int
Φε

11 ⊆ Φε
1

Φε
11 ∩ Φω

1 ⊆ SharLocs
Φ1; Γ ` fork (!x; ! y) : int

Φ22; Γ ` !x : int
Φε

22 ⊆ Φε
2

Φε
22 ∩ Φω

2 ⊆ SharLocs
Φ2; Γ ` fork (!x) : int

Φ1 � Φ2 ↪→ Φ
Φ; Γ ` fork (!x; ! y); fork (!x) : int

where

Φ = [{ρx, ρy}; ∅]
Φ1 = [{ρx, ρy}; {ρx}] Φ2 = [{ρx}; ∅]
Φ11 = [{ρx, ρy}; ∅] Φ22 = [{ρx}; ∅]

Figure 6.15: Example program to illustrate sharing analysis

the subderivation for the expression fork (!x; ! y). Here we can see that the standard effect
of this expression is Φε

1 = {ρx, ρy}, i.e., locations corresponding to x and y. The future
effect Φω

1 consists of the location ρx—this is because the effect of the subsequent thread
spawn is {ρx}, and by [EFFDEREF], this effect is also attributed to the parent thread.
Consequently, the intersection of these two effects is {ρx}, indicating that x is potentially
accessed simultaneously by two threads. The second thread spawn yields no additional
shared locations (since Φω

2 = ∅).
There are two interesting things to notice about this example. First, y is accessed in

the parent thread, at line 4, and then subsequently in the first child thread. Nevertheless,
our analysis does not consider y as shared, and indeed, y can never be simultaneously
accessed by both threads. Second, the example illustrates that it is crucial to include the
effect of a child thread in the effect of its parent. Otherwise, we would not have discovered
that the two child threads both might simultaneously access x.

Fig. 6.16 measures the precision of the sharing analysis. For each benchmark, the
second column shows the total number of pointers and the third column shows the number
of shared pointers, computed by intersecting the effects at thread-creation points. We
ignore the fourth column for now and return to it in Section 6.10.2. We also report the
results of the sharing analysis in terms of allocation sites, where an allocation site is either
a call to malloc() or the location of a variable definition (fourth and fifth columns, ignore
the last column). The results underline the effectiveness of using contextual effects to
compute shared memory locations; only 16% of all pointers and only 8% of all allocation
sites are in the SharLocs set computed by [FORK]. This precision is critical to reducing
false positives in LOCKSMITH: thread-local data is almost always accessed without a lock
held, and thus if LOCKSMITH incorrectly determines a location is thread-shared, it will
likely report a data race for that location.

6.10.2 Scoping and uniqueness
We used two additional optimizations to improve the results of the sharing anal-

ysis even further. Consider the program in Fig. 6.17. Here the reference g (line 1) is
visible within the function f, which allocates two references x and y (lines 3–4), then
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Pointers Allocation Sites

Benchmark Total Shared In scope Total Shared In scope

aget 1,411 258 235 352 64 62
ctrace 1,089 129 116 311 12 12

engine 1,441 60 17 410 11 7
knot 1,238 338 238 321 30 15

pfscan 987 53 48 240 8 7
smtprc 4,275 196 67 1079 74 46

3c501 10,020 954 913 408 20 20
eql 4,572 2,377 2,168 273 43 35

hp100 19,401 5,268 5,210 497 15 15
plip 13,249 2,867 2,823 466 49 49

sis900 38,624 2,648 2,594 779 11 9
slip 13,748 1,338 1,281 382 20 19

sundance 34,142 3,313 3,267 753 9 9
synclink 51,147 11,621 11,472 1,298 155 139
wavelan 18,799 2,535 2,125 695 128 10

Figure 6.16: Precision of sharing analysis and scoping

writes to them (lines 5–6), and then assigns x to g (line 7). The program calls function
f twice (lines 9–10) in two parallel threads. In this example, the sharing analysis from
Sections 6.10.1 and 6.10.3 will determine that x and y are thread-shared at the writes on
lines 5–6, because they are in the effects of both threads. However, in both cases this is
overly conservative.

Scoping Optimization Notice that the location y refers to is allocated in the scope of f
and never escapes. Hence, the uses of y by the two different threads must refer to distinct
memory locations. More generally, when computing thread-shared locations, we can
hide effects on locations that must be thread-local due to scoping. Formally, we change
the type rule for fork as follows:

[EFF-FORK-DOWN]

Φe; Γ ` e : τ
Φε
e ⊆ Φε

~ρ =
⋃
ρ∈fl(Γ) Flow(C, ρ)

Φε
e ∩ Φω ∩ ~ρ ⊆ SharLocs

Φ; Γ ` fork e : τ

Here we compute the set ~ρ of labels that are reachable in the label flow graph from loca-
tions in Γ, meaning they are visible to both the parent and child thread. Then we only add
locations to SharLocs if they are also in ~ρ.

Fig. 6.16 shows the benefit of this optimization. The fourth column shows the
number of shared pointers and the last column shows the number of shared allocation
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1 let g = ref ( ref 0) in
2 let f () =
3 let x = ( ref 42) in
4 let y = ( ref 0) in
5 y := 1;
6 x := 43;
7 g := x
8 in
9 fork f ();

10 f ()

Figure 6.17: Limitations of core sharing analysis

sites when using the revised rule [EFF-FORK-DOWN]. The average percentage of shared
pointers and allocation sites improves to 15% and 6%, respectively.

Returning to the example program in Fig.6.17, note that the scoping optimization
does not apply to for x, since it escapes via a write to the global variable g. However,
while x does escape the scope of f eventually, there is no way that it can be accessed by
any other thread during the write at line 6, since the aliasing on line 7 has not yet occurred.
So, we can safely ignore the access to x at line 6, not requiring it to be protected by a lock.

This situation can occur in C programs when a struct is malloc’d and initialized
thread-locally before becoming shared. To model this situation precisely, we developed a
uniqueness analysis to determine when a memory access is guaranteed to be thread-local
because the accessed location has not yet become aliased. We then ignore these accesses
during the correlation analysis.

Our uniqueness analysis is implemented as a simple, intra-procedural dataflow anal-
ysis. Whenever a location is created (through a local variable definition or a call to
malloc), we mark it as unique. When a unique location ρ is assigned to any non-unique
location, or a variable with location ρ has its address taken, ρ becomes non-unique. Us-
ing this analysis, we discover that x is unique on line 4 in our example, and hence is
thread-local.

Figure 6.18 shows the aggregate effect of these two optimizations for LOCKSMITH.
We compare the running time and number of warnings when using both techniques,
shown in the second and third columns, against the running time and number of warn-
ings without them, in the fourth and fifth columns. Our results show that the effect on
running times is negligible, but in several of the benchmarks the two optimizations deter-
mine that many accesses are thread-local, significantly reducing the number of warnings.
In all benchmarks but ctrace, the gain in precision is due purely to the scoping optimiza-
tion rather than the uniqueness analysis.

6.10.3 Flow-sensitive sharedness
Consider the example in Fig. 6.15 again. Suppose we add acquire l and release l

before and after, respectively, each access !x in the two child threads (lines 5 and 6), for
some lock l. Also suppose that x is aliased by a global variable immediately after its
allocation. This changed program will be correct, but our analysis will falsely complain
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With scoping Without scoping
and uniqueness and uniqueness

Benchmark Time (s) Warnings Time (s) Warnings

aget 0.85 62 0.88 64
ctrace 0.59 10 0.58 10

engine 0.88 7 0.69 11
knot 0.78 12 0.83 28

pfscan 0.46 6 0.43 7
smtprc 5.37 46 5.46 74

3c501 9.18 15 8.93 15
eql 21.38 35 20.01 35

hp100 143.23 14 140.97 14
plip 19.14 42 18.75 44

sis900 71.03 6 70.77 6
slip 16.99 3 16.65 3

sundance 106.79 5 103.21 5
synclink 1521.07 139 1454.91 155
wavelan 19.70 10 20.60 128

Figure 6.18: Scoping and uniqueness

φ kind Shout(φ)

Fork the portion of SharLocs computed at this fork site

all others Sh in(φ)

Figure 6.19: Sharedness Inference

that the dereference of x at line 3 is a potential race because it is not protected by a lock.
Moreover, the scoping optimization and uniqueness analysis described in Section 6.10.2
do not apply, as x is aliased by a global variable. However, at this dereference site, x is not
actually shared, and thus requires no guarding lock. This is because it will not become
shared until both of the child threads are spawned, at lines 5 and 6.

In this case, as in the uniqueness analysis in Section 6.10.2, we can safely ignore
a memory access when the accessed location is thread-local during the access, even if it
later becomes shared.

To address this problem, we can use a simple dataflow analysis along the ACFG to
determine at which sites in the program a location can be dereferenced after it becomes
shared. Any sites that occur before it becomes shared can be dropped from correlation in-
ference. The transfer functions for the analysis are straightforward, as shown in Fig. 6.19.
In essence, we seed the analysis at the fork points with those locations made possibly
shared due that fork. Specifically, we combine the type rules in Fig. 6.14 with Fig. 6.8 to
get a judgement of the form C;φ; Φ; Γ ` fork e : τ ;φ for typing fork e expressions. Then,
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Benchmark No dataflow Context insensitive Context sensitive
Time(s) Warnings Time(s) Warnings Time(s) Warnings

aget 0.80 62 0.85 62 1.73 62
ctrace 0.58 10 0.59 10 0.81 10

engine 0.89 7 0.88 7 1.27 7
knot 0.64 12 0.78 12 1.70 12

pfscan 0.45 6 0.46 6 0.57 2
smtprc 5.11 46 5.37 46 16.71 46

3c501 9.29 15 9.18 15 11.46 15
eql 21.39 35 21.38 35 24.35 35

hp100 143.45 14 143.23 14 172.97 14
plip 19.18 42 19.14 42 37.80 42

sis900 71.96 6 71.03 6 82.35 6
slip 17.05 3 16.99 3 18.92 3

sundance 106.89 5 106.79 5 117.01 5
synclink 1513.94 139 1521.07 139 1823.91 139
wavelan 19.69 10 19.70 10 26.84 10

Figure 6.20: The effect on LOCKSMITH’s results of different dataflow strategies for find-
ing shared location dereference sites

at every such point in the program, we set Φε
e ∩ Φω ⊆ Sh in(φ) to seed the analysis.

Unfortunately, while this optimization adds precision in general, it is not very help-
ful for our benchmarks, as shown in Fig. 6.20. Columns 2 and 3 in the figure show
the results of LOCKSMITH when using the contextual effects analysis (including scoping
and uniqueness) to compute shared locations, without using the dataflow analysis, while
columns 4 and 5 include the dataflow analysis. We see that the running times are nearly
the same, but unfortunately, so are the warning counts. One reason for this is that a lo-
cation that is eventually shared may be written to by the parent after the child is forked,
and then shared with the child by writing to a global variable. The dataflow analysis
conservatively considers all accesses after the fork to be potentially shared. When we
make the dataflow analysis context-sensitive (Section 6.12.3), we see an improvement in
one case—pfscan has 4 fewer warnings. However the context-sensitive results are clearly
more expensive to compute. Thus, because employing dataflow is essentially free and
could increase precision, we enable it by default, while context-sensitive dataflow for dis-
covering sharing can be enabled via a command-line flag. (Thus the results from columns
4 and 5 in Fig. 6.20 match the results in Fig. 6.4.)

6.10.4 Contextual effects at fork points
A simple optimization that reduces the number of effect variables, is to reuse the

same effect variable throughout any function that does not transitively fork. The only
reason LOCKSMITH uses flow-sensitive effects, is to determine shared locations by in-
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Benchmark Functions Effect variables Time
Never fork Include fork All Forking only Unoptimized Optimized

aget 74 3 4353 2703 0.99 0.85
ctrace 91 2 4379 1911 0.79 0.60

engine 64 1 4759 2243 1.28 0.88
knot 84 4 3959 2171 0.92 0.77

pfscan 83 1 4117 1937 0.56 0.45
smtprc 117 2 15521 6361 6.86 5.34

3c501 59 1 11165 8993 9.51 8.98
eql 47 1 3979 2417 21.62 26.48

hp100 108 1 12639 6757 147.03 181.45
plip 78 1 9749 6059 19.63 19.65

sis900 114 1 30967 26065 69.55 71.06
slip 72 1 10405 6269 17.44 15.92

sundance 98 1 26431 22189 109.83 103.21
synclink 163 1 21619 9143 1507.59 1420.27
wavelan 110 1 11479 6251 20.26 19.66

Table 6.1: Benefits of no-fork-effect optimization

tersecting the effect of the new thread with the effect of the main thread at every fork
point. Hence, for any function that does not fork, there is no need for flow-sensitive pre-
cision when calculating continuation effects. We have measured the number of functions
that might transitively fork in all the benchmarks, the number of labels used for effects
both when using the optimization and when not, and the running time. The results are
presented in Figure 6.1.

6.11 Efficiently and precisely modeling struct and void*

types
In this section we discuss some additional techniques that we used to increase the

speed and precision of LOCKSMITH as applied to C programs. In particular, we explain
how we analyze struct and void* types effectively. We initially explored some of these
ideas when developing CQual [58]. This work’s contribution is to express the ideas more
precisely, in particular using a new formalism for our analysis of structures, and to mea-
sure their costs and benefits directly, measuring LOCKSMITH’s performance and precision
when using one or the other of several different strategies.

6.11.1 Field-sensitivity
In designing a static analysis for C, one important decision whether to model C

struct types field-insensitively or field-sensitively [70]. In a field-insensitive analysis, all
fields of a struct type are conflated, i.e., x.f and x.g are treated as the same location by
the analysis for any fields f and g. In a field-sensitive analysis, different struct fields are
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Field-sensitive Field-insensitive

CGen Total CGen Total
Program Tm (s) Tm (s) Labels Shr Wrn Tm (s) Tm (s) Labels Shr Wrn

aget 0.55 0.85 5,634 62 62 0.50 0.67 5,490 62 62(11)
ctrace 0.40 0.59 4,351 12 10 0.38 0.53 4,285 15 13(5)

engine 0.76 0.88 5,051 7 7 0.79 0.91 4,989 59 59(7)
knot 0.55 0.78 4,752 15 12 0.52 0.83 4,566 24 21(12)

pfscan 0.36 0.46 4,143 7 6 0.36 0.46 4,139 15 14(5)
smtprc 3.09 5.37 14,815 46 46 3.08 5.14 14,917 97 97(43)

3c501 7.92 9.18 25,905 20 15 7.60 18.56 22,976 42 42(6)
eql 2.72 21.38 8,954 35 35 2.39 17.99 7,484 42 42(18)

hp100 35.92 143.23 31,609 15 14 34.18 976.12 22,214 41 41(10)
plip 16.41 19.14 24,124 49 42 17.82 103.21 18,969 60 60(6)

sis900 65.66 71.03 84,797 9 6 60.45 132.18 71,630 42 42(6)
slip 15.11 16.99 25,371 19 3 15.44 33.24 18,333 56 31(5)

sundance 96.72 106.79 73,552 9 5 81.44 6835.26 61,540 44 44(8)
synclink 1433.56 1521.07 68,643 139 139 1232.05 timeout n/a 171 n/a
wavelan 17.89 19.70 30,052 10 10 16.90 40.19 21,071 43 44(6)

Figure 6.21: Field-sensitivity

distinguished, i.e., x.f and x.g are treated as different locations.2 These two design points
potentially trade off efficiency and precision—field-insensitive analysis may be less pre-
cise but more scalable, because it distinguishes fewer locations. In particular, if there
are m occurrences of struct types, each of which has n fields, then field-sensitive analy-
sis would annotate O(mn) types with fresh locations, whereas field-insensitive analysis
would only annotate O(m) types.

We implemented support for both field-insensitive and field-sensitive analysis in
LOCKSMITH. Field insensitivity is actually somewhat tricky to use in an analysis like
LOCKSMITH, which is layered on top of C types: True field-insensitivity would throw
away those types, thereby requiring some significant approximations in the analysis (e.g.,
conflating all labels of all fields of a struct). Thus, since we had a full field-sensitive
analysis, we opted to implement a simple variation to simulate the following key aspect
of field-insensitivity: each instance of a struct uses a single location ρ to represent the top-
level location of all fields. Otherwise we use the standard flow-sensitive implementation.
For example, suppose we have a struct with three fields int x, int ∗ y, and int ∗ z. Then
for an instance of this struct, fields x, y, and z would have types ref ρ(int) (since x can be
written to, it has a ref type), ref ρ(ref ρ

′
y(int)), and ref ρ(ref ρ

′
z(int)), respectively.

Figure 6.21 compares the two approaches. For each style of analysis, we list the
time for constraint generation (including annotating types with fresh labels, i.e., abstract
locations and locks), the total analysis time, the number of generated labels (locations
and locks), the number of shared locations, and the number of reported warnings. Note

2There is a third design point, a field-based analysis, in which x.f and x.g are different, but x.f and y.f are
the same if x and y are instances of the same struct type. We did not explore this option for LOCKSMITH,
however, because it would greatly reduce the effectiveness of context-sensitivity, which we found was
important to improving precision.
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that since LOCKSMITH issues one warning per unprotected shared location, this means
warning counts from field-insensitive and -sensitive analysis are incomparable: A single
warning from field-insensitive analysis might actually correspond to multiple races from
the field-sensitive analysis. To normalize the warning counts, if there is a warning on
a location corresponding to a struct field, we count that as n warnings for comparison
purposes, where n is the number of fields in that struct instance, as computed by our lazy
fields algorithm (Section 6.11.2). The normalized warnings for the field-insensitive anal-
ysis are listed in the rightmost column, with the raw number of warnings in parentheses.

These results show that the field-insensitive analysis takes less time to generate
constraints and generally creates fewer labels than the field-sensitive analysis.3 However,
even for the very slightly reduced precision with field-insensitivity—conflating the lo-
cations of all struct fields—many more locations are considered shared, which in turn
makes LOCKSMITH as a whole both less precise, as evidenced by the warning counts,
and considerably slower, since it must infer correlations for more aliases.

6.11.2 Lazy struct fields
Since field-sensitive analysis can potentially be expensive, in order to achieve the

performance reported in Figure 6.21 we had to implement field-sensitivity carefully. At
first, we used a naive approach, in which we fully annotated all field types of all struct in-
stances. We quickly ran in to scalability problems, however, and were not able to analyze
any but the smallest benchmarks.

Examining our benchmarks, we found that many C struct types have a large number
of fields (up to 300!). However, many large struct types are declared by a library and only
used in a small subset of the code, and this subset often accesses only a fraction of the
struct’s total fields. Our naive implementation was assigning abstract locations and locks
to all of the rarely- or never-used fields, wasting memory and time generating constraints
among them.

To regain scalability, our field-sensitive implementation lazily annotates the fields
of struct types [58]. Initially we leave all occurrence of struct types unannotated. Then
whenever we encounter a field access in the program, we add the accessed field to the
corresponding struct type. If we create a label flow constraint between two struct types,
we equate the labels on their fields.

Figure 6.22 extends the inference rules from Figure 6.8 to implement this lazy field
generation algorithm. Our formalism uses pairs instead of general structs, and so we
illustrate our approach by modeling pairs lazily. Figure 6.22(a) gives the new type and
constraint definitions. Types are the same as before, except pair types now have the form
t×ζ t, where ζ is a pair label. Notice that this pair type contains unannotated types t. The
pair label ζ is used to track the labeled components of the type: the constraint ζ[j] = τ
indicates that component j of any pair type annotated with ζ has annotated type τ . The
constraint ζ1 = ζ2 indicates the corresponding components of pairs labeled with ζ1 and ζ2

3For one program, smtprc, there are fewer field-sensitive labels than field-insensitive labels. This is
because the field-insensitive analysis always creates at least one label (for the location of all fields) for
every occurrence of a struct, whereas the field-sensitive analysis might avoid creating any labels for a
struct instance if it is created and then immediately equated with another struct instance.
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τ ::= . . . | t×ζ t
C ::= . . . | ζ[j] = τ | ζ = ζ

ζ ∈ pair labels

〈〈t1 × t2〉〉 = t1 ×ζ t2 ζ fresh
〈〈other t〉〉 = τ as in Figure 6.7

〈〈τ〉〉 = τ ′ where τ ′ is τ with fresh ρ, `, φ, ζ’s

(a) Auxiliary definitions

[PAIR]

C;φ; Γ ` e1 : τ1;φ1

C;φ1; Γ ` e2 : τ2;φ2

ζ fresh
C ` ζ[1] = τ1

C ` ζ[2] = τ2

tj = std type of ej , j ∈ 1..2

C;φ; Γ ` (e1, e2) : t1 ×ζ t2;φ2

[PROJ]

C;φ; Γ ` e : t1 ×ζ t2;φ′

j = 1, 2
τj = 〈〈tj〉〉

C ` ζ[j] = τj

C;φ; Γ ` e.j : τj ;φ′

(b) Type inference rules

C ∪ {t1 ×ζ t2 ≤ t1 ×ζ′
t2} ⇒ C ∪ {ζ = ζ ′}

C ∪ {ζ = ζ ′} ⇒ C[ζ/ζ ′]
C ∪ {ζ[j] = τ1, ζ[j] = τ2} ∪ ⇒ {τ1 = τ2}

(c) Constraint resolution rule

Figure 6.22: Type inference rules for modeling pairs lazily

have the same types.
We also extend 〈〈·〉〉 to introduce fresh pair labels. As shown, when we translate

a standard pair type into a labeled pair type, we tag it with a fresh pair label but do not
introduce labels for the component types. This annotation function is used in [LAM] from
Figure 6.8 to give fresh labels to programmer-supplied types. Thus we see the laziness of
this approach: we do not automatically create labels for a pair type when it is mentioned
in the program text.

Figure 6.22(b) gives our modified type rules. [PAIR] types pair creation, which now
associates a fresh pair label ζ with the output type and constrains the components of ζ to
their corresponding labeled types. Notice that there is no laziness in this rule, because we
have labeled types for e1 and e2. Here we compute the standard types t1 and t2 (of e1 and
e2, respectively) by stripping off all labels from τ1 and τ2. Using standard types keeps the
analysis “lazy.” Standard types have no (wasted) location or lock annotations; instead, we
track the omitted locations off to the side using ζ .

93



More interestingly, [PROJ] types projection, which lazily annotates only the ac-
cessed component of the pair. We create a type τj with fresh labels and constrain it to
be equal to ζ[j]. In our implementation, rather that creating constraints ζ[j] = τ and
then solving them later, we solve these constraints on-line, as we apply the type inference
rules. We maintain a partial mapping ST from each ζ[j] to its type. Initially ST is empty.
In [PROJ], if ST (ζ[j]) exists, we use it in place of τj rather than making up a fresh type.
Otherwise, we do make a fresh type τj and set ST (ζ[j]) = τj . Our implementation for
[PAIR] is similar.

Figure 6.22(c) gives the resolution rules for our new constraint forms. The first
rewriting rule is for subtyping among pair types. Here we assume the standard types
of the pairs match (i.e., the program passes the standard type checker) and equate the
pair labels, which are merged by the next rewriting rule. The last rule equates types for
different occurrences of ζ[j].

Notice that we lose some precision here compared to the previous type system. In
our lazy approach, subtyping among pair types requires their component types to be equal.
The constraint resolution rule from Figure 6.9, on the other hand, permits subtyping the
component types, which is more precise. However, in practice, C programs mostly ma-
nipulate pointers to structs, and subtyping pointer types requires that the pointed-to types
are equal (Figure 6.9), which negates any benefits of the more precise subtyping rule.
Thus we lose little practical precision with this approach.

Moreover, in our implementation, we maintain pair labels ζ in a union-find data
structure. Given the constraint ζ = ζ ′, we unify the two sides of the equation and equate
the associated types in ST . This unification process reduces the need to create types for
fields. For example, if ζ[0] = τ and ζ ′[1] = τ ′ are the only mappings in ST , then after we
unify the pair labels we will have ζ[0] = ζ ′[0] = τ and ζ[1] = ζ ′[1] = τ ′, without creating
any additional field types. Thus, we also gain efficiency from this approach.

We already saw in Figure 6.21 that field-sensitivity, while it typically produces
more labels that field-insensitive analysis, does not yield an inordinate number of labels.
Figure 6.23 gives some measurements that illustrate why this is the case. For each bench-
mark, we list the total number of struct types in the program, the number of instances of
all struct types, the total possible number of instance fields, and the instance fields that are
actually used, both in absolute numbers and as a percentage of the total number of fields.
We define the total number of instance fields as all the used fields of all instances of struct
types. For example, if a program defines two instances of a single struct type with three
fields and the program accesses all fields of one instance and two of the other so that
the lazy field analysis only populates those with location labels, we “use” five instance
fields out of a total of six. This data shows that on average across all the benchmarks,
only 35.47% of the possible instance fields are actually used. Thus, lazy field analysis is
effective because modeling those fields would otherwise consume memory and time with
no gain in precision.

6.11.3 Modelling void*

In addition to deciding how to model structs, another important decision in analyz-
ing C code is determining how to model void*, which typically used by C programmers
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struct Instances

Benchmark Types Total Total fields Used fields

aget 11 61 563 179 (32%)
ctrace 12 43 427 79 (19%)

engine 14 48 618 85 (14%)
knot 16 68 565 156 (28%)

pfscan 13 65 639 78 (12%)
smtprc 19 80 1019 106 (10%)

3c501 37 1025 14691 3768 (26%)
eql 33 888 9617 2301 (24%)

hp100 36 1786 41537 12072 (29%)
plip 46 1986 24161 7320 (30%)

sundance 58 4141 51400 16504 (32%)
sis900 60 4511 58952 18106 (31%)

slip 39 1426 31529 8319 (26%)
synclink 49 5431 68423 38497 (56%)
wavelan 58 2879 31823 11608 (36%)

Figure 6.23: Lazy field statistics

to express polymorphism. For LOCKSMITH, the key choice is how to track the abstract
locations and locks of types that “flow” to or from void* positions. We experimented
with three different strategies:

• Conflate void*. Since any type might be cast to or from void*, a conservative
but sound approach is to conflate all abstract locations and locks that reach a void*
type. More precisely, let τ = ref ρ(void) be an occurrence of void* in the program,
labeled with location ρ. If we ever derive a constraint τ ≤ τ ′ or τ ′ ≤ τ , we equate
all the locations in τ ′ with ρ. This is quite conservative, since it effectively aliases
all locations reachable from a type that flows to or from a void*. If any locks occur
inside τ ′, LOCKSMITH warns about the loss of precision, and considers these locks
non-linear and thus unable to protect memory locations.

• Singleton void*. In the previous approach, we conflated labels because void*

types may be cast arbitrarily. However, it could be that a particular void* in the
program is used with only one concrete type. We thus tried refining the previous
approach as follows. Let τ = ref ρ(void) be an occurrence of void*. We wish to
define the partial function base type as a map from void* occurrences to the single
concrete type it could be replaced with. Given a constraint τ ≤ τ ′ or τ ′ ≤ τ , there
are three cases. If base type(τ) is as yet undefined, we set it to τ ′. Otherwise, if
τ ′ has the same shape (i.e., underlying standard type) as base type(τ), we generate
the constraint base type(τ) ≤ τ ′ or τ ′ ≤ base type(τ), as appropriate. Otherwise,
we revert to the above conflation strategy, and collapse base type(τ) and any other
types that flow to τ . As before, if we collapse types then we treat any locks oc-
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Conflate void* Single void* Type-based void*

Benchmark Tm (s) Wrn Tm (s) Wrn Tm (s) Wrn

aget 1.89 72 1.98 72 0.85 62
ctrace 0.60 10 0.61 10 0.59 10

engine 0.90 7 0.89 7 0.88 7
knot 1.46 12 0.77 12 0.78 12

pfscan 0.45 6 0.46 6 0.46 6
smtprc 5.22 46 5.26 46 5.37 46

3c501 246.24 121 358.98 121 9.18 15
eql 12.40 41 12.58 42 21.38 35

hp100 105.80 50 782.52 50 143.23 14
plip 413.96 60 4011.22 148 19.14 42

sis900 778.20 149 6037.00 152 71.03 6
slip 88.79 68 timeout n/a 16.99 3

sundance 3188.32 148 7661.57 148 106.79 5
synclink timeout n/a timeout n/a 1521.07 139
wavelan 168.28 112 169.03 111 19.70 10

Figure 6.24: Performance of void* strategies

curring inside τ as non-linear, and assume they do not protect any locations. This
approach is sound but is more precise than conflation in the case of void*s that are
used with only one type. Indeed, we found that approximately one third of void*
pointers in our benchmarks are only cast to or from one non-void* type.

• Type-based void*. Finally, we can improve further on the previous approach if we
are willing to sacrifice completely sound modeling of void*. For each standard
type t that flows to τ = ref ρ(void), we create a type base type(τ, t). Then given
a constraint τ ≤ τ ′ or τ ′ ≤ τ , we generate the constraint base type(τ, t) ≤ τ ′ or
τ ′ ≤ base type(τ, t), where t is the underlying standard type from τ ′. Thus, our
base type function is now indexed by the shape of the underlying type, similar to
a C untagged union. We will never collapse types (or mark locks as non-linear)
using this strategy. Modeling void*s this way is unsound, since we may miss
relationships among different types that are cast to or from void*—this would be
like storing a pointer into an untagged union but then extracting an integer. Our
assumption is that this behavior is unlikely or harmless to our analysis, since if it
were not the program would likely fail.

For all of these approaches, we need to integrate our modeling of void* with our lazy
modeling of structs. That is, we might discover during constraint resolution that a void*
type points to a struct type, or that a struct type contains a void* type.

Figure 6.24 compares the running times and number of warnings produced for each
void* strategy. We can see that on most of the benchmarks, the type-based void* ap-
proach yields both many fewer warnings and is much faster than the other approaches.
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1 let id = λa:refρa(int).a in
2 let x = id1 (ref 1) in
3 let y = id2 (ref 2) in
4 !x

ρ1

ρ2
ρa ρr

ρx

ρy

id
ρ1

ρ2
ρa ρr

ρx

ρy

id
(1

(2

)1

)2

(a) Source program (b) Monomorphic analysis (c) CFL-based polymorphic analysis

Figure 6.25: Precision gain from context-sensitive analysis for label flow

This phenomenon is similar to that of Figure 6.21: the more precise analysis causes fewer
locations to be conflated, which both speeds up the computation of the Flow() sets and re-
duces the number of shared locations. Moreover, the type-based warnings are much easier
to follow for the user, as there is much less false aliasing due to conflation. Though the
type-based approach could be unsound, a manual analysis of a sample of the additional
warnings produced by the alternative analyses found no additional races.

6.12 Context sensitivity
So far, the analyses we have presented have been context-insensitive, meaning they

conflate all calls to the same function. While the resulting analysis is easy to understand
and implement, its precision suffers.

Figure 6.25 gives the canonical example illustrating the benefits of context sen-
sitivity for label flow analysis. (We discuss context-sensitive dataflow analysis below.)
This program defines an identity function id and applies it twice on distinct locations, on
lines 2 and 3. As in Section 6.1, we have indexed each syntactic use of id with an integer.
Figure 6.25(b) shows a simplification of the constraint graph produced by applying the
context-insensitive type rules in Figure 6.8. Here ρi is the location containing integer i,
locations ρa and ρr are from the domain and range types of id, respectively, and ρx and
ρy are from the types of x and y. Notice that when we compute the transitive closure of
these constraints, we will discover that both ρ1 and ρ2 flow to ρx, even though only ρ1
may actually reach the dereference of x at run time.

Figure 6.25(c) shows how using context-free language reachability, which we dis-
cussed briefly in Section 6.1, eliminates this imprecision. When we use the type of id,
we label the generated constraints with indexed parentheses. In our example, the call on
line 2 yields edges ρ1 →(1 ρa and ρa →)1 ρx, and analogously for the call on line 3.
When we resolve the constraints in Figure 6.25(c), we only transitively close paths that
contain no mismatched edges. In this case, that means there is a path from ρ1 to ρx, since
(1 matches )1 , but there is no path from ρ2 to ρx, since (1 does not match )2 .

In the remainder of this section, we show how to incorporate this idea into our
system and also apply it to dataflow analysis (analogously to Reps et al [135]). We end
with experimental results illustrating the precision benefits of context sensitivity.
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e ::= . . . | let f = v in e2 | fi | fixv f.t
σ ::= (∀.τ, ~η)
η ::= ` | ρ | φ
C ::= . . . | η �i

+ η | η �i
− η

(a) Extensions to source language, types, and constraints

[LET]

C;φ1; Γ ` v1 : τ1;φ2 ~η = fl(Γ)
C;φ2; Γ, f : (∀.τ1, ~η) ` e2 : τ2;φ3

C;φ1; Γ ` let f = v1 in e2 : τ2;φ3
[INST]

τ ′ = 〈〈τ〉〉
C ` τ �i

+ τ ′ C ` ~η �i
± ~η

C;φ; Γ, f : (∀.τ, ~η) ` fi : τ ′;φ

[FIX]

τ = 〈〈t〉〉 ~η = fl(Γ) C;φ1; Γ, f : (∀.τ, ~η) ` v : τ ′;φ2

C ` τ ′ ≤ τ τ ′′ = 〈〈t〉〉 C ` τ �i
+ τ ′′ C ` ~η �i

± ~η

C;φ1; Γ ` fixv f.t : τ ′′;φ2

(b) Additional type inference rules

Figure 6.26: Extensions to Figure 6.7 and 6.8 for context sensitivity

6.12.1 Labeling and constraint generation
We use an approach pioneered by Reps et al [135] of reducing the problem of

tracking flow context-sensitively through function calls to the problem of context-free
language (CFL) reachability. The insight is to view a call to and return from some function
f as a string containing a left and right parenthesis, respectively, subscripted by an index
identifying the call-site. Thus the problem of tracking flow through function calls is
one of matching like-subscripted parentheses. We draw ideas more directly from Rehof,
Fähndrich et al [132, 40], which apply Reps et al.’s idea to label flow analysis and points-
to analysis, respectively. To solve context-free language reachability constraints, we use
BANSHEE which encodes and solves the problem using set constraints.

Figure 6.26 extends our core constraint generation rules from Figure 6.8. We begin
by introducing three new kinds of expressions, as shown in Figure 6.26(a). Expression
let f = v in e binds f to value v during evaluation of e, assigning f a polymorphic type.
Here we assume that the names of polymorphically-typed variables are syntactically dis-
tinct from other (monomorphically) typed variables. In practice for C, we only introduce
polymorphism for functions, whose names are easily identified. Next, the expression fi
corresponds to a use of variable f annotated with index i. In practice, we simply assign
a distinct index to each syntactic use of a function name. Finally, fixv f.t binds f to v
recursively inside of v (which will always be a function in practice). In C, all functions
are potentially mutually recursive, and so we treat a C program as if it were a set of nested
fix bindings.

Let- and fix-bound variables f are assigned polymorphic type schemes σ of the form
(∀.τ, ~η). Here τ is the generalized type, and ~η is the set of labels (i.e., ρ’s, `’s and φ’s) that
are not quantified in the type scheme [71]. During typing of the new language forms, we
generate instantiation constraints of the form η �i

p η
′, where p is a polarity, either + or

−, and i is an index. Informally, such a constraint means that there is some substitution Si
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C ∪ {int �i
p int} ⇒ C

C ∪ {refρ(τ) �i
p refρ′

(τ ′)} ⇒ C ∪ {ρ �i
p ρ′, τ �i

± τ ′}
C ∪ {lock ` �i

p lock `′
} ⇒ C ∪ {` �i

p `′}
C ∪ {t1 ×ζ t2 �i

p t1 ×ζ′
t2} ⇒ C ∪ {ζ �i

± ζ ′}
C ∪ {(τ1, φ1) → (τ ′1, φ

′
1) �i

p (τ2, φ2) → (τ ′2, φ
′
2)} ⇒

C ∪ {τ1 �i
p̄ τ2, φ1 �i

p̄ φ2, τ
′
1 �i

p τ ′2, φ
′
1 �i

p φ′2}

C ∪ {ζ �i
± ζ ′} ∪ {ζ[j] = τ} ∪ ⇒ {τ �i

± ζ ′[j]}
C ∪ {ζ ′ �i

± ζ} ∪ {ζ[j] = τ} ∪ ⇒ {ζ ′[j] �i
± τ}

C ∪ {ρ1 �i
− ρ0, ρ1 ≤ ρ2, ρ2 �i

+ ρ3} ∪ ⇒ {ρ0 ≤ ρ3}
C ∪ {`1 �i

− `0, `1 ≤ `2, `2 �i
+ `3} ∪ ⇒ {`0 ≤ `3}

Figure 6.27: Extensions to Figures 6.9 and 6.22 for context sensitivity

that instantiates η to η′. The polarity indicates the direction of “flow”. More particularly,
a constraint η �i

+ η′ corresponds to an output from a function, and we draw it with an
edge η →)i η′. Similarly, a constraint η �i

− η′ corresponds to an input to a function,
and we draw it with an edge η′ →(i η′. Notice that for a negative polarity constraint, the
direction of the graph edge is opposite the direction of the �.

Figure 6.26(b) shows the new type inference rules.4 [LET] first types v1, and then
types e2 with f bound to the type scheme (∀.τ1, ~η), where τ1 is the type of v1, and ~η
is the set of free labels of Γ (as usual for Hindley-Milner-style polymorphism, these are
the labels we cannot quantify [121]). In [INST], we instantiate a type scheme (∀.τ, ~η) at
index i. We generate a type τ ′ by re-annotating τ with fresh labels. We then generate
an instantiation constraint τ �i

+ τ ′ to indicate that τ is used at index i at type τ ′, and
we generate constraints ~η �i

± ~η to indicate that the substitution Si represented by the
constraint τ �i

+ τ ′ must not rename any variables in ~η, i.e., they must be instantiated to
themselves. (Here the ± is shorthand for generating two constraints, one with polarity +
and one with polarity −.) Lastly, [FIX] combines [LET] and [INST], binding f to a type
scheme during the typing of v, and then instantiating f to a fresh type as the result.

6.12.2 Context sensitive label flow constraint resolution
To compute the flow of labels in our new constraint system, we extend our constraint

rewriting rules as shown in Figure 6.27. The first set of rewrite rules corresponds to
the standard subtyping rules. We reduce �i

p constraints to components of a type in a
manner that is invariant for references and pairs (due to lazy fields, and thus analogously
to equating pair labels in Figure 6.22), and co- and contra-variant for function return and
argument types, respectively. Here we write p̄ for the opposite of polarity p.

The next two rules propagate instantiation constraints to components of a lazy pair.
The first rule requires that if ζ is instantiated to ζ ′, then the j component of ζ is instantiated
to the j component of ζ ′. The next rule handles the other direction of instantiation. Note

4We have implicitly relaxed the definition of Γ to also include type schemes σ.
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that in both rules, the generated constraint on the right-hand side refers to ζ ′[j] although
that might be empty. In that case we assume that it is set to 〈〈τ〉〉 (not shown), i.e., a type
of the appropriate shape, annotated with fresh labels.

The last two rewrite rules propagate constraints along paths with matched parenthe-
ses. Pictorially, given a sequence of constraints ρ0 →(i ρ1 → ρ2 →)i ρ3, the first rewrite
rule generates a new constraint ρ0 → ρ3, derived from matching the parentheses on the
path; this is called by matched flow by Rehof et al [132]. The last rewriting rule follows
the same pattern for abstract locks.

Given these rewriting rules, our definition of Flow() remains the same:

Flow(C, ρ) = {ρ′ | ρ′ ≤ ρ ∈ Sol(C)}
Flow(C, `) = {`′ | `′ ≤ ` ∈ Sol(C)}

For example, letting C be the constraints in Figure 6.25, we have Flow(C, ρx) = {ρ1}
and Flow(C, ρy) = {ρ2}.

6.12.3 Context-sensitive dataflow analysis
We show now how we extend the dataflow analysis and ACFG with context sensi-

tivity, encoding it also with parametric polymorphism.
As discussed above, each instantiation of a type scheme σ = (∀.τ, ~η) at index i

generates the constraint τ �i
+ τ ′, where τ ′ = 〈〈τ〉〉. We say that τ is the abstract type

and τ ′ is the instance type at the instantiation i. Moreover, the instantiation i defines a
substitution Si of labels, such that Si(τ) = τ ′ and also for all labels η ∈ ~η, we have
Si(η) = η. We represent the reverse substitution with S−1

i , mapping the labels of τ ′

to τ . For example, the instantiation ref ρ(int) �i
+ ref ρ

′
(int) defines the substitutions

Si(ρ) = ρ′ and S−1
i (ρ′) = ρ. Note that the substitutions Si and S−1

i only translate the
labels between the abstract and the instance type, regardless of the instantiation polarity.
So, even if the above instantiation had negative polarity, ref ρ(int) �i

− ref ρ
′
(int), the

defined substitutions remain Si(ρ) = ρ′ and S−1
i (ρ′) = ρ.

Consider an instantiation of a function type according to Figure 6.27, (τ1, φ1) →
(τ ′1, φ

′
1) �i

+ (τ2, φ2) → (τ ′2, φ
′
2). This generates the constraints φ1 �i

− φ2 and φ′1 �i
+ φ′2

among the statement labels representing the function start and end of the abstract and
instance types. We extend the definition of dataflow analysis on the ACFG to account for
the two kinds of instantiation edges, so that when we propagate facts across instantiation
edges, they are brought to the correct context. Namely, we apply the substitution Si to all
facts propagated from φ′1 to φ′2, to translate all labels defined in the context of φ′1 to the
corresponding labels in the context of φ′2. Conversely, we apply the substitution S−1

i to
all facts propagated from φ2 to φ1 (recall that the negative instantiation polarity reverses
the direction of the graph edge), to translate all facts in terms of the abstract type of the
instantiation. Note that Si is a partial map, so it is possible that not all facts defined at the
left side of the instantiation can be expressed in terms of its right side, or vice versa. In
general, we only propagate the facts that can be expressed at the target statement label of
an instantiation edge.

Although these rules might resemble the Call and Ret kinds and edges in the control-
flow graph, in fact they are orthogonal. Specifically, an instantiation edge between state-
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1 let mylock = λl:lock `a.acquire a in
2 let l1 : lock `1 = newlock in
3 let l2 : lock `2 = newlock in
4 let = mylock1 l1 in
5 let = mylock2 l2 in
6 !x

φ1 φ2

φin φout

φ4 φ5φ3 φ6

φacq

NewL(l1) NewL(l2) Acc(x)

Acq(a)

(1 )1(2 )2

(a) Source program (b) ACFG

Figure 6.28: Context-sensitive analysis for lock state

ment labels corresponds to an occurrence of a function name in the program, whereas
statement labels with kind Call and Ret correspond to a function invocation. In many
cases these happen to coincide, but one does not imply the other in general. For instance,
when a program uses a function pointer to alias many functions and invokes it once, then
many instantiations correspond to one invocation, whereas when the program assigns one
function to a function pointer, but invokes it many times, then one instantiation has many
invocations.

Lock State In the Lock State Analysis we propagate the set of acquired locks across
instantiation edges as discussed above, by applying the appropriate renaming, according
to the polarity of the constraint. Namely, for an instantiation φ �i

+ φ′ that corresponds
to φ →)i φ′, we translate the set of acquired locks at φ by applying the substitution Si,
we close the translated set under aliasing, and we propagate the resulting set of acquired
locks (and all their aliases) to statement φ:

Flow(C, Si(Acqout(φ))) ⊆ Acq in(φ
′)

Similarly, for an instantiation φ �i
− φ′ that corresponds to φ′ →(i φ, we translate the set

of acquired locks at φ′ by applying the substitution S−1
i before propagating it to φ:

Flow(C, S−1
i (Acqout(φ

′))) ⊆ Acq in(φ)

For example, the program in Figure 6.28(a) defines a wrapper function for acquir-
ing a lock that takes an argument a of type lock `a and acquires it. The program cre-
ates two locks and acquires them before dereferencing a variable x (not defined here,
for brevity). Clearly, since the function mylock acquires its argument, the mechanism
for “hiding” irrelevant locks using Call and Ret nodes has no effect here. Indeed, we
need to differentiate between the two contexts of the calls to mylock (marked with in-
dices 1 and 2) to infer that both locks l1 and l2 are acquired at the dereference point. We
do this using the context-sensitive ACFG shown in Figure 6.28(b), simplified by omit-
ting nodes of no interest for this example. During the dataflow analysis, we infer (as
in the monomorphic case) that at the end of the function (φout) the abstract lock ` is
acquired (` ∈ Acqout(φout)). We also have φout �1

+ φ4 and φout �2
+ φ5. Moreover,

from the instantiations 1 and 2 of mylock’s type (lock `a, φin) → (int , φout), we have
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[EFF-LAM]
Φf ; Γ, x : τ ′ ` e : τ

Φ; Γ ` λx.e : τ ′ →Φf τ

(a) Type rule for function definition

C ∪ {τ1 →Φ1 τ ′1 �i
p τ2 →Φ2 τ ′2} ⇒ C ∪ {τ1 �i

p̄ τ2, τ
′
1 �i

p τ
′
2,Φ1 �i

p Φ2}

C ∪ {Φ1 �i
p Φ2} ⇒ C ∪ {Φα �i

p Φα,Φω �i
p̄ Φω}

(b) Constraint resolution rules

Figure 6.29: Context-Sensitive Contextual Effects

S1(`a) = `1 and S2(`a) = `2. To propagate the set of acquired locks along the instan-
tiation edges φout �i

+ φ4, we apply the corresponding substitution to the set of acquired
locks, propagating S1(Acqout(φout) = S1({`a}) = {`1} to φ4. Similarly, we propagate
S2(Acqout(φout) = S2({`a}) = {`2} to φ5.

Correlation Inference We extend the correlation inference with context sensitivity in a
similar way, adapted for a backwards analysis. Specifically, at instantiation φ �i

+ φ′, due
to the backwards direction of the propagation, we propagate from φ′ to φ. Since φ′ lies in
the “instance” context, we use S−1

i to translate the state at φ′ to the state at φ. Namely, for
every correlation ρ� ~̀ at φ′, we add a correlation S−1

i (ρ) � Flow(C, S−1
i (~̀)) to φ.

Likewise, for negative instantiation edges φ �i
− φ

′, we propagate from φ to φ′. As
in this case φ lies in the left side of the instantiation, we use Si to translate the state at
φ to the state at φ′. Now, for every correlation ρ � ~̀ at φ, we add a correlation Si(ρ) �

Flow(C, Si(~̀)) to φ.

6.12.4 Context-sensitive sharing analysis
We extended the sharing analysis with context sensitivity, both for computing the

shared locations at fork points using context-sensitive contextual effects, and also for the
flow-sensitive propagation of sharing information that marks the interesting dereferences
in the program.

Contextual Effects The contextual effect system presented in Section 6.10.1 can be ex-
tended with context sensitivity in the same way as the label flow analysis. As presented in
detail in previous work [113], function types are annotated with the effect Φf of the func-
tion. We repeat the type rule for function definition in Figure 6.29(a). Note that a function
type is annotated with the effect Φf of the function body. Moreover, since function def-
inition itself has no effect, it can be typed under any effect Φ. As in Section 6.10.1, we
present contextual effects as a stand-alone system, although it is straightforward to com-
bine with the rules in Figure 6.26. Figure 6.29(b) defines the instantiation for annotated

102



function types and contextual effects. The contextual effect of a function is instantiated
covariantly, which translates to a covariant instantiation for the standard effect, and a
contravariant instantiation for the future effect, because the standard effects of the func-
tion are defined inside the function and “returned” to the environment, whereas the future
effect is defined outside the function, in the calling contexts, and “enters” the function.

Note that the future effect ω at a given program point in a function includes the
effects of the program after the function returns. In combination with context sensitivity
this might cause some locations that are in the effect (i.e. accessed after the current func-
tion returns) to not have a corresponding location, or not yet exist, in the current context.
In other words, there might not be a matched parenthesis path from a location ρ, deref-
erenced in the continuation, to the future effect ω in the current location. For example,
consider the toy program:

1 let f = λ x . x+1 in
2 f1 1;
3 let p = ( ref 41) in
4 !p

Clearly, the variable p is not in scope in the body of function f, and moreover,
there is no alias of p that is in scope either. This means that there can be no matched
parentheses path from p to the future effect of expression x + 1 in the body of f. Indeed,
the only path from p to the future effect of the expression involves a (1 edge due to the
instantiation of f. However, p is clearly in the future effect of the expression x + 1, as it
is dereferenced later in the program, after the call to f. To address this problem, when
solving for future effects at fork points to compute shared locations, we consider paths
that do not contain mismatched parentheses (a.k.a. PN-flow [40]), instead of paths with
only matched parentheses. For the same reason, we also use PN-flow to compute the set of
labels in scope and their aliases for the scoping optimization discussed in Section 6.10.2.

Shared Locations Propagation The propagation of shared locations according to the
dataflow analysis discussed in Section 6.10.3 is straightforward to extend with context
sensitivity, in the same way as the above data-flow analyses for lock state and correlation
inference. For positive instantiation edges, φ �i

+ φ′, we propagate from φ to φ′ (forwards
analysis), using Si to translate the set of shared locations at φ to the context of φ′ and
adding the closed set (to account for aliasing) to the state at φ′:

Flow(C, Si(Shout(φ))) ⊆ Shout(φ
′)

Similarly, for negative instantiation edges φ �i
− φ

′, we propagate from φ′ to φ using Si to
translate the shared locations to the context of φ:

Flow(C, S−1
i (Shout(φ

′))) ⊆ Shout(φ)

6.12.5 Results
Figure 6.30 compares the running times and number of warnings for context-sensi-

tive and -insensitive versions of LOCKSMITH. Note that since the context-sensitive anal-
ysis is no less sound than the context-insensitive analysis, any warning it eliminates is a
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Context-sensitive Context-insensitive

Benchmark Time (s) Warnings Time (s) Warnings

aget 0.85 62 0.64 77
ctrace 0.59 10 0.42 21

engine 0.88 7 0.60 15
knot 0.78 12 0.60 31

pfscan 0.46 6 0.50 26
smtprc 5.37 46 4.16 128

3c501 9.18 15 0.75 20
eql 21.38 35 0.86 41

hp100 143.23 14 2.76 25
plip 19.14 42 1.39 46

sis900 71.03 6 Out of Mem. n/a
slip 16.99 3 Out of Mem. n/a

sundance 106.79 5 1.32 20
synclink 1521.07 139 23.42 227
wavelan 19.70 10 9.59 143

Figure 6.30: Comparison of context-sensitivity and -insensitivity

false positive. The context-sensitive results are the same as Figure 6.4, reproduced here
for convenience. These results show that context-sensitivity significantly increases the
running time of the analysis, often very significantly, e.g., for most of the Linux drivers.
The exceptions are the sis900 and slip benchmarks, for which the imprecision of context-
insensitive analysis creates so much aliasing that LOCKSMITH runs out of memory trying
to compute the closure of the label flow graph. Furthermore, we see that context sensitiv-
ity notably reduces the number of warnings reported by LOCKSMITH, eliminating many
false positives.

6.13 Existential quantification for data structures
In applying our system to C programs, we found several examples where locks are

stored in heap data structures along with the data they protect. Standard context-sensitive
analyses typically merge all elements of the same data structure into an indistinguishable
“blob,” which would cause us to lose track of the identities of locations and the linearities
of locks in data structures. In this section we briefly sketch an approach to solving this
problem that has proven effective for one of our benchmarks. We present an analysis with
support for existential quantification in detail in Chapter 4.

As an example, consider the program in Figure 6.31(a). This program first binds
l1 and l2 to new locks labeled `1 and `2 respectively, and then binds x to a new reference
labeled ρ1 (here for convenience we mark labels in the source code directly). The program
then sets p to be one of two pairs. The pack operation alerts our analysis that the pairs
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1 let l1 = newlock`1 in
2 let l2 = newlock`2 in
3 let x = refρ1 1 in
4 let x = refρ2 1 in
5 let p =
6 if b then
7 pack (l1 , x)1

8 else
9 pack (l2 , y)2

10 in
11 unpack (l , r ) = p in
12 acquire l ;
13 r := 3;
14 release l

Acquire

Release

ℓ1

ℓ2
ℓ

1

2

Deref
ρ1

ρ2

ρ

(1

(2

Ψ

Pack Pack

(1 (2

(a) Source code (b) Constraint graph

Figure 6.31: Existential Quantification

should be treated abstractly so that we can conflate them without losing correlations. Next
the program unpacks p and acquires the pair’s lock before dereferencing its pointer.

Notice that although r may be either ρ1 or ρ2 at runtime, and l may be either `1 or
`2, in either case the correct lock will be acquired. Because we used pack before the data
structure was conflated, our analysis gives p the type

∃`, ρ[ρ� {`}].lock ` × ref ρ()int

meaning that p contains some lock ` and some location ρ where ` and ρ are correlated.
One key novelty of LOCKSMITH is that, given a program with pack and unpack

annotations, it performs inference on existential types using constraint resolution rules
similar to those in Figure 6.27. Figure 6.31(b) shows the constraint graph for this example.
Rather than give resolution rules explicitly, we discuss the algorithm informally on this
example. Existential inference using this basic technique is sound for the related problem
of label flow, as discussed in Chapter 4.

In this figure, we represent dataflow from labels `i and ρi to the packed labels `
and ρ with directed edges annotated with the pack site. It is no coincidence that this is
the same notation used for universal quantification in Figure 6.27—it is the duality of
universal and existential quantification that lets us use similar techniques for both. The
remaining edges show the states at the various program points. Initially we are in some
statement label φ. Then we pack one of the two pairs, represented by a split labeled with
(i for pack site i. Within the unpack (shown in the box), we acquire lock l, dereference r,
and then release l. At the dereference site, lock l is held, and so we generate a constraint
r� {l} (not shown in the graph). We propagate this correlation constraint using matched
flow as in Figure 6.27 and generate two constraints, ρ1 � {`1} and ρ2 � {`2}. Had we
not used existential quantification here, we would not have been able to track correlation
precisely, because `1 and `2 would have been non-linear, and there would have been no
way to tell which goes with ρ1 and which goes with ρ2.

LOCKSMITH supports existential types for structs. To use existentials, the pro-
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grammer annotates aggregates that can be packed to indicate which fields should have
bound types after packing. We extend C with a special pack(x) statement that makes x’s
type existentially quantified. For unpacking, the programmer inserts start_unpack(x)
and end_unpack(x) statements, which begin and end the scope of the unpack, possibly
non-lexically. We found that existential quantification is useful for one of our bench-
marks. We needed to add a total of 29 pack, unpack, and field annotations to the program
that could benefit, and 3 of the 12 start_unpack operations are not lexically scoped.

Existential quantification in lock state Integrating the lock state analysis with existen-
tial quantification requires some care. In particular, existentially quantifying a lock gives
two names, one abstract and one concrete, to the same linear location. However, recall
that in our system it is always safe to assume that a lock is released. Hence whenever we
unpack an existential type, we treat any locks in it as released. We also require as usual
that existentially quantified labels do not escape the scope of the unpack.
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Chapter 7

Related work

Race detection Several systems have been developed for detecting data races and other
concurrency errors in multi-threaded programs, including dynamic analysis, static analy-
sis, and hybrid systems.

Dynamic systems such as Eraser [142] instrument a program to find data races at
run time and require no annotations. The efficiency and precision of dynamic systems can
be improved with static analysis [21, 117, 1]. Dynamic systems are fast and easy to use,
but cannot prove the absence of races, and require comprehensive test suites.

Researchers have developed type checking systems against races [42] for several
languages, including Java [45], Java variants [15, 14], and Cyclone [64]. Such systems
based on type checking perform very well but require a significant number of program-
mer annotations, which can be time consuming when checking large code bases [33, 46].
Static race detection in ESC/Java [53], which employs a theorem prover, similarly re-
quires many annotations.

Some researchers have developed tools to automatically infer the annotations needed
by the Java-based type checking systems just mentioned. Most target Java 1.4, which sim-
plifies the problem by permitting only lexically-acquired locks via synchronized state-
ments, whereas C (and Java 1.5) programs may acquire and release locks at any program
point. Houdini [46] can infer types for the original race-free Java system [45], but lacks
context-sensitivity. More recently Agarwal and Stoller [2] and Rose et al [140] have de-
veloped algorithms that infer types based on dynamic traces, but these require sizeable test
suites to avoid excessive false alarms. Flanagan and Freund [50] have proposed a system
for inference which is formulated to support parameterized classes and dependent types.
Though the problem is NP-complete, their SAT-based approach can analyze 30K lines of
Java code in 46 minutes. Von Praun and Gross’s dataflow-based system also requires no
annotations and performs well, checking 2000-line programs in a few seconds.

Naik, Aiken, and Whaley present a race detection system for Java [111]. Their
system scales well to large Java programs and has found several races. Analyzing Java 1.4
avoids some problems we encountered analyzing C code, such as flow sensitive locking,
low-level pointer operations, and unsafe type casts. They also omit linearity checking,
which we include in LOCKSMITH.

Several completely automatic static analyses have been developed for finding races
in C code. Polyspace [76] is a proprietary tool that uses abstract interpretation to find data
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races (and other problems). The Blast model checker has been used to find data races in
programs written in NesC, a variant of C [73]. Race checking is not limited to checking
for consistent correlation and can be state dependent, but is limited to checking global
variables and can be quite expensive. Seidl et al [143] propose a framework for analyzing
multi-threaded programs that interact through global variables. Using their framework
they develop a race detection system for C and apply it to a small set of benchmarks,
finding several data races. It is unclear whether their analysis supports context sensitivity
and how it models data structures. RacerX [33] does not soundly model some features
of C for better scalability and to reduce false alarms, but may miss races as a result.
KISS [130] builds on model checking techniques, and has been shown to find many races,
but ignores possible thread interleavings, possibly missing the most subtle bugs.

Voung, Jhala and Lerner present RELAY, a race detection system for C [161] that
uses flow sensitive propagation of lockset and guarded-by information similar to LOCKSMITH.
RELAY scales to millions of lines of C code by making use of several machines that an-
alyze parts of the program (using symbolic evaluation) in parallel and store the function
summaries. Unlike RELAY, LOCKSMITH generates and solves the constraints for the
whole program together, and is implemented to run on a single processor, limiting its
scalability. One benefit of the whole program, type-based analysis in LOCKSMITH is that
it can track the flow of function pointers precisely. In contrast, the modular per-file analy-
sis in RELAY might not track aliasing of function pointers across files correctly, possibly
resulting in lost control flow in certain cases.

Terauchi proposes LP-Race [156], a static analysis tool that reduces the problem of
race detection to linear programming. The reduction is such that one need not directly
compute acquired locks, and LP-race can handle synchronization via semaphores and
signals. LP-Race scales to medium-sized programs, some of which cause LOCKSMITH

to run out of memory. However, LOCKSMITH runs slightly faster though it uses a more
precise aliasing and sharing analysis. We conjecture that, as a result of this more precise
analysis, LOCKSMITH’s reports are more precise—two abstract locations differentiated
by a precise analysis could be considered to be one location in a less precise analysis.
Note that both LOCKSMITH and LP-Race need to perform a linearity check for static lock
variables, and might report false positives for programs with aliasing of run-time locks.
LOCKSMITH’s analysis is inclusion-based, and is both field- and context-sensitive. LP-
Race uses a unification-based analysis, that is also field–sensitive. In one common bench-
mark (smtprc) LP-Race was able to eliminate false positives due to handling semaphores
and thread joins. However, LP-Race produced additional false positives due to a limita-
tion in handling loops that fork an unbounded number of threads. Due to the way we use
future effects in our sharing analysis, LOCKSMITH is able to handle such loops and infer
shared locations more precisely.

Work that detects violations of atomicity, either dynamically [47] or statically [54,
51] typically requires a program to be free of races.

Our analysis is based on ideas initially explored by Reps et al [135] and Rehof and
Fähndrich [132], who showed how to encode context-sensitive analysis as a context-free
language reachability problem. Our support for existential types is related to restrict

or focus for alias analysis [4, 36], which have similar requirements for non-escaping
locations within a scope. Our flow-sensitive analysis is a significant extension of our
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previous work on flow-sensitive type qualifiers [59], which used a similar flow-sensitive
constraint graph. Both systems can be seen as inference for a variant of the calculus of
capabilities [27].

Standard label flow and effect inference has been shown to be sound [99, 132], in-
cluding polymorphic label flow inference. Recently, we (Iulian Neamtiu, Michael Hicks,
Jeffrey Foster and I) have proved that our inference of continuation effects (as an instance
of a more generic Contextual Effect system are sound [112].

Correlation between locks and locations is similar to correlation between regions
and pointers, and several researchers have looked at the problem of region inference,
including the Tofte and Birkedal system for the ML Kit [157]. Henglein et al [72] use a
control-flow-sensitive and context-sensitive type system to check that regions with non-
lexical allocation and deallocation are used correctly. Our treatment of lock allocation is
similar to Henglein et al’s treatment of region allocation, but our formal system supports
higher-order functions, and we present a constraint-based inference algorithm.

Other concurrency analyses Recent research proposes implementing atomic sections
using optimistic concurrency techniques [67, 68, 74, 138, 164]. Roughly speaking, mem-
ory accesses within a transaction are logged. At the conclusion of the transaction, if the
log is consistent with the current state of memory, then the writes are committed; if not,
the transaction is rolled back and restarted. The main drawbacks with this approach are
that first, it does not interact well with I/O, which cannot always be rolled back; sec-
ond, performance can be worse than traditional pessimistic techniques due to the costs of
logging and rollback [104].

Flanagan et al [51] have studied how to infer sections of Java programs that behave
atomically, assuming that all synchronization has been inserted manually. Conversely, we
assume the programmer designates the atomic section, and we infer the synchronization.
Later work by Flanagan and Freund [49] looks at adding missing synchronization opera-
tions to eliminate data races or atomicity violations. However, this approach only works
when a small number of synchronization operations are missing.

Existential context sensitivity Our work builds directly on the CFL reachability-based
label flow system of Rehof et al [132]. Their cubic-time algorithm for polymorphic recur-
sive label flow inference improves on the previously best-known O(n8) algorithm [109].
The idea of using CFL reachability in static analysis is due to Reps et al [135], who ap-
plied it to first-order dataflow analysis problems. Our contribution is to extend the use
of CFL reachability further to include existential types for modeling data structures more
precisely.

Existential types can be encoded in System F [121] (p. 377), in which polymor-
phism is first class and type inference is undecidable [165]. There have been several pro-
posals to support first-class polymorphic type inference using type annotations to avoid
the undecidability problem. In MLF [13], programmers annotate function arguments that
have universal types. Laufer and Odersky [90] propose an extension to ML with first-
class existential types, and Remy [134] similarly proposes an extension with first-class
universal types. In both systems, the programmer explicitly lists which type variables
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are quantified. Packs and unpacks correspond to data structure construction and pattern
matching, and hence are determined by the program text. Our system also requires the
programmer to specify packs and unpacks as well as which variables are quantified, but
in contrast to these three systems we support subtyping rather than unification, and thus
we need polymorphically constrained types. Note that our solution is restricted to label
flow, and only existential types are first-class, but we believe adding first-class universals
with programmer-specified quantification would be straightforward. We conjecture that
full first-class polymorphic type inference for label flow is decidable, and plan to explore
such a system in future work.

Simonet [146] extends HM(X) [119], a generic constraint-based type inference
framework, to include first-class existential and universal types with subtyping. Simonet
requires the programmer to specify the polymorphically constrained type, including the
subtyping constraints C, whereas we infer these (we assume we have the whole program).
Another key difference is that we use CFL reachability for inference. Once again, how-
ever, our system is concerned only with label flow.

In ours and the above systems, both existential quantification as well as pack and
unpack must be specified manually. An ideal inference algorithm requires no work from
the programmer. For example, we envision a system in which all pairs and their uses
are considered as candidate existential types, and the algorithm chooses to quantify only
those labels that lead to a minimal flow in the graph. It is an open problem whether such
an algorithm exists.

Contextual effects The original paper on contextual effects [113] presented the same
type system and operational semantics shown in Sections 2 and 3, but placed scant em-
phasis on the details of the proof of soundness in favor of describing novel applications.
Indeed, we felt that the proof technique described in the published paper was unneces-
sarily unintuitive and complicated, and that led us to ultimately discover the technique
presented in this paper. To our knowledge, ours is the first mechanized proof of a prop-
erty of typing and evaluation derivations that depends on the positions of subderivations
in the super-derivation tree.

Type and effect systems [100, 116, 154] are widely used to statically enforce re-
strictions, check properties, or in static analysis to infer the behavior of computations [78,
147, 75, 150, 162]. Some more detailed comparisons with these systems can be found in
our previous publication [113]. Talpin and Jouvelot [154] use a big-step operational se-
mantics to prove standard effect soundness. In their system, operational semantics are not
annotated with effects. Instead, the soundness property is that the static effect, unioned
with a static description of the starting heap, describes the heap at the end of the com-
putation. In addition to addressing contextual effects, our operational semantics can also
be used as a definition of the actual effect (prior, standard, or future) of the computation,
regardless of the static system used to infer or check effects. The soundness property for
standard effects by Talpin and Jouvelot immediately follows for our system from Theo-
rem 5.3.2.
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Chapter 8

Future work

8.1 LOCKSMITH

There are many ways to improve the precision and performance of the analyses in
LOCKSMITH.

8.1.1 Dependent types for array precision
Currently, some of the false positives in Locksmith are caused by assuming that

all elements of an array are one and the same memory location. Recently, Condit et al
have proposed mechanisms to add simple dependent types to CIL, that could increase
the precision when analyzing arrays [24]. We believe that LOCKSMITH could benefit by
incorporating these techniques into its data flow analysis.

8.1.2 Increased performance via parallelization
LOCKSMITH currently applies several analyses one after the other to the whole

program. Moreover, the most common limitation in LOCKSMITH’s scalability is memory
usage. We believe it is worth exploring parallelization as a solution to these problems.
Specifically, restructuring the analyses in LOCKSMITH to run in parallel on several ma-
chines would greatly improve LOCKSMITH’s scalability. The dependencies among the
different analyses, as well as dependencies among different parts of the same program
within a single analysis can make this parallelization a challenging yet interesting prob-
lem to solve. A similar scenario that could improve the scalability of the system is using
procedure summaries to modularize the analysis, and thus support incremental changes
to software without needing to reanalyze the whole program.

8.2 Existential quantification and dataflow analysis
Our system for existential context sensitivity in labelflow analysis currently requires

the programmer to specify the labels that are existentially quantified in each existential
type. An interesting open problem is inferring the quantified labels (and thus which types
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could be existentials at all) automatically. Unfortunately, in the case where a label could
be quantified by many quantifiers we were unable to find a simple algorithm that achieves
the minimality of flow. In fact, we believe that the problem of inferring existentially
quantified labels so that label flow is minimized is NP-complete. It is currently an open
question to show the complexity of the problem and explore heuristic solutions.

8.3 Contextual effects
Our current system for contextual effects uses big-step operational semantics to

define actual effects and state the soundness property. Unfortunately, big-step opera-
tional semantics can only reason about terminating program evaluations. We believe it is
an challenging open problem to extend the soundness proof to non-terminating program
evaluations using coinductive big-step semantics. It is also worth exploring the possible
definitions for future effects for a program that does not terminate, as future effects might
not be defined for every program point in this case.

Another interesting open problem that comes to light by our work in proving the
soundness of contextual effects is the applicability of our proof technique to other non-
compositional properties. We believe that there are other interesting problems that pose
similar problems in their definition and proofs due to non-compositionality, and that our
proof techniques could be applied in these cases.
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Chapter 9

Conclusions

In conclusion, this dissertation presents LOCKSMITH, a tool that uses static analysis
to automatically find data races in multi-threaded C programs. Motivated by LOCKSMITH,
we formalize and prove the soundness of several general theoretical systems for static
analysis, that we believe have a wide applicability. First, we present a system for in-
ferring correlations context sensitively. Second, we present a label flow analysis with
support for existential context sensitivity. Third, we present a type-and-effect system to
infer contextual effects, that we used to compute memory locations shared among threads.
We formalize each system and prove its soundness, and discuss the mechanization of the
proof for contextual effects in the Coq proof assistant. Moreover, we present the im-
plementation of each of these ideas in LOCKSMITH, and describe the optimizations that
we found necessary to scale such a system to real-world applications. Finally, we thor-
oughly test LOCKSMITH on a wide set of benchmarks, and present results on the precision
and performance of LOCKSMITH in general and each analysis in particular, and compare
against several alternative approaches.

Overall, we support the thesis that data races can be detected automatically using
sound static analysis, in a practical and efficient way.
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Appendix A

Soundness proof for correlation
inference

In this appendix we prove the soundness of λ� in two steps. First, we present a
type checking system for λ� based on polymorphically-constrained types [109]; we refer
to the new type system as λcp

� . We prove that λcp
� is sound using the standard syntactic

technique based on subject reduction (a.k.a. preservation) [167]. That is, programs that
are type-correct under λcp

� exhibit consistent correlation. The key technical challenge in
λcp

� is typing the newlock operation in a way that supports polymorphism and allows
locks to be hidden with [DOWN], which we discuss below.

Second, we prove that λ� is sound by showing that any correct typing derivation in
λ� reduces to a correct λcp

� typing derivation. This second step closely follows Rehof et
al [132]. We do not show completeness (that every correct λcp

� derivation has a correct
λ� analogue); indeed, we believe completeness fails due to restrictions on recursive func-
tions. We have not seen this as a limitation in practice with LOCKSMITH. The reduction
is presented in Section A.2.

A.1 λcp
� : Correlation with Polymorphically-Constrained

Types
This section introduces λcp

� and proves it sound.

A.1.1 Operational Semantics
We begin by formalizing the operational semantics for our source language (which

can be found in Figure 3.2). The operational semantics is defined using a single-step
reduction relation between expressions, as shown in Figure A.1. We use evaluation con-
texts E along with the (Context) rule to encode the (call-by-value) evaluation strategy,
as is standard. The rules (β), (δ-if), (δ-pair), (δ-let), (δ-fix) are also standard. Rule
(δ-newlock) allocates a new lock [L] that is fresh, meaning that it is allocated once per
evaluation derivation.

The semantics for references is non-standard. Typically, references are modeled
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(β) (λx.e) v −→ e[x 7→ v]
(δ-if) if0 0 then e1 else e2 −→ e1

if0 n then e1 else e2 −→ e2 n 6= 0
(δ-pair) (v1, v2) .j −→ vj j ∈ {1, 2}
(δ-let) let f = v in e −→ e[f 7→ v]
(δ-fix) fix f.v −→ v[f 7→ fix f.v]
(δ-ref) ref v −→ vR R fresh
(δ-newlock) newlock −→ [L] L fresh
(δ-deref) ! vR[L] −→ v
(δ-assign) v′R := v[L] −→ v

(Context)
e1 −→ e2

E[e1] −→ E[e2]

E ::= [] | E e | e E | if0 E then e else e′ | (E, e) | (e,E) | E.j
| | ref E | ! Ee | ! eE | E := e1e2 | e1 := Ee2 | e1 := e2E

L ::= 〈constant lock labels〉
R ::= 〈constant location labels〉
v ::= . . . | [L] | vR

Figure A.1: Operational Semantics and Target Language Syntax Extensions

using a heap H , which is a map from run-time locations R to values v, and allocation
ref v creates a fresh location R 6∈ dom(H), updating H to map R to v. As the point of
λ� is merely to prove consistent correlation, we omit modeling the heap. (δ-ref) creates
a fresh location label R and annotates the argument v with that location. When such
annotated values are “dereferenced” according to (δ-deref), the label R is merely stripped
off. The “assignment” operation (δ-assign) behaves the same as a dereference of the left-
hand side, returning the right-hand side. Thus references are simply functional “boxes”
that are dynamically allocated, and there is no aliasing in this semantics. For the purposes
of correlation, we wish to prove that for any value vR, if program evaluation yields redexes
! vR[L] and ! vR[L′] then L = L′, and similarly for redexes vR := v′[L], i.e., the “boxes”
represented by references are always accessed with the correct lock. We believe that it is
straightforward to add explicit heap modeling to this system.

A.1.2 Typing
Typing judgments in λcp

� have the form

C; Γ `cp e : τ ; ε

Here, C is a set of constraints; Γ is an environment mapping variables x to polytypes
∀~l[C].τ (we write τ to denote polytype ∀[∅].τ ); and ε is an effect that tracks lock alloca-
tions. This judgment is read, “Given constraints C, in environment Γ expression e has
type τ and when evaluated will allocate locks ε.”
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types τ ::= int | τ × τ | τ →ε τ ′ | lock ` | ref ρ(τ)
lock labels ϑ ::= ` | L
location labels ϕ ::= ρ | R
label variables l, β ::= ` | ρ
labels l ::= ϑ | ϕ
effects ε ::= ∅ | {`} | ε ] ε′ | ε ∪ ε′

polytypes σ ::= ∀~l[C].τ
constraint sets C ::= ∅ | {c} | C ∪ C
constraints c ::= ϕ ≤ ρ (location flow)

| ρ� ` (correlation)
| L ≤1 ` (lock allocation)

| ν~l[C; ε] (encapsulated constraints)

Figure A.2: λcp
� Types and Constructors

The type and constraint language for λcp
� is shown in Figure A.2. Function types

are annotated with an effect, listing the locks allocated when the function is called. Lock
labels ϑ include lock variables ` and lock constants L, while location labels ϕ include
location variables ρ and constants R. Variables ` and ρ can be quantified in polytypes
(and are collectively referred to using metavariables l, β). In our type rules, we use sub-
stitutions S that map label variables to labels.

Definition A.1.1 (Substitution) We define a substitution S as a function from label vari-
ables ~l to labels l. We write dom(S) to denote those labels for which S is not the identity,
and similarly write rng(S) as the image of S applied to dom(S).

Intuitively, the type ∀~l[C].τ stands for any type S(τ) where S(C) is satisfied, for
any substitution S with dom(S) = ~l. Reference types and lock types are annotated with
label variables describing the run-time location or lock annotations of their respective
values.

There are four kinds of constraints c that make up constraint sets C. The first two
kinds of constraints also appear in λ�. Constraints ϕ ≤ ρ describe flow from ϕ to ρ; these
are introduced by subtyping and reference allocation. Constraints ϕ � ` indicate corre-
lation: ϕ is correlated with `, as indicated by a dereference or assignment. The last two
kinds of constraints are new to λcp

� . Constraints L ≤1 ` indicate that a newlock expression
of type lock ` has been evaluated, generating a fresh lock constant [L]. As such, these
constraints are not necessary for type checking source programs, but are rather needed for
the preservation proof. Constraints ν~l[C; ε] describe encapsulated constraints. These are
used to handle recursion, and otherwise avoid clashes of lock names. We describe these
in greater detail below. Notice that in λcp

� , there are no instantiation constraints, as λcp
�

includes explicit constraint copying.

Definition A.1.2 (Bound and Free Labels) We write fl(·) to denote those labels that are
not bound in some structure ·, where · could be C, Γ, τ , ε, or σ. Figure A.3 gives a formal
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fl(int) = ∅
fl(τ1 × τ2) = fl(τ1) ∪ fl(τ2)

fl(τ1 →ε τ2) = ε ∪ fl(τ1) ∪ fl(τ2)

fl(lock `) = {`}
fl(ref ρ(τ)) = {ρ} ∪ fl(τ)

fl(Γ, f : ∀~l[C].τ) = fl(Γ) ∪ ((fl(τ) ∪ fl(C)) \~l)
fl(Γ, x : τ) = fl(Γ) ∪ fl(τ)
fl(C ∪ {c}) = fl(C) ∪ fl(c)

fl(ρ ≤ ρ′) = {ρ, ρ′}
fl(ρ� `) = {ρ, `}

fl(L ≤1 `) = {`}
fl(ν~l[C; ε]) = fl(C) \~l

Figure A.3: Free Labels

definition. We write strip(c) to “strip off” the binders of encapsulated constraints; i.e.,
strip(ν~l[C; ε]) = C, but strip(c) = c for other kinds of constraints c. The transitive
closure of this operation is written strip∗. Using this, we define the bound labels of a
constraint set C as bl(C) = fl(strip∗(C)) \ fl(C).

The typing rules are shown in Figures A.4 (monomorphic rules) and Figure A.5
(polymorphic rules). Most of the monomorphic rules are standard. The [NEWLOCK] and
[REF] rules construct values of types lock ` and ref ρ(τ), respectively; operationally these
values have the form [L] and vR. For [NEWLOCK] the lock label must be linear. Roughly
speaking, a lock label ` is linear if it never represents two different run-time locks that
could reside in the same storage or are simultaneously live. Therefore we require ` to be a
fresh variable in the derivation, which is achieved by putting ` in an effect ε that must be
disjoint with effects in subderivations. For example, in the [APP], [PAIR], and [ASSIGN]
rules, the overall effects are the disjoint union of their constituent parts. The [COND]
rule is similar, except that we use non-disjoint union to combine the effects of the two
branches, since only one branch is evaluated at run-time (we could also have required the
effects of both branches to be the same, and then added a rule to allow arbitrary expansion
of an effect). We do not use effects for locations because they need not be linear.

Also noteworthy are [DEREF] and [ASSIGN], each of which have the premise C `
ρ � ` to indicate that constraints C can prove the lock expression is correlated with the
reference being accessed. Finally, the [LOCK] and [LOC] rules are for typing allocated
locks and locations, respectively (and thus do not apply to source programs but only
programs during evaluation). In both cases, a lock’s type (respectively, a location’s type)
always refers to a lock variable ` (respectively, a location variable ρ); we relate the lock
constant to the variable by requiring C ` L ≤1 ` (respectively, C ` R ≤ ρ).

Turning to the polymorphic rules in Figure A.5, we see that universal polymorphism
is introduced in [LET] and [FIX]. As is standard, we allow generalization only of label
variables that are not free in the type environment Γ. Notice that in both these rules,
the constraints C ′ that we use to type check v1 (or v) become the bound constraints in
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[ID]
C; Γ, x : τ `cp x : τ ; ∅

[INT]
C; Γ `cp n : int ; ∅

[LAM]
C; Γ, x : τ `cp e : τ ′; ε

C; Γ `cp λx.e : τ →ε τ ′; ∅
[APP]

C; Γ `cp e1 : τ →ε τ ′; ε1

C; Γ `cp e2 : τ ; ε2

C; Γ `cp e1 e2 : τ ′; ε ] ε1 ] ε2

[PAIR]
C; Γ `cp e1 : τ1; ε1 C; Γ `cp e2 : τ2; ε2

C; Γ `cp (e1, e2) : τ1 × τ2; ε1 ] ε2

[PROJ]
C; Γ `cp e : τ1 × τ2; ε j = 1, 2

C; Γ `cp e.j : τj; ε
[SUB]

C; Γ `cp e : τ1; ε
C ` τ1 ≤ τ2

C; Γ `cp e : τ2; ε

[COND]

C; Γ `cp e1 : int ; ε1

C; Γ `cp e2 : τ ; ε2 C; Γ `cp e3 : τ ; ε3

C; Γ `cp if0 e1 then e2 else e3 : τ ; ε1 ] (ε2 ∪ ε3)

[REF]
C; Γ `cp e : τ ; ε

C; Γ `cp ref e : ref ρ(τ); ε
[NEWLOCK]

C; Γ `cp newlock : lock `; {`}

[DEREF]
C; Γ `cp e1 : ref ρ(τ); ε1 C; Γ `cp e2 : lock `; ε2 C ` ρ� `

C; Γ `cp ! e1e2 : τ ; ε1 ] ε2

[ASSIGN]

C; Γ `cp e1 : ref ρ(τ); ε1 C; Γ `cp e2 : τ ; ε2

C; Γ `cp e3 : lock `; ε3 C ` ρ� `

C; Γ `cp e1 := e2e3 : τ ; ε1 ] ε2 ] ε3

[LOCK]
C ` L ≤1 `

C; Γ `cp [L] : lock `; ∅
[LOC]

C; Γ `cp v : τ ; ∅ C ` R ≤ ρ

C; Γ `cp vR : ref ρ(τ); ∅

Figure A.4: λcp
� Monomorphic Typing Rules

the polymorphic type. Whenever a variable with a universally quantified type is used
in the program text, its type is instantiated. The [INST] rule can only be applied if the
instantiation S(C ′) of the polymorphic type’s constraints can be proven by the constraints
C at that point.

[DOWN] is based on the observation that constraints and effects on labels that are
no longer in use—neither part of the result computed by an expression, nor accessible
through the environment—can be removed from consideration [63, 99, 18]. In region
and effect systems, these labels are removed from the effect set, but in our system they
are also encapsulated into a separate constraint set ν~l[C; ε] which we term encapsulated

118



[LET]

C ′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~l[C ′].τ1 `cp e2 : τ2; ε2

~l ⊆ (fl(τ1) ∪ fl(C ′)) \ fl(Γ)

C; Γ `cp let f = v1 in e2 : τ2; ε2

[FIX]

C ′; Γ, f : ∀~l[C ′].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C ′)) \ fl(Γ) C ` S(C ′) dom(S) = ~l

C; Γ `cp fix f.v : S(τ); ∅

[INST]
C ` S(C ′) dom(S) = ~l

C; Γ, f : ∀~l[C ′].τ `cp f i : S(τ); ∅

[DOWN]

C ∪ {ν~l[C ′; ε′]} ∪ strip(α
~l′(ν~l[C ′; ε′])); Γ `cp e : τ ; ε ] φ~l′α(ε′)

φ
~l′
α(
~l) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε′ ⊆ ~l ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C ′; ε′])) ∪ ε
C ∪ {ν~l[C ′; ε′]}; Γ `cp e : τ ; ε

Figure A.5: λcp
� Polymorphic Typing Rules and [DOWN]

constraints. As shown below, encapsulated constraints do not permit directly proving
flow or correlation judgments, but rather permit reasoning about the entire constraint set
independent of a particular point in a typing derivation. Roughly speaking, this constraint
is read: “there exist fresh labels ~l such that the constraints C hold, where locks labeled ε
are allocated by the program.” (We use the quantifier ν rather than ∃ to emphasize that
these labels must be fresh, as in alias types [163]).

With this rule, we introduce the idea of an alpha-converting substitution. This
is a technical device for establishing the freshness of bound variables in encapsulated
constraints, and is important for later proving that constraint sets are well-formed even if
encapsulated constraints are “instantiated” many times.

Definition A.1.3 (Alpha-converting Substitutions) We write α~l(C) denote the alpha-
conversion of binders in the encapsulated constraints inC to labels not in~l. Thus we have
dom(α

~l) = bl(C) and rng(α
~l)∩(~l∪dom(α

~l)∪fl(C)) = ∅ and |dom(α
~l)| = |rng(α

~l)|. We
write φ~lα as the normal, capture-avoiding version of α~l, where strip∗(α~l(C)) = φ

~l
α(strip∗(C))

while φ~lα(C) = C (since dom(φ
~l
α) only contains binders in C).

Given this definition, we can now understand rule [DOWN]. In the first premise,
given a constraint set with some encapsulated constraints ν~l[C ′; ε′], we type e by strip-
ping the binders off of the constraints after first alpha-converting them (where ~l′ is defined
in the last premise to avoid conflicts with existing labels). This alpha-conversion is nec-
essary for ensuring the constraint set is well-formed, as described later. However, we can
prune these stripped constraints from the conclusion because the alpha-converted binders
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[SUB-INT]
C ` int ≤ int

[SUB-PAIR]
C ` τ1 ≤ τ2 C ` τ ′1 ≤ τ ′2
C ` τ1 × τ ′1 ≤ τ2 × τ ′2

[SUB-FUN]
C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2 ε1 ⊆ ε2

C ` τ1 →ε1 τ ′1 ≤ τ2 →ε2 τ ′2

[SUB-LOCK]
C ` `1 ≤ `2

C ` lock `1 ≤ lock `2

[SUB-REF]
C ` ρ1 ≤ ρ2 C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` ref ρ1(τ1) ≤ ref ρ2(τ2)

Figure A.6: λcp
� Subtyping

[LOC-FLOW]
ϕ ≤ ρ ∈ C
C ` ϕ ≤ ρ

[LAB-REFL]
C ` l ≤ l

[LOC-TRANS]
C ` ϕ ≤ ρ′ C ` ρ′ ≤ ρ

C ` ϕ ≤ ρ
[LOCK-FLOW]

L ≤1 ` ∈ C
C ` L ≤1 `

[ENCAP-FLOW]
ν~l[C0; ε] ∈ C C0 ` C ′

C ` ν~l[C ′; ε]
[CORRELATE]

C ` ϕ ≤ ρ ρ� ` ∈ C
C ` ϕ� `

Figure A.7: λcp
� Constraint Logic

(φ~l′α(~l)) do not appear in the environment or the final type (second premise). We can
similarly remove the effect of any allocations that appear in neither the environment nor
the type (as established by the second and third premises), but we note the effect of the
allocation in the encapsulated constraints.

Finally, rule [SUB] in Figure A.4 uses the subtyping rules in Figure A.6. These
rules are standard.

A.1.3 Consistent Correlation
The goal of λcp

� is to prove that well-typed programs are consistently correlated,
meaning that a given location R is always accessed with the same lock L. We establish
this from the constraints C needed to type the program. In particular, we use the con-
straints C to establish correlation sets so that we can prove consistent correlation. We
repeat Definitions 3.2.1 and 3.2.2 for clarity:
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Definition A.1.4 (Correlation Set) Given a location ρ and a set of constraints C, we
define the correlation set of ρ in C as

S(C, ρ) = {` | C ` ρ� `}

Here we write C ` ρ� ` to say that ρ� ` can be proven from the constraints in C.

Definition A.1.5 (Consistent Correlation) A set of constraints C is consistently corre-
lated if-f
∀ϕ. |S(C,ϕ)| ≤ 1.

Thus, a constraint set C is consistently correlated if all locations ϕ are either correlated
with one lock, or are never accessed and so are correlated with no locks. We refine
S(C,ϕ) to refer to only concrete lock labels in its range:

Sg(C,ϕ) = {L | C ` ϕ� ` ∧ C ` L ≤1 `}

We prove the facts C ` c in these definitions (and in typing and subtyping rules pre-
sented earlier) according to the rules in Figure A.7. The [LOC-FLOW], [LAB-REFL], and
[LOC-TRANS] rules establish flow between locations as the reflexive, transitive closure
of atomic flow constraints in C. The only flow permitted between locks is due to [LAB-
REFL], which effectively means that each lock name in the program identifies a distinct
lock, enforcing linearity. The [CORRELATE] rule defines correlation as transitive with re-
spect to flow. Finally, observe that encapsulated constraints cannot be used to prove flows
or correlations directly, as [ENCAP-FLOW] can only be used to prove weaker encapsu-
lated constraints. Instead, we “unwrap” encapsulated constraints as part of [DOWN], and
we will show below that for well-formed constraint sets, encapsulated constraints can be
duplicated arbitrarily many times while preserving consistent correlation.

Figure A.8 defines a well-formedness judgment ε `ok C ↪→ C ′;~l on constraints,
whose “inputs” are ε and C. Ignoring the “outputs” we introduce the short form of well-
formedness as follows:

Definition A.1.6 We define ε `ok C if there exist C ′, ~l such that ε `ok C ↪→ C ′;~l.

The well-formedness rules establish several properties. First, bound variables appearing
in encapsulated constraints within C are disjoint. Notice that [CON-ENCAP] includes the
bound variables ~l in the output, and that they must be disjoint from binders ~β within con-
straintsC ′, as we have~l]~β. [CON-ENCAP] also strips the encapsulated constraints before
checking them for well-formedness (the second premise), so that the output constraint set
contains no encapsulated constraints, but keeps the names of the variables intact. The
second line of premises in [CON-UNION] then ensures that these variables are disjoint
with any binders in “adjacent” constraints. The requirement for disjoint binder variables
is the reason for the explicit alpha-conversion when stripping encapsulated constraints in
the [DOWN] rule.

Second, the rules ensure that a given lock variable ` is only allocated once. The
last premise of [CON-UNION] ensures this fact directly, and [CON-LOCK] ensures that
if ε `ok C that ε is disjoint from those ` for which constraint ` ≤1 ` appears in C,
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[CON-UNION]

ε `ok C1 ↪→ C ′
1;
~l ε `ok C2 ↪→ C ′

2;
~β

fl(C ′
1) ∩ ~β = ∅ fl(C ′

2) ∩~l = ∅
for all ϕ. |S(C ′

1 ∪ C ′
2, ϕ)| ≤ 1

C ′
1 ` L1 ≤1 ` ∧ C ′

2 ` L2 ≤1 ` ⇒ L1 = L2

ε `ok C1 ∪ C2 ↪→ C ′
1 ∪ C ′

2;
~l ] ~β

[CON-ENCAP]

ε′ ⊆ ~l ε ] ε′ `ok C ↪→ C ′; ~β
for all c ∈ C ′. c 6= (L ≤1 `)

for all ` ∈ ~l. (C ` ϕ� `) ⇒ ϕ ∈ ~l
ε `ok {ν~l[C; ε′]} ↪→ C ′;~l ] ~β

[CON-OTHER]
C = ∅ ∨ C = {ρ� `} ∨ C = {ϕ ≤ ρ}

ε `ok C ↪→ C; ∅

[CON-LOCK]
` 6∈ ε

ε `ok {L ≤1 `} ↪→ {L ≤1 `}; ∅

Figure A.8: λcp
� Constraint Set Well-Formedness

and is likewise disjoint from any ε′ appearing in an encapsulated constraint. We also
require no lock allocation constraints appear in encapsulated constraints, as enforced by
the third premise of [CON-ENCAP]. This places no limit on expressive power as such
constraints are not useful for source programs (which should have no occurrences of the
[LOCK] rule), but it establishes a useful invariant that permits duplicating encapsulated
constraints as part of the preservation proof.

Finally, the third premise of [CON-UNION] enforces consistent correlation of the
stripped constraints, and we can prove as much for the original constraints without much
trouble, as we show below. First, we can prove some useful properties.

Lemma A.1.7 (Well-formed Constraint Properties) If ε `ok C ↪→ C ′;~l then

1. C ′ = strip∗(C) and ~l = bl(C).

2. ε `ok α
~l′(C) ↪→ φ

~l′
α(C

′);φ
~l′
α(
~l) where ~l′ ⊇ ε.

3. ` ∈ ε implies C 6` L ≤1 ` and C ′ 6` L ≤1 ` for all L.

4. C ′′ ⊆ C implies ε `ok C
′′.

5. ε′ ⊆ ε implies ε′ `ok C ↪→ C ′;~l.

Proof: By easy induction on ε `ok C ↪→ C ′;~l. 2

We can show well-formed constraints are consistently correlated.
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Lemma A.1.8 (Consistent Correlation) If ε `ok C ↪→ C ′;~l then

1. for all ϕ, |S(C,ϕ)| ≤ 1 and |S(C ′, ϕ)| ≤ 1.

2. C ` L1 ≤1 ` ∧ C ` L2 ≤1 ` ⇒ L1 = L2 and C ′ ` L1 ≤1 ` ∧ C ′ ` L2 ≤1 ` ⇒
L1 = L2

Proof: Proof by induction on ε `ok C ↪→ C ′;~l. To prove the properties mentioning C
(rather than C ′), observe by the rules in Figure A.7 that encapsulated constraints cannot
contribute to correlation sets. That is, let C ′′ be C with all encapsulated constraints re-
moved; then C ` ρ � ` implies C ′′ ` ρ � `. It is clear that for ε `ok C

′′ ↪→ C ′′′; ~β (by
Lemma A.1.7(1)) that C ′′ = C ′′′ and so the result on C ′′′ implies the result for C ′′ which
implies the result for C. 2

Finally, we wish to prove that encapsulated constraints can be freely duplicated while
still preserving well-formedness, as mentioned above. To do this, we first establish some
useful properties on (well-formed) encapsulated constraints.

Lemma A.1.9 (Encapsulated Constraint Properties) If ε `ok C∪{ν~l[C1; ε1]} ↪→ C ′∪
C ′

1;
~β ] ~β′ where α~l′ is an alpha-converting substitution on ν~l[C1; ε1] with ~l′ ⊇ ε∪ fl(C ′)

then

1. for all ` ∈ bl(C1) ∪~l. (C ′
1 ` ϕ� `) ⇒ ϕ ∈ bl(C1) ]~l

2. if C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ then

• if ϕ ∈ fl(C ′ ∪ C ′
1) then

(1) ρ ∈ fl(C ′ ∪ C ′
1) implies C ′ ∪ C ′

1 ` ϕ ≤ ρ and
(2) ρ ∈ fl(C ′ ∪ φ~l′α(C ′

1)) implies C ′ ∪ C ′
1 ` ϕ ≤ ρ′ where φ~l′α(ρ

′) = ρ

• if ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) then

(3) ρ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) implies C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ ρ and
(4) ρ ∈ fl(C ′ ∪ C ′

1) implies C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ′ where φ~l′α(ρ) = ρ′

Proof: The first is proved by easy induction on ε `ok C∪{ν~l[C1; ε1]} ↪→ C ′∪C ′
1;
~β]~β′.

The last is proved by induction on the derivation C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ.

Case [LAB-REFL]. We have

[LAB-REFL]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ ≤ ϕ

and thus ρ = ϕ.

• Assume ϕ ∈ fl(C ′ ∪ C ′
1):

(1) We have C ′ ∪ C ′
1 ` ϕ ≤ ϕ by [LAB-REFL].
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(2) Assume ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)). We can show that ϕ 6∈ dom(φ

~l′
α) which implies

that φ~l′α(ϕ) = ϕ and thus C ′ ∪ C ′
1 ` ϕ ≤ ϕ by [LAB-REFL], and the result

follows by taking ρ′ = ϕ. We prove ϕ 6∈ dom(φ
~l′
α) by contradiction. Suppose

ϕ ∈ dom(φ
~l′
α), and thus ϕ ∈ C ′

1. Since the dom(φ
~l′
α) and rng(φ

~l′
α) must be

disjoint, the fact that ϕ ∈ fl(C ′∪φ~l′α(C ′
1)) and ϕ ∈ fl(C ′∪C ′

1) implies it must
be in the part in which the two constraint sets agree. But that implies that ϕ
appears at least twice in the constraints: bound in ν~l[C1; ε1] and elsewhere in
the C ∪ν~l[C1; ε1], either bound separately or free. But this is impossible since
ε `ok C ∪ {ν~l[C1; ε1]} forbids such duplication.

• Assume ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)); proofs of (3) and (4) mirror (1) and (2), above.

Case [LOC-FLOW]. We have

[LOC-FLOW]
ϕ ≤ ρ ∈ C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ

From the premise at least one of the following is true: (1) ϕ ≤ ρ ∈ C ′; (2) ϕ ≤ ρ ∈ C ′
1;

and/or (3) ϕ ≤ ρ ∈ φ~l′α(C ′
1). We prove the desired conditions by cases:

1. Assume ϕ ≤ ρ ∈ C ′, which implies that ρ, ϕ 6∈ dom(φ
~l′
α) since by ε `ok C ∪

{ν~l[C1; ε1]} binders cannot be duplicated. As a result, we easily have C ′ ` ϕ ≤
ρ and C ′ ` ϕ ≤ φ

~l′
α(ρ) by [LOC-FLOW], and results (1)–(4) easily follow by

weakening.

2. Assume ϕ ≤ ρ ∈ C ′
1.

(1) C ′ ∪ C ′
1 ` ϕ ≤ ρ by [LOC-FLOW]

(2) If ρ ∈ fl(C ′ ∪ φ~lα(C ′
1)), then we can prove that ρ 6∈ dom(φ

~l′
α), so φ~l′α(ρ) = ρ

and thus C ′
1 ` ϕ ≤ φ

~l′
α(ρ

′) where ρ′ = ρ by [LOC-FLOW]; the result follows
by weakening. To prove ρ 6∈ dom(φ

~l′
α), there are two cases. If ρ ∈ fl(C ′)

then ε `ok C ∪ {ν~l[C1; ε1]} prevents a binder in C1 from being duplicated.
If ρ ∈ fl(φ

~l′
α(C

′
1)) then we follow the argument from (2) of the [LAB-REFL]

case, above.

(3) Assume ϕ, ρ ∈ fl(C ′ ∪φ~l′α(C ′
1)); we want to show that φ~l′α(C

′
1) ` ϕ ≤ ρ so the

result follows by weakening. By the argument for (2), above, we know that
ρ, ϕ 6∈ dom(φ

~l′
α) and thus ϕ ≤ ρ ∈ C ′

1 implies ϕ ≤ ρ ∈ φ~l′α(C ′
1).

(4) Assume ϕ ∈ fl(C ′ ∪ φ
~l′
α(C

′
1)) and ρ ∈ fl(C ′ ∪ C ′

1); we want to show that
φ
~l′
α(C

′
1) ` ϕ ≤ φ

~l′
α(ρ). The fact that ϕ ≤ ρ ∈ C ′

1 implies φ~l′α(ϕ) ≤ φ
~l′
α(ρ) ∈

φ
~l′
α(C

′
1). Since ϕ ∈ fl(C ′

1) and ϕ ∈ fl(C ′ ∪ φ
~l′
α(C

′
1)), we know that ϕ 6∈

dom(φ
~l′
α) following the argument for (2), above. Therefore, ϕ ≤ φ

~l′
α(ρ) ∈

φ
~l′
α(C

′
1) which gives us the desired result by [LOC-FLOW].
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3. Assume ϕ ≤ ρ ∈ φ
~l′
α(C

′
1). The arguments for (1),(2) mirror case 2’s arguments for

(3),(4), above; likewise (3),(4) mirror (1),(2).

Case [LOC-TRANS]. We have

[LOC-TRANS]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ ≤ ρ′ C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ρ′ ≤ ρ

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ

To prove (1)–(4), we consider two cases: (1) when ρ′ ∈ fl(C ′ ∪ C ′
1) and (2) when ρ′ ∈

fl(C ′ ∪ φ~lα(C ′
1). Consider the former case:

(1) Assume ϕ ∈ fl(C ′ ∪ C ′
1) and ρ ∈ fl(C ′ ∪ C ′

1). We have C ′ ∪ C ′
1 ` ϕ ≤ ρ′ and

C ′ ∪ C ′
1 ` ρ′ ≤ ρ by induction, and the result follows by [LOC-TRANS].

(2) Assume ϕ ∈ fl(C ′∪C ′
1) and ρ ∈ fl(C ′∪φ~l′α(C ′

1)). By induction we have C ′∪C ′
1 `

ϕ ≤ ρ′ and C ′ ∪ C ′
1 ` ρ′ ≤ ρ′′ where φ~l′α(ρ

′′) = ρ, and the result follows by
[LOC-TRANS].

(3) Assume ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) and ρ ∈ fl(C ′ ∪ φ~l′α(C ′

1)) so we must prove C ′ ∪
φ
~l′
α(C

′
1) ` ϕ ≤ ρ. By induction we have C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ φ
~l′
α(ρ

′) and C ′ ∪ C ′
1 `

ρ′ ≤ ρ′′ where φ~l′α(ρ
′′) = ρ. To get the desired result by [LOC-TRANS], we need

to show C ′ ∪ φ~l′α(C ′
1) ` φ

~l′
α(ρ

′) ≤ φ
~l′
α(ρ

′′). This follows from C ′ ∪ C ′
1 ` ρ′ ≤ ρ′′

which implies φ~l′α(C
′) ∪ φ~l′α(C ′

1) ` φ
~l′
α(ρ

′) ≤ φ
~l′
α(ρ

′′), and from φ
~l′
α(C

′) = C ′ since
the binders in ν~l[C1; ε1] must be disjoint with fl(C) by ε `ok C ∪ {ν~l[C1; ε1]}.

(4) ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) and ρ ∈ fl(C ′ ∪ C ′

1) so we must prove C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤

φ
~l′
α(ρ). By induction we have C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ φ
~l′
α(ρ

′) and C ′ ∪ C ′
1 ` ρ′ ≤ ρ. To

get the desired result by [LOC-TRANS] we need to show C ′ ∪ φ~l′α(C ′
1) ` φ

~l′
α(ρ

′) ≤
φ
~l′
α(ρ), but this follows by the same reasoning as case (3), above.

When assuming ρ′ ∈ fl(C ′ ∪ φ~l′α(C ′
1)), the reasoning mirrors the cases above 2

Finally, we prove that encapsulated constraints can be duplicated and “stripped” while
still preserving well-formedness.

Lemma A.1.10 (Duplicated Encapsulated Constraint)
If

ε `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β

then

ε]φ~l′α(ε1) `ok C∪{ν~l[C1; ε1]}∪strip(α
~l′(ν~l[C1; ε1])) ↪→ C ′∪C ′

1∪φ
~l′
α(C

′
1);
~l] ~β]φ~l′α(~β)

where ~l′ ⊇ fl(C ′
1) ∪ fl(C ′) ∪ ε.
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Proof: By inversion, we have

[CON-UNION]

ε `ok C ↪→ C ′;~l ε `ok ν~l[C1; ε1] ↪→ C ′
1;
~β

fl(C ′) ∩ ~β = ∅ fl(C ′
1) ∩~l = ∅

for all ϕ. |S(C ′ ∪ C ′
1, ϕ)| ≤ 1

C ′ ` L1 ≤1 ` ∧ C ′
1 ` L2 ≤1 ` ⇒ L1 = L2

ε `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β

We want to prove

[CON-UNION]

ε ] φ~l′α(ε1) `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β

(1)

ε ] φ~l′α(ε1) `ok strip(α
~l′(ν~l[C1; ε1])) ↪→ φ

~l′
α(C

′
1);φ

~l′
α(
~β)

(2)

fl(C ′ ∪ C ′
1) ∩ φ

~l′
α(
~β) = ∅

(3)
fl(φ

~l′
α(C

′
1)) ∩ (~l ] ~β) = ∅

(4)

for all ϕ. |S(C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1), ϕ)| ≤ 1

(5)

C ′ ∪ C ′
1 ` L1 ≤1 ` ∧ φ

~l′
α(C

′
1) ` L2 ≤1 ` ⇒ L1 = L2

(6)

ε ] φ~l′α(ε1) `ok C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])) ↪→

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1);
~l ] ~β ] φ~l′α(~β)

(7)

We prove each of the seven labeled statements (6 premises and well-formedness of ] in
the conclusion) to get the desired result:

(1) ε ] φ~l′α(ε1) `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β.

Proof by easy induction on ε `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β. The key is

that adding φ~l′α(ε1) to the input effect cannot cause applications of [CON-LOCK] to fail
because ε1 ⊆ dom(φ

~l′
α) and rng(φ

~l′
α) ∩ fl(strip∗(C ∪ {ν~l[C1; ε1]})) = ∅ by the definition

of ~l′.

(2) ε ] φ~l′α(ε1) `ok strip(α
~l′(ν~l[C1; ε1])) ↪→ φ

~l′
α(C

′
1);φ

~l′
α(
~β).

We have by assumption that ε `ok ν~l[C1; ε1] ↪→ C ′
1;
~β and so ε `ok α

~l′(ν~l[C1; ε1]) ↪→
φ
~l′
α(C

′
1);φ

~l′
α(
~β) by Lemma A.1.7(2). The final rule of this derivation must be [CON-

ENCAP], so by inversion we have ε] φ~l′α(ε1) `ok strip(α
~l′(ν~l[C1; ε1])) ↪→ φ

~l′
α(C

′
1);φ

~l′
α(
~β)

which is the desired result.

(3) fl(C ′ ∪ C ′
1) ∩ φ

~l′
α(
~β) = ∅.

Follows since ~β = dom(φ
~l′
α) by Lemma A.1.7(1), and rng(φ

~l′
α) ∩ fl(strip∗(C ∪

{ν~l[C1; ε1]})) = ∅ by the definition of ~l′, and strip∗(C ∪ {ν~l[C1; ε1]}) = C ∪ C ′
1 by

Lemma A.1.7(1).

(4) fl(φ
~l′
α(C

′
1)) ∩ (~l ] ~β) = ∅.

We know bl(C) = ~l (thus ~l ⊆ fl(C ′)) and bl(ν~l[C1; ε1]) = dom(φ
~l′
α) = ~β (thus

~β ⊆ fl(C ′
1)) by Lemma A.1.7(1). Consider some l ∈ fl(C ′

1). If l ∈ dom(φ
~l′
α) then
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φ
~l′
α(l) 6∈ (~l ] ~β) because by the fact that φ~l′α derives from an alpha-converting substitution

we have that rng(φ
~l′
α) ∩ (~l′ ∪ dom(φ

~l′
α)) = ∅ where ~l′ ⊇ (fl(C ′) ∪ fl(C ′

1)) ⊇ (~l ] ~β).
If l 6∈ dom(φ

~l′
α) then φ~l′α(l) = l and l 6∈ ~β. Moreover, l 6∈ ~l by our assumption ε `ok

C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β whose last rule must be [CON-UNION] by inversion,

which contains the premise fl(C ′
1) ∩~l = ∅.

(5) for all ϕ′. |S(C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1), ϕ

′)| ≤ 1.
The proof proceeds by contradiction: assume that there exists some ϕ, `1 and `2

where C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `1 and C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ� `2. Thus we must have

[CORRELATE]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ ≤ ρ ρ� `1 ∈ C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `1

and

[CORRELATE]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ ≤ ρ′ ρ′ � `2 ∈ C ′ ∪ C ′

1 ∪ φ
~l′
α(C

′
1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `2

We prove one of these derivations is impossible by showing that it would contradict
that |S(C ′ ∪ C ′

1, ϕ)| ≤ 1 or |S(C ′ ∪ φ~l′α(C ′
1), ϕ)| ≤ 1. We know the former is true by the

fact that ε `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β (assumption) and Lemma A.1.8. The

latter is true by the fact that ε `ok C ∪ {α~l′(ν~l[C1; ε1])} ↪→ C ′ ∪ φ~l′α(C ′
1);
~l ] φ~l′α(~β) (by

Lemma A.1.7(2)) and Lemma A.1.8.
The proof proceeds by cases. Consider how we might prove the premises of C ′ ∪

C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `1:

1. C ′ ∪ C ′
1 ` ϕ ≤ ρ and ρ� `1 ∈ C ′ ∪ C ′

1. From this, we know that ϕ ∈ fl(C ′ ∪ C ′
1),

since either ϕ = ρ and ρ ∈ fl(C ′ ∪ C ′
1) (since ρ � `1 ∈ C ′ ∪ C ′

1), or else ϕ 6= ρ
and so C ′ ∪ C ′

1 ` ϕ ≤ ρ implies that ϕ ∈ fl(C ′ ∪ C ′
1) by inspection of the rules in

Figure A.7. Now consider the premises of C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `2:

(a) C ′ ∪C ′
1 ∪φ

~l′
α(C

′
1) ` ϕ ≤ ρ′ and ρ′ � `2 ∈ C ′ ∪C ′

1. Since ϕ ∈ fl(C ′ ∪C ′
1) and

ρ′ ∈ fl(C ′ ∪ C ′
1) (since ρ′ � `2 ∈ C ′ ∪ C ′

1), by Lemma A.1.9(2)(1) we must
have that C ′∪C ′

1 ` ϕ ≤ ρ′. But then this implies that C ′∪C ′
1 ` ϕ� `2 which

contradicts that |S(C ′ ∪ C ′
1, ϕ)| ≤ 1.

(b) C ′∪C ′
1∪φ

~l′
α(C

′
1) ` ϕ ≤ ρ′ and ρ′�`2 ∈ C ′∪φ~l′α(C ′

1). Sinceϕ ∈ fl(C ′∪C ′
1) and

ρ′ ∈ C ′∪φ~l′α(C ′
1), by Lemma A.1.9(2)(2) we must have that C ′∪C ′

1 ` ϕ ≤ ρ′′

where φ~l′α(ρ
′′) = ρ′. Also ρ′′ � `′2 ∈ C ′ ∪ C ′

1 where φ~l′α(`
′
2) = `2 since

ρ′ � `2 ∈ C ′ ∪ φ~l′α(C ′
1) by assumption. By Lemma A.1.9(1) φ~l′α(`

′
2) = `2 and

thus ρ′′ � `2 ∈ C ′ ∪ C ′
1. But then this implies that C ′ ∪ C ′

1 ` ϕ � `2 which
contradicts that |S(C ′ ∪ C ′

1, ϕ)| ≤ 1.

2. C ′∪C ′
1 ` ϕ ≤ ρ and ρ�`1 ∈ C ′∪φ~l′α(C ′

1). If ϕ 6= ρ then ρ ∈ fl(C ′∪C ′
1) and since

ρ ∈ fl(C ′ ∪ φ~l′α(C ′
1)), it must be that ρ 6∈ bl(C1) ∪ ~l. But then by Lemma A.1.9(1)
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we must also have that ρ� `1 ∈ C ′ ∪ C ′
1, so the above case applies. If ϕ = ρ then

C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ as well, so the case below applies.

3. C ′ ∪ φ
~l′
α(C

′
1) ` ϕ ≤ ρ and ρ � `1 ∈ C ′ ∪ φ

~l′
α(C

′
1). Mirroring the argument of

case 1, above, we know ϕ ∈ fl(C1 ∪ φ
~l′
α(C

′
1)). Now consider the premises of

C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ� `2:

(a) C ′∪C ′
1∪φ

~l′
α(C

′
1) ` ϕ ≤ ρ′ and ρ′�`2 ∈ C ′∪φ~l′α(C ′

1). Mirroring the argument
from case 1(a) above, we can show C ′ ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ′. But then this

implies thatC ′∪φ~l′α(C ′
1) ` ϕ�`2 which contradicts that |S(C ′∪φ~l′α(C ′

1), ϕ)| ≤
1 since we already have that C ′ ∪ φ~l′α(C ′

1) ` ϕ� `1.

(b) C ′∪C ′
1∪φ

~l′
α(C

′
1) ` ϕ ≤ ρ′ and ρ′ � `2 ∈ C ′∪C ′

1. Since ϕ ∈ fl(C ′∪φ~l′α(C ′
1))

and ρ′ ∈ C ′ ∪ C ′
1, by Lemma A.1.9(2)(4) we must have that C ′ ∪ φ~l′α(C ′

1) `
ϕ ≤ φ

~l′
α(ρ

′). Since ρ′ � `2 ∈ C ′∪C ′
1 we have φ~l′α(ρ

′)�φ
~l′
α(`2) ∈ C ′∪φ~l′α(C ′

1),
and thus C ′ ∪ φ~l′α(C ′

1) ` ϕ� φ
~l′
α(`2). We can show that φ~l′α(`2) 6= `1, but then

this contradicts |S(C ′ ∪ φ~l′α(C ′
1), ϕ)| ≤ 1.

Given that C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ

′) and φ~l′α(ρ
′) � φ

~l′
α(`2) ∈ C ′ ∪ φ~l′α(C ′

1), if
C ′ ∪C ′

1 ∪ φ
~l′
α(C

′
1) ` ϕ� `1 where `2 6= `1, we want to show that φ~l′α(`2) 6= `1.

Two cases. First, if `2 6∈ dom(φ
~l′
α) then φ

~l′
α(`2) = `2 and the result fol-

lows since `2 6= `1 by assumption. Otherwise, `2 ∈ bl(C1) ∪ ~l and so by
Lemma A.1.9(1) we have ϕ ∈ bl(C1) ∪ ~l and thus ϕ ∈ dom(φ

~l′
α). Now con-

sider two sub-cases. First, if `1 ∈ fl(C ′ ∪ C ′
1) then φ~l′α(`2) 6= `1 since ~l′ ⊇

fl(C ′∪C ′
1). Otherwise, if `1 ∈ rng(φ

~l′
α) then ϕ ∈ rng(φ

~l′
α) by Lemma A.1.9(1).

But this is impossible since that means ϕ ∈ dom(φ
~l′
α) and ϕ ∈ rng(φ

~l′
α) but the

domain and range of φ~l′α must be disjoint.

4. C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ and ρ� `1 ∈ C ′ ∪ C ′

1. Mirrors the second case, above.

5. C ′ ∪ C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ and ρ � `1 ∈ C ′ ∪ C ′

1. If ϕ ∈ fl(C ′ ∪ C ′
1) then by

Lemma A.1.9(2)(1) we have C ′∪C ′
1 ` ϕ ≤ ρ. Since ρ�`1 ∈ C ′∪C ′

1 the reasoning
for the first case applies. Ifϕ ∈ fl(C ′∪φ~l′α(C ′

1)) then by Lemma A.1.9(2)(4) we have
C ′∪φ~l′α(C ′

1) ` ϕ ≤ ρ′ where φ~l′α(ρ) = ρ′. We have φ~l′α(ρ)�φ
~l′
α(`1) ∈ C ′∪φ~l′α(C ′

1) by
the fact that ρ�`1 ∈ C ′∪C ′

1 and we can show φ
~l′
α(`1) 6= `2 as we did in 3(b), above.

So the reasoning from case 3 applies, where we have C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ)

and φ~l′α(ρ)�φ
~l′
α(`1) ∈ C ′∪φ~l′α(C ′

1) from the first derivation and C ′∪C ′
1∪φ

~l′
α(C

′
1) `

ϕ ≤ `2 as the second.

6. C ′ ∪C ′
1 ∪ φ

~l′
α(C

′
1) ` ϕ ≤ ρ and ρ� `1 ∈ C ′ ∪ φ~l′α(C ′

1). Mirrors the argument in the
above case.

(6) C ′ ∪ C ′
1 ` L1 ≤1 ` ∧ φ~l′α(C ′

1) ` L2 ≤1 `⇒ L1 = L2.
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We must have that ` 6∈ bl(C1)∪~l since it appears in both C ′ ∪C ′
1 and φ~l′α(C1)

′. But
in this case we have both C ′ ∪ C ′

1 ` L1 ≤1 ` and C ′ ∪ C ′
1 ` L2 ≤1 ` and C ′ ∪ φ~l′α(C ′

1) `
L1 ≤1 ` and C ′ ∪ φ~l′α(C ′

1) ` L2 ≤1 ` which by Lemma A.1.8 implies that L1 = L2.

(7) ~l ] ~β ] φ~l′α(~β) and ε ] φ~l′α(ε1) are well-defined.
For the first we can conclude that (~l ] ~β) ∩ φ~l′α(~β) = ∅ by fl(C ′ ∪C ′

1) ∩ φ
~l′
α(
~β) = ∅

from case (3) above, since fl(C ′ ∪ C ′
1) ⊇ ~l ] ~β. The second follows from the fact that

~l′ ⊇ ε and thus rng(φ
~l′
α) ∩ ε = ∅. 2

A.1.4 Soundness
Proving soundness involves proving the standard substitution lemmas and preser-

vation (a.k.a. subject reduction). We present some weakening lemmas first, then the
substitution lemmas, and finally the proof of preservation.

Weakening Lemmas

Definition A.1.11 (Constraint Entailment) C ′ ` C if-f ∀c ∈ C. C ′ ` c.

Lemma A.1.12 (Entailment Implication)

1. If C ′ ⊇ C then C ′ ` C.

2. If C ′ ` C then C ` c implies C ′ ` c.

Proof: Proof by induction on C ` c. 2

Lemma A.1.13 (Constraint weakening in subtyping) If C ` τ ≤ τ ′ then for any C ′

such that C ′ ` C it holds that C ′ ` τ ≤ τ ′.

Proof: By induction on C ` τ ≤ τ ′. 2

Lemma A.1.14 (Constraint weakening in typing) If C; Γ ` e : τ ; ε and C ′ ` C then
C ′; Γ ` e : τ ; ε.

Proof: By induction on C; Γ ` e : τ ; ε. Most cases follow either trivially (e.g.,
[INT],[UNIT], and [ID]) or by applying induction on the subderivations along with Lemma A.1.12
to prove C ′ ` L ≤1 ` or C ′ ` ϕ ≤ ρ or C ′ ` ρ� `, as appropriate. For [SUB] we appeal
to Lemma A.1.13. Here are the more interesting polymorphic cases.
Case [LET]. We have

[LET]

C ′′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~l[C ′′].τ1 `cp e2 : τ2; ε2

~l ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

C; Γ `cp let f = v1 in e2 : τ2; ε2
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By induction, C ′; Γ, f : ∀~l[C ′′].τ1 `cp e2 : τ2; ε2. Thus we can apply [LET] to show
C ′; Γ `cp let f = e1 in e2 : τ2; ε2.

Case [FIX]. We have

[FIX]

C ′′; Γ, f : ∀~l[C ′′].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ` S(C ′′) dom(S) = ~l

C; Γ `cp fix f.v : S(τ); ∅
Then since C ′ ` C and C ` S(C ′′), we have C ′ ` S(C ′′) by Lemma A.1.12. Thus we
can apply [FIX] to yield C ′; Γ `cp fix f.v : S(τ1); ε.

Case [INST]. Similar to [FIX].

Case [DOWN]. We have

[DOWN]

C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1)

φ
~l′
α(
~l) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε1 ⊆ ~l ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C1; ε1])) ∪ ε
C ∪ {ν~l[C1; ε1]}; Γ `cp e : τ ; ε

Since C ′ ` C ∪ {ν~l[C1; ε1]}, we must have

[ENCAP-FLOW]
ν~l[C0; ε1] ∈ C ′ C0 ` C1

C ′ ` ν~l[C1; ε1]

And thus C ′ ≡ (C ′′ ∪ {ν~l[C0; ε1]}). It follows that α~l′(ν~l[C0; ε1]) ` α
~l′(ν~l[C1; ε1]),

and thus strip(α
~l′(ν~l[C0; ε1])) ` strip(α

~l′(ν~l[C1; ε1])) by inversion. With this we have
C ′′ ∪ {ν~l[C0; ε1]} ∪ strip(α

~l′(ν~l[C0; ε1])) ` C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])) and

so by induction it follows that

C ′′ ∪ ν~l[C0; ε1] ∪ strip(α
~l′(ν~l[C0; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1)

We wish to apply [DOWN] to achieve the final result, where the above forms the
first premise, so now we must establish the rest. Assume without loss of generality that

~l′ ⊇ fl(strip∗(C ′′)∪ strip∗(C)∪ strip∗(ν~l[C1; ε1]))∪ strip∗(ν~l[C0; ε1]))∪fl(Γ)∪fl(τ)∪ ε

which satisfies our assumptions that

φ
~l′
α(
~l) ∩ (fl(Γ) ∪ fl(τ)) = ∅ and

~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C1; ε1])) ∪ ε

But then we also have that ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C0; ε1])) ∪ ε, and the other two
premises hold by assumption, so we can apply [DOWN] to achieve the final result. 2

Lemma A.1.15 (Polymorphic constraint weakening in typing) If C; Γ, f : ∀~l[C ′′].τ `
e : τ ; ε then C; Γ, f : ∀~l[C ′′ ∪ C ′].τ ` e : τ ; ε where C ` C ′ and fl(C ′) ∩~l = ∅.
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Proof: Proof by induction on C; Γ, f : ∀~l[C ′′].τ ` e : τ ; ε. Most cases are trivial or by
induction; the interesting cases are [INST] and [FIX].
Case [INST]. If f 6= g then we have

[INST]
C ` S(C ′′′) dom(S) = ~β

C; Γ, f : ∀~l[C ′′].τ, g : ∀~β[C ′′′].τ `cp gi : S(τ); ∅
The result follows trivially. Otherwise, we have

[INST]
C ` S(C ′′) dom(S) = ~l

C; Γ, f : ∀~l[C ′′].τ `cp f i : S(τ); ∅
So awe must prove for some S ′ that C ` S ′(C ′′ ∪ C ′). Let S ′ = S. By alpha-renaming
we have fl(C ′) ∩ ~l = ∅, so S ′(C ′) = C ′. Thus C ` S ′(C ′′) ∪ C ′ since C ` S ′(C ′′) and
C ` C ′ by assumption.

Case [FIX]. We can assume f 6= g by alpha-renaming, with

[FIX]

C ′; Γ, f : ∀~l[C ′′].τ, g : ∀~β[C ′′′].τ `cp v : τ ; ∅
~β ⊆ (fl(τ) ∪ fl(C ′′′)) \ fl(Γ) C ` S(C ′′′) dom(S) = ~β

C; Γ, f : ∀~l[C ′′].τ `cp fix g.v : S(τ); ∅
The result follows trivially by induction. 2

Substitution

Lemma A.1.16 (Substitution lemma) If C; Γ, x : τ ′ `cp e : τ ; ε and C ` C ′ and
C ′; Γ `cp e′ : τ ′; ∅, then C; Γ `cp e[x 7→ e′] : τ ; ε.

Proof: Notice that we only allow substituting with expressions e′ that have no effect.
The proof proceeds by induction on C; Γ, x : τ ′ `cp e : τ ; ε.
Case [ID]. There are two cases. First, if e = x, we have

[ID]
C; Γ, x : τ ′ `cp x : τ ′; ∅

Then τ = τ ′, and since x[x 7→ e′] = e′, by our assumption C ′; Γ `cp e′ : τ ′; ∅ and
Lemma A.1.14 we have C; Γ `cp e′ : τ ′; ∅ . Otherwise, we have

[ID]
C; Γ, x : τ `cp y : τ ; ∅

where y 6= x. Since y[x 7→ e′] = y, we have the result by assumption and a trivial
strengthening of Γ.

Case [INT]. Trivial.

Case [LAM]. We have

[LAM]
C; Γ, x : τ ′, y : τ1 `cp e2 : τ2; ε

C; Γ, x : τ ′ `cp λy.e2 : τ1 →ε τ2; ∅
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Using alpha renaming we can assume y 6= x, and hence C; Γ, y : τ1, x : τ ′ `cp e2 : τ2; ε.
Then by induction we have C; Γ, y : τ1 `cp e2[x 7→ e′] : τ2; ε. Thus we can apply [LAM]
to yield C; Γ `cp (λy.e2)[x 7→ e′] : τ1 →ε τ2; ∅.

Case [APP]. We have

[APP]

C; Γ, x : τ ′ `cp e1 : τ2 →ε τ ; ε1

C; Γ, x : τ ′ `cp e2 : τ2; ε2

C; Γ, x : τ ′ `cp e1 e2 : τ ; ε1 ] ε2 ] ε
Then by induction, we have C; Γ `cp e1[x 7→ e′] : τ2 →ε τ ; ε1 and C; Γ `cp e2[x 7→ e′] :
τ2; ε2. Therefore we can apply [APP] to yield C; Γ `cp (e1 e2)[x 7→ e′] : τ ; ε1 ] ε2 ] ε.

Case [PAIR], [PROJ], [COND], [SUB], [REF], [NEWLOCK], [DEREF], [ASSIGN],
[LOC], [LOCK]. By induction (similar to [APP]).

Case [LET]. We have

[LET]

C ′′; Γ, x : τ ′ `cp v1 : τ1; ∅
C; Γ, x : τ ′, f : ∀~l[C ′′].τ1 `cp e2 : τ2; ε2

~l ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ, x : τ ′)

C; Γ, x : τ ′ `cp let f = v1 in e2 : τ2; ε2

By Lemma A.1.14 and induction, we have C ′ ∪ C ′′; Γ `cp v1[x 7→ e′] : τ1; ∅. By
Lemma A.1.15 we have C; Γ, x : τ ′, f : ∀~l[C ′′ ∪ C ′].τ1 `cp e2 : τ2; ε2, and by alpha-
conversion (since f 6= x) and induction we have C; Γ, f : ∀~l[C ′ ∪ C ′′].τ1 ` e2[x 7→ e′] :
τ2; ε2. We have

~l ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′))
⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
⊆ (fl(τ1) ∪ fl(C ′′) ∪ fl(C ′)) \ fl(Γ)

So the result follows by [LET].

Case [FIX]. We have

[FIX]

C ′′; Γ, x : τ ′, f : ∀~l[C ′′].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ, x : τ ′)

C ` S(C ′′) dom(S) = ~l

C; Γ, x : τ ′ `cp fix: f.vS(τ); ∅

By Lemma A.1.14 and Lemma A.1.15 we haveC ′′∪C ′; Γ, x : τ ′, f : ∀~l[C ′′∪C ′].τ `cp v :

τ ; ∅, so by alpha-conversion (since f 6= x) and induction we have C ′′ ∪C ′; Γ, f : ∀~l[C ′′ ∪
C ′].τ `cp v[x 7→ e′] : τ ; ∅. As per the reasoning in [LET], ~l ⊆ (fl(τ1) ∪ fl(C ′′ ∪ C ′)) \
fl(Γ). By our alpha-renaming convention, we have fl(C ′) ∩ ~l = ∅, so S(C ′) = C ′ and
thus C ` S(C ′′ ∪ C ′) since C ` C ′ and C ` S(C ′′). The result follows from [FIX].

Case [INST]. We have

[INST]
C ` S(C ′′) dom(S) = ~l

C; Γ, x : τ ′, f : ∀~l[C ′′].τ `cp f i : S(τ); ∅
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Since fi[x 7→ e′] = fi (x and f are different syntactic forms) the result follows by
assumption and a trivial strengthening of Γ.

Case [DOWN]. We have

[DOWN]

C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])); Γ, x : τ ′ `cp e : τ ; ε ] φ~l′α(ε1)

φ
~l′
α(
~l) ∩ (fl(Γ, x : τ ′) ∪ fl(τ)) = ∅

ε1 ⊆ ~l ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C1; ε1])) ∪ ε
C ∪ {ν~l[C1; ε1]}; Γ, x : τ ′ `cp e : τ ; ε

Since C ∪ {ν~l[C1; ε1]} ` C ′ by assumption, it follows that

C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])) ` C ′

By induction

C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])); Γ `cp e[x 7→ e′] : τ ; ε ] φ~l′α(ε1)

We wish to show the result by [DOWN], where the first premise is the above, so we
must establish the remaining premises. Since φ~l′α(~l) ∩ (fl(Γ, x : τ ′) ∪ fl(τ)) = ∅ we have
φ
~l′
α(
~l) ∩ (fl(Γ) ∪ fl(τ)) = ∅, and the remaining premises follow by assumption. 2

Lemma A.1.17 (Polymorphic substitution lemma) If C; Γ, f : ∀~l[C ′].τ ′ `cp e : τ ; ε

and C ′; Γ `cp e′ : τ ′; ∅ where ~l ∩ fl(Γ) = ∅ then C; Γ `cp e[f 7→ e′] : τ ; ε.

Proof: The proof proceeds by induction on C; Γ, f : ∀~l[C ′].τ ′ `cp e : τ ; ε.
Case [ID]. Trivial, since x[f 7→ e′] = x (f and x are different syntactic forms).

Case [INT]. Trivial.

Case [LAM]. We have

[LAM]
C; Γ, f : ∀~l[C ′].τ ′, x : τ1 `cp e : τ2; ε

C; Γ, f : ∀~l[C ′].τ ′ `cp λx.e : τ1 →ε τ2; ∅

By alpha conversion, we can assume ~l ∩ fl(τ1) = ∅ and C ′; Γ, x : τ1 `cp e′ : τ ′; ∅. Since
x 6= f , by induction we have C; Γ, x : τ1 `cp e[f 7→ e′] : τ2; ε. Then applying [LAM] we
have C; Γ `cp (λx.e)[f 7→ e′] : τ1 →ε τ2; ∅.

Case [APP]. We have

[APP]

C; Γ, f : ∀~l[C ′].τ ′ `cp e1 : τ2 →ε τ1; ε1

C; Γ, f : ∀~l[C ′].τ ′ `cp e2 : τ2; ε2

C; Γ, f : ∀~l[C ′].τ ′ `cp e1 e2 : τ1; ε1 ] ε2 ] ε
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By induction, we haveC; Γ `cp e1[f 7→ e′] : τ2 →ε τ1; ε1 andC; Γ `cp e2[f 7→ e′] : τ2; ε2.
Then applying [APP] yields C; Γ `cp (e1 e2)[f 7→ e′] : τ1; ε1 ] ε2 ] ε.

Case [PAIR], [PROJ], [COND], [SUB], [REF], [NEWLOCK], [LOC], [LOCK], [DEREF],
[ASSIGN]. By induction (similar to [APP]).

Case [LET]. We have

[LET]

C ′′; Γ, f : ∀~l[C ′].τ ′ `cp v1 : τ1; ∅
C; Γ, f : ∀~l[C ′].τ ′, g : ∀~β[C ′′].τ1 `cp e2 : τ2; ε2

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \
(
fl(Γ) ∪ fl(∀~l[C ′].τ ′)

)
C; Γ, f : ∀~l[C ′].τ ′ `cp let g = v1 in e2 : τ2; ε2

By induction, C ′′; Γ `cp v1[f 7→ e′] : τ1; ∅. Assuming by alpha renaming that f 6= g, by
induction we also have C; Γ, g : ∀~β[C ′′].τ1 `cp e2[f 7→ e′] : τ2; ε2. Finally,

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \
(
fl(Γ) ∪ fl(∀~l[C ′].τ ′)

)
⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

so we can apply [LET] to show C; Γ `cp (let g = v1 in e2)[f 7→ e′] : τ2; ε2.

Case [FIX]. Similar to [LET].

Case [INST]. Thus e = g for some variable g. There are two cases. If g 6= f , then the
conclusion holds trivially, since g[f 7→ e′] = g. Otherwise, we have

[INST]
C ` S(C ′) dom(S) = ~l

C; Γ, f : ∀~l[C ′].τ `cp f i : S(τ); ∅

By assumption, C ′; Γ `cp e′ : τ ′; ∅ so we know S(C ′);S(Γ) `cp e′ : S(τ); ∅. Since
~l ∩ fl(Γ) = ∅, we then have S(C ′); Γ `cp e′ : S(τ); ∅. But C ` S(C ′), and so by
Lemma A.1.14, C; Γ `cp e′ : S(τ); ∅, and so we have shown the conclusion, since f i[f 7→
e′] = e′.

Case [DOWN]. We have

[DOWN]

C ∪ {ν~l[C ′′; ε′′]} ∪ strip(α
~l′(ν~l[C ′′; ε′′])); Γ, f : ∀~l[C ′].τ ′ `cp e : τ ; ε ] φ~l′α(ε′)

φ
~l′
α(
~l) ∩

(
fl(Γ, f : ∀~l[C ′].τ ′) ∪ fl(τ)

)
= ∅

ε′ ⊆ ~l ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C ′′; ε′′])) ∪ ε
C ∪ {ν~l[C ′′; ε′′]}; Γ, f : ∀~l[C ′].τ ′ `cp e : τ ; ε

By induction C ∪ {ν~l[C ′′; ε′′]} ∪ strip(α
~l′(ν~l[C ′′; ε′′])); Γ `cp e[f 7→ e′] : τ ; ε ]

φ
~l′
α(ε

′). Since φ~l′α(~l)∩
(
fl(Γ, f : ∀~l[C ′].τ ′) ∪ fl(τ)

)
= ∅we have φ~l′α(~l)∩(fl(Γ) ∪ fl(τ)) =

∅; with the other premises by assumption, the result follows by [DOWN]. 2
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Preservation

The preservation lemma establishes that if a program is well typed using a constraint
set that is well-formed then its entire evaluation will exhibit consistent correlation. Note
that the preservation property establishes a new constraint set C ′ for each evaluation step,
where C ′ ⊇ C (and thus C ′ ` C by Lemma A.1.12). This ensures that correlations
are consistent—each R is correlated to a single, unchanging lock L—across the entire
evaluation derivation.

Definition A.1.18 (Valid Evaluation) We write C ` e −→ e′ if-f e ≡ E[! vR[L]] or
e ≡ E[v′R := v[L]] implies Sg(C,R) = {L}.

Lemma A.1.19 (Preservation) If C; Γ `cp e : τ ; ε where ε `ok C and e −→ e′, then
there exists some C ′, ε′, s.t.

1. (ε′ − ε) ∩ fl(C) = ∅

2. C ′ ⊇ C

3. L ≤1 ` ∈ (C ′ − C) ⇒ ` ∈ (ε− ε′)

4. C ′ ` e −→ e′

5. ε′ `ok C
′

6. C ′; Γ `cp e′ : τ ; ε′.

Proof: The proof is by induction on C; Γ `cp e : τ ; ε.
Case [ID], [INT], [LAM], [LOCK], [LOC], [INST]. These cases cannot happen, because
we assume e −→ e′.

Case [REF]. In this case, the term is ref e, and there are two possible reductions. In the
first case, we have ref e −→ ref e′. By assumption, we have

[REF]
C; Γ `cp e : τ ; ε

C; Γ `cp ref e : ref ρ(τ); ε

By induction, there exists Ci, εi s.t. Ci; Γ `cp e′ : τ ′; εi; and Ci ` e −→ e′; and
εi `ok Ci. Let C ′ = Ci and ε′ = εi. Then applying [REF] yields C ′; Γ `cp ref e′ :
ref ρ(τ); ε′, and we also have C ′ ` ref e −→ ref e′ by applying the E[e] −→ E[e′]
evaluation rule.

In the second case we have ref v −→ vR. Let ε′ = ε = ∅ and C ′ = C ∪ {R ≤ ρ}.
Clearly (ε′ − ε) ∩ fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈ (C ′ − C = {R ≤ ρ}) ⇒
` ∈ (ε − ε′ = ∅). And C ′ ` ref v −→ vR follows trivially since no constructors were
consumed. We can prove C ′; Γ `cp vR : ref ρ(τ); ∅ as follows:

[LOC]
C ′; Γ `cp v : τ ; ∅

[LOC-FLOW]
R ≤ ρ ∈ C ′

C ′ ` R ≤ ρ

C ′; Γ `cp vR : ref ρ(τ); ∅

135



where C ′; Γ `cp v : τ ; ∅ follows by Lemma A.1.14. Finally, we can prove ε′ `ok C
′ as

follows:

[CON-UNION]

ε′ `ok C ↪→ C ′′;~l
[CON-OTHER]

ε′ `ok {R ≤ ρ} ↪→ {R ≤ ρ}; ∅
fl(C ′′) ∩ ∅ = ∅ fl({R ≤ ρ}) ∩~l = ∅

for all ϕ′. |S(C ′′ ∪ {R ≤ ρ}, ϕ′)| ≤ 1
C ′′ ` L1 ≤1 ` ∧ {R ≤ ρ} ` L2 ≤1 ` ⇒ L1 = L2

ε′ `ok C ∪ {R ≤ ρ} ↪→ C ′′ ∪ {R ≤ ρ};~l

Most of the premises follow trivially.
To prove fl({R ≤ ρ}) ∩ ~l = ∅, we observe that if ρ 6∈ fl(C) then there are no

conditions on its flow, so ~l (where ~l = bl(C)) can be safely alpha-converted. Otherwise
(if ρ ∈ fl(C)) ρ must not appear in ~l or it would violate the assumption ε `ok C.

Finally, we must show for all ϕ′. |S(C ′′∪{R ≤ ρ}, ϕ′)| ≤ 1. We have S(C ′′, ϕ′) ≤
1 by Lemma A.1.8. Since R 6∈ C ′′ (by the fact that it was fresh), we have for all ϕ 6= R
that C ′′ ∪ {R ≤ ρ} ` ϕ � ` implies C ′′ ` ϕ � `, and thus |S(C ′′ ∪ {R ≤ ρ})| ≤ 1.
Because C ′′ ∪ {R ≤ ρ} ` R ≤ ρ, and |S(C ′′, ρ)| ≤ 1, then |S(C ′′ ∪ {R ≤ ρ}, R)| ≤ 1
follows easily.

Case [APP]. In this case, the term is e1 e2, and there are three possible reductions. In
the first case, when e1 e2 −→ e′1 e2, we have

[APP]

C; Γ `cp e1 : τ2 →ε τ1; ε1

C; Γ `cp e2 : τ2; ε2

C; Γ `cp e1 e2 : τ1; ε1 ] ε2 ] ε

Then by induction, there exists Ci, εi s.t. (εi − ε1) ∩ fl(C) = ∅; and Ci ⊇ C; and
L ≤1 ` ∈ (Ci − C) ⇒ ` ∈ (ε− εi); and Ci ` e1 −→ e′1; and εi `ok Ci and Ci; Γ `cp e′1 :
τ2 →ε τ1; εi.

Let C ′ = Ci and ε′ = εi ] ε2 ] ε. We prove the latter is well-formed as follows.
Consider some ` ∈ εi. If ` ∈ ε1 then ` 6∈ (ε2 ] ε) by assumption. If ` 6∈ ε1 then ` 6∈ fl(C)
by induction. Thus, if ` ∈ (ε2 ] ε), we can safely alpha-convert ` in εi and Ci.

We must show that L ≤1 ` ∈ (Ci − C) ⇒ ` ∈ (ε1 ] ε2 ] ε) − (εi ] ε2 ] ε). But
since (ε1 ] ε2 ] ε)− (εi ] ε2 ] ε) = (ε1 − εi) we have this by induction.

We have (εi]ε2]ε)−(ε1]ε2]ε) = (εi−ε1), and (εi−ε1)∩fl(C) = ∅ by induction.
Since C ′ ⊇ C by induction, by Lemmas A.1.12 and A.1.14 we have C ′; Γ `cp e2 : τ2; ε2.
Thus, by [APP] we have C ′; Γ `cp e′1 e2 : τ1; ε

′. Since C ′ ` e1 −→ e′1, we have
C ′ ` e1 e2 −→ e′1 e2 by congruence.

Finally, we must show ε′ `ok C ′; that is, that εi ] ε2 ] ε `ok Ci. If Ci = C
then ε1 ] ε2 ] ε `ok C by assumption and εi `ok C by induction, so we easily have
(ε1 ∪ εi) ] ε2 ] ε `ok C and thus εi ] ε2 ] ε `ok C by Lemma A.1.7(5). Otherwise

136



Ci = C ∪ C ′′ for some C ′′, so by induction and inversion we have

[CON-UNION]

εi `ok C ↪→ C ′′′;~l εi `ok C
′′ ↪→ C ′′′′; ~β

fl(C ′′′) ∩ ~β = ∅ fl(C ′′′′) ∩~l = ∅
for all ϕ′. |S(C ′′′ ∪ C ′′′′, ϕ′)| ≤ 1

C ′′′ ` L1 ≤1 ` ∧ C ′′′′ ` L2 ≤1 ` ⇒ L1 = L2

εi `ok C ∪ C ′′ ↪→ C ′′′ ∪ C ′′′′;~l ] ~β

As argued above, we can show εi]ε2]ε `ok C ↪→ C ′′′;~l, so we must show εi]ε2]ε `ok

C ′′ ↪→ C ′′′′; ~β and the rest follows by [CON-UNION]. This follows because we have
εi `ok C

′′ ↪→ C ′′; ~β by assumption, and we know by induction that if L ≤1 ` ∈ C ′′ then
` ∈ (ε1 − εi). In other words ` 6∈ (ε2 ] ε), so we can safely strengthen the effect and get
εi ] ε2 ] ε `ok C

′′ ↪→ C ′′′; ~β.
The second case, when e1 e2 −→ e1 e

′
2, is similar.

In the last case, we have (λx.e1) v −→ e1[x 7→ v]. In this case, we have

[SUB]

[LAM]
C; Γ, x : τ ′

1 ` e1 : τ ′
2; ε′

C; Γ `cp λx.e1 : τ ′
1 →ε′

τ ′
2; ∅

C ` τ1 ≤ τ ′
1

C ` τ ′
2 ≤ τ2

ε′ ⊆ ε

C ` τ ′
1 →ε′

τ ′
2 ≤ τ1 →ε τ2

C; Γ `cp λx.e1 : τ1 →ε τ2; ∅ C; Γ `cp v : τ1; ∅
C; Γ ` (λx.e1) v : τ2; ε

Choose C ′ = C and ε′ = ε. By Lemma A.1.16, C ′; Γ `cp e1[x 7→ v] : τ2; ε
′. The

remainder of the postconditions follow by trivially or by assumption.

Case [PAIR], [PROJ], [COND]. Follows [APP].

Case [DEREF]. In this case, the term is ! e1e2, and the reasoning follows that of [APP]
for the inductive cases.

For the case that ! vR[L] −→ v, we have

[SUB]

[LOC]

C; Γ `cp v : τ ′; ∅
C ` R ≤ ρ′

C; Γ `cp vR : refρ′
(τ ′); ∅

C ` ρ′ ≤ ρ
C ` τ ′ ≤ τ
C ` τ ≤ τ ′

C ` refρ′
(τ ′) ≤ refρ(τ)

C; Γ `cp vR : refρ(τ); ∅
[LOCK] C ` L ≤1 `

C; Γ `cp [L] : lock`; ∅
C ` ρ� `

C; Γ `cp ! vR[L] : τ ; ∅

Let C ′ = C and ε′ = ε. Thus C ′; Γ `cp v : τ ; ∅ follows by assumption and [SUB], and
ε′ `ok C

′ and C ′ ⊇ C and (ε′ − ε) ∩ fl(C) = ∅ and L ≤1 ` ∈ (C ∩ C ′) ⇒ ` ∈ (ε − ε′)
follow trivially or by assumption.

To prove C ′ ` e −→ e′ we must prove Sg(C ′, R) = {L}. Since ε′ `ok C ′ we
have |S(C ′, ϕ)| ≤ 1 for all ϕ by Lemma A.1.8(1). This implies S(C ′, R) = {`} since
C ′ ` R� `:

[CORRELATE]
C ′ ` ρ� ` C ′ ` R ≤ ρ

C ′ ` R� `

137



We have C ′ ` L ≤1 ` by assumption, and by Lemma A.1.8(2), we know that if C ′ `
L′ ≤1 ` then L = L′ and thus Sg(C ′, R) = {L}.

Case [ASSIGN]. Similar to [DEREF].

Case [NEWLOCK]. In this case, e ≡ newlock and so newlock −→ [L] where L /∈ C
since it’s fresh. We have

[NEWLOCK]
C; Γ `cp newlock : lock `; {`}

Let C ′ = C∪{L ≤1 `} and ε′ = ∅. Clearly C ′ ⊇ C and since ((ε′ = ∅)−(ε = {`})) = ∅
we have (ε′ − ε) ∩ fl(C) = ∅. Moreover, C ′ ∩ C = {L ≤ `} and ε − ε′ = {`} which
proves L ≤1 ` ∈ (C ′ − C) ⇒ ` ∈ (ε− ε′). We can prove

[LOCK]
C ′ ` L ≤1 `

C ′; Γ `cp [L] : lock `; ε′

We have C ′ ` newlock −→ [L] trivially since no constructors are consumed. Finally, we
prove ε′ `ok C

′ by applying [CON-UNION] as follows:

[CON-UNION]

∅ `ok C ↪→ C ′′;~l
[CON-LOCK]

` 6∈ ∅
∅ `ok {L ≤1 `} ↪→ {L ≤1 `}; ∅

fl(C ′′) ∩ ∅ = ∅ fl({L ≤1 `}) ∩~l = ∅
for all ϕ′. |S(C ′′ ∪ {L ≤1 `}, ϕ′)| ≤ 1

C ′′ ` L1 ≤1 `′ ∧ {L ≤1 `} ` L2 ≤1 `′ ⇒ L1 = L2

∅ `ok C ∪ {L ≤1 `} ↪→ C ′′ ∪ {L ≤1 `};~l

We prove ∅ `ok C ↪→ C ′′;~l by assumption and weakening (Lemma A.1.7(5)). We prove
fl({L ≤1 `})∩~l = ∅ following the argument in [REF], above. The premise for consistent
correlation follows trivially, because the addition of constraints L ≤1 ` does not affect
which correlations one can prove. Finally, since ε = {`}, by ε `ok C ↪→ C ′′;~l and
Lemma A.1.7(3) we have C 6` L ≤1 ` for all L, so the last premise follows by assumption
for all `′ 6= ` and vacuously for `.

Case [LET]. In this case, let f = v1 in e2 −→ (e2[f 7→ v1]), and

[LET]

C ′′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~l[C ′′].τ1 `cp e2 : τ2; ε
~l ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2; ε

Let C ′ = C and ε′ = ε. Thus (ε′ − ε) ∩ fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈
(C ′−C) ⇒ ` ∈ (ε−ε′) and ε′ `ok C

′ andC ′ ` e −→ e′ follow trivially or by assumption.
Since we can assume that ~l ∩ fl(Γ) = ∅ by alpha-renaming, by Lemma A.1.17 we have
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C ′; Γ ` e2[f 7→ e1] : τ2; ε
′.

Case [FIX]. In this case fix f.v −→ v[f 7→ fix f.v] and

[FIX]

C ′′; Γ, f : ∀~l[C ′′].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ` S(C ′′) dom(S) = ~l

C; Γ `cp fix f.v : S(τ); ∅

Let C ′ = C and ε′ = ε = ∅. Thus (ε′ − ε) ∩ fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈
(C ′−C) ⇒ ` ∈ (ε−ε′) and ε′ `ok C

′ andC ′ ` e −→ e′ follow trivially or by assumption.
For the substitution S that maps all labels in ~l to themselves, we can apply [FIX] to show

[FIX]

C ′′; Γ, f : ∀~l[C ′′].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ′′ ` C ′′

C ′′; Γ `cp fix f.v : τ ; ∅

Finally, from these facts, and since we can assume that ~l ∩ fl(Γ) = ∅ by alpha-renaming,
by Lemma A.1.17 we have C ′; Γ ` v[f 7→ fix f.v] : τ ; ∅.

Case [DOWN]. In this case we have e −→ e′ and

[DOWN]

C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1)

φ
~l′
α(
~l) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε1 ⊆ ~l ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~l[C1; ε1])) ∪ ε
C ∪ {ν~l[C1; ε1]}; Γ `cp e : τ ; ε

Since ε `ok C ∪ {ν~l[C1; ε1]} ↪→ C ′ ∪ C ′
1;
~l ] ~β by assumption (and inversion via [CON-

UNION] and [CON-ENCAP]), we have

ε]φ~l′α(ε1) `ok C∪{ν~l[C1; ε1]}∪strip(α
~l′(ν~l[C1; ε1])) ↪→ C ′∪C ′

1∪φ
~l′
α(C

′
1);
~l] ~β]φ~l′α(~β)

by Lemma A.1.10. Thus by induction there exists some Ci, εi s.t. Ci ⊇ C∪{ν~l[C1; ε1]}∪
strip(α

~l′(ν~l[C1; ε1])); and (εi−(ε]φ~l′α(ε1)))∩fl(C∪{ν~l[C1; ε1]}∪strip(α
~l′(ν~l[C1; ε1]))) =

∅ and L ≤1 ` ∈ (Ci−(C∪{ν~l[C1; ε1]}∪strip(α
~l′(ν~l[C1; ε1])))) ⇒ ` ∈ ((ε]φ~l′α(ε1))−εi)

and Ci ` e −→ e′; and εi `ok Ci; and Ci; Γ `cp e′ : τ ; εi.
Let C ′ = Ci and ε′ = εi, so that C ′ ⊇ C ∪ {ν~l[C1; ε1]} and ε′ `ok C ′ and

C ′ ` e −→ e′ and C ′; Γ `cp e′ : τ ; ε′ follow trivially.
We must show L ≤1 ` ∈ (Ci− (C∪{ν~l[C1; ε1]})) ⇒ ` ∈ εi. We have by induction

that this property holds for constraints (Ci− (C∪{ν~l[C1; ε1]}∪ strip(α
~l′(ν~l[C1; ε1])))) =

C ′′. Since, by the fact that Ci ⊇ C ∪ {ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1])) we have Ci −

(C ∪ {ν~l[C1; ε1]}) = C ′′ ∪ strip(α
~l′(ν~l[C1; ε1])), but we know that ν~l[C1; ε1] must not

contain any lock allocation constraints since it was deemed well-formed by assumption.
Finally, we must show that (εi−ε)∩fl(C∪{ν~l[C1; ε1]}) = ∅. For some ` ∈ (εi−ε)

there are two possibilities:
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1. Assume ` ∈ (εi − (ε ] φ
~l′
α(ε1))). By induction (as stated above) ` ∩ fl(C ∪

{ν~l[C1; ε1]} ∪ strip(α
~l′(ν~l[C1; ε1]))) = ∅, and thus `′ ∩ fl(C ∪ {ν~l[C1; ε1]}) = ∅

trivially.

2. Assume ` ∈ (φ
~l′
α(ε1)∩εi); i.e. there is some `′ ∈ ε1 s.t. φ~l′α(`

′) = ` ∈ εi. But then we
have ` 6∈ fl(C ∪ {ν~l[C1; ε1]}) since (1) `′ ∈ dom(φ

~l′
α) by the fact that dom(φ

~l′
α) = ~l

and `′ ∈ ε1 ⊆ ~l; (2) ` 6∈ ~l′ by the fact that rng(φ
~l′
α) ∩ ~l′ = ∅ by the definition of φ~l′α;

and (3) since ~l′ ⊇ (fl(strip∗(C))∪fl(strip∗(ν~l[C1; ε1]))∪ε)) ⊇ fl(C∪{ν~l[C1; ε1]}).

2

Thus, if C; Γ `cp e : τ ; ε and ε `ok C then there exists a (possibly infinite) list of
pairs Ci, εi for which Ci ⊇ Ci−1. If e −→ e1 −→ e2 . . . then C ` e −→ e1, and
C1 ` e1 −→ e2, and C2 ` e2 −→ e3 and so on, which means that each dereference or
assignment to R is valid in Ci, being correlated with a single lock L in Sg. Moreover, by
εi `ok Ci it follows from Lemma A.1.8 that |Sg(Ci, R)| ≤ 1 for all R. Since Ci ⊇ Ci−1,
we know Sg(Ci, R) = {L} implies Sg(Cj, R) = {L} for all j ≥ i, and thus each R that
is dereferenced is correlated with the same single lock for the entire evaluation of e.
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[LOC-TRANS]
C `cfl ρ0 ≤ ρl C `cfl ρ1 ≤ ρ2

C `cfl ρ0 ≤ ρ2

[LOC-MATCH]
C `cfl ρ1 �i− ρ0 C `cfl ρ1 ≤ ρ2 C `cfl ρ2 �i+ ρ3

C `cfl ρ0 ≤ ρ3

(a) Location and Lock Flow

[CORR-TRANS]
C `cfl ρ ≤ ρ′ C `cfl ρ′ � `

C `cfl ρ � `

[CORR-MATCH]
C `cfl ρ �ip ρ′ C `cfl ρ � ` C `cfl ` �i `′

C `cfl ρ′ � `′

(b) Correlation Flow

Figure A.9: Constraint Flow

A.2 Reduction from λ� to λcp
�

Next we prove the soundness of λ� by showing that all λ� derivations can be re-
duced to λcp

� derivations. Recall that the type rules for λ� are shown in Figures 3.5–3.7.
To distinguish the two systems, we will use `cfl to indicate derivations in λ� and `cp to
indicate derivations in λcp

� .
In order to reason about the lock and location resolution rules in Figure 3.9, we re-

formulate them as inference rules, as shown in Figure A.9. Recall that our constraint reso-
lution rules use C `cfl escapes(`,~l) (defined on page 22). In words, we have escapes(`,~l)
if ` is connected in any way to ~l, either via an instantiation constraint or via correlation
with a location ρ that is connected in some way to ~l.

Recall that after applying the inference rules, there are three conditions we need to
check. First, we need to ensure that all disjoint unions formed during type inference and
constraint resolution are truly disjoint. We define occurs(`, ε) to be the number of times
label ` occurs disjointly in ε, as defined on page 26. We require for every effect ε created
during type inference (including constraint resolution), and for all `, that occurs(`, ε) ≤ 1.
We enforce the constraint ετ = ∅ by extracting the effect ε from the function type τ and
ensuring that occurs(`, ε) = 0 for all `. Finally, we ensure that locations are consistently
correlated with locks. We compute S(C, ρ) (from Definition 3.2.1) for all locations ρ and
check that it has size ≤ 1. This computation is easy now that we have the constraints in
solved form; we simply walk through all the correlation constraints generated by the flow
rules to count how many different lock labels appear correlated with each location ρ.

Note that the definition of consistent correlation in λ� is slightly stronger than the
definition from λcp

� . In particular, consider the program shown in Figure A.10. In λ�,
this program will not type check. The problem is that x is used once with l′ directly and
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1 let l1 = newlock in
2 let x = ref 0 in
3 let f l = (x :=l 0) in
4 f l1 ;
5 x :=l1 0

Figure A.10: Program showing a difference between λcp
� and λ�

once in the body of f , where l′ is represented by the name l. Thus λ� generates two
correlation constraints for this example: C `cfl x� l′ from the outer use, and C `cfl x� l
from the use within f (because of [CORR-MATCH] and the self-loop on x because it is
global at the definition of f ). Thus it appears that x is inconsistently correlated by our
definition. However, this program will type check in λcp

� , because in [LET] in Figure A.5
the constraint system C ′ containing l � x is abstracted and instantiated in [INST], hence
the correlation with l never appears in the outermost constraint system.

The problem here was that l′ was passed as a parameter to f but x was used as a
global. This is an unusual program—typically either both l′ and x would be passed as
arguments to f or neither would be. It is possible to modify λ� to allow the program in
Figure A.10 to type check. In particular, we could extend λ� to only check correlation
with respect to concrete locks—in this case, we would see that both l and l′ can only cor-
respond to the call to newlock on the first line, and hence there is consistent correlation.
LOCKSMITH implements this approach (taking care to model wrappers around newlock

precisely), but we omit it from λ� for simplicity.
Now we prove that derivations in λ� reduce to derivations in λcp

� . Our approach
closely follows Rehof et al [132], and we omit details where they are the same.

Definition A.2.1 Every application of [INST]

[INST]
C `cfl τ �i

+ τ ′ C `cfl ~l �i
±
~l

C; Γ, f : (∀.τ,~l) `cfl f i : τ ′; ∅

defines an instantiation context 〈C,~l, τ, S〉, where S is the substitution given by instanti-
ation i. (Instantiation i is represented by the two constraints τ �i

+ τ ′ and ~l �i
±
~l.)

Definition A.2.2 (Closure) Let C be a set of λ� constraints. Then we define C∗ = {ρ ≤
ρ′ | C `cfl ρ ≤ ρ′} ∪ {ρ � ` | C `cfl ρ � `}, i.e., C∗ is the closure of C with respect to
the rules in Figure A.9. Note that we treat C∗ as a set of λcp

� constraints.

Note that we omit effects from the above definition; those are handled by the following
definition:

Definition A.2.3 (Effect Closure) Let C be a set of λ� constraints. Then we define ε∗ to
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be the solution of ε as computed by the rules in Figure 3.9 with respect to C:

∅∗ = ∅
{`}∗ = {`}
χ∗ =

⋃
ε≤χ ε

∗

(ε0 ] ε1)
∗ = ε∗0 ] ε∗1 if ε∗0 ∩ ε∗1 = ∅

(ε0 ∪ ε1)
∗ = ε∗0 ∪ ε∗1

Thus effects are just sets of locks, the same as in λcp
� .

Lemma A.2.4 If C `cfl ε ≤ ε′, then ε∗ ⊆ ε′∗.

Lemma A.2.5 If C `cfl ε ≤~l ε′, then ε∗ ∩ {` | escapes(`,~l)} ⊆ ε′∗.

Lemma A.2.6 If C `cfl ε �i ε′, then there is a substitution Si such that Si(ε) ⊆ ε′.

Proof: These three lemmas can be proven by observing that the rules in Figure 3.9
compute a valid solution to the effect constraints. 2

Next we prove a lemma that we can use during the reduction of [INST] or [FIX] from
λ� to λcp

� . This lemma shows that we can extend a substitution S from an instantiation
context into a substitution Ŝ such that C∗ is closed with respect to Ŝ. This substitution Ŝ
is the substitution we will ultimately choose for the λcp

� versions of [INST] and [FIX]. We
introduce a new kind of label ρ t ρ′, which stands for the union of two labels; a detailed
discussion can be found elsewhere [38, 127].

Lemma A.2.7 Let 〈C,~l, τ, S〉 be an instantiation context (i.e., an occurrence on [INST]
or [FIX]). Then C∗ `cp Ŝ(C∗), where

Ŝ(ρ) =


S(ρ) ρ ∈ fl(τ)−~l
ρ ρ ∈ ~l⊔
Ŝ(

{
ρ′ ∈ (fl(τ) ∪~l) | C∗ `cp ρ′ ≤ ρ

}
) otherwise

and

Ŝ(`) =


S(`) ` ∈ fl(τ)−~l
` ` ∈ ~l
∅ otherwise

Here ∅ is a special lock indicating no correlation, i.e., constraints of the form ρ� ∅ place
no constraint on ρ, and C `cp ρ� ∅ for any C, ρ.

Proof: The standard proof [38, 127] of this lemma holds. We show some of the cases for
correlation constraints. Suppose Ŝ(C∗) `cp ρ′�`′. Then let ρ, ` be such that C∗ `cp ρ�`,
i.e., Ŝ(ρ) = ρ′ and Ŝ(`) = `′. We need to show that C∗ `cp ρ′ � `′. There are a total of
nine cases, depending on ρ and `.

1. Suppose ρ ∈ ~l. Then ρ′ = Ŝ(ρ) = ρ.
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(a) Suppose ` ∈ ~l. Then `′ = Ŝ(`) = `. Thus by assumption C∗ `cp ρ′ � `′.

(b) Suppose ` ∈ fl(τ) − ~l. Then `′ = Ŝ(`) = S(`), and C `cfl ` �i `′. Then
since ρ ∈ ~l, by [INST] we have C `cfl ρ �i

± ρ and ρ = ρ′. Then by [CORR-
MATCH] we have C∗ `cp ρ′ � `′.

(c) Otherwise, Ŝ(`) = ∅, so there is nothing to show.

2. Suppose ρ ∈ fl(τ)−~l. Then ρ′ = S(ρ) where C `cfl ρ �i
p ρ

′ for some p.

(a) Suppose ` ∈ ~l. Then `′ = Ŝ(`) = ` and by [INST] C `cfl ` �i `′. But then by
[CORR-MATCH] we have C∗ `cp ρ′ � `′.

(b) Suppose ` ∈ fl(τ) − ~l. Then `′ = Ŝ(`) = S(`), and C `cfl ` �i `′. Then by
[CORR-MATCH] we have C∗ `cp ρ′ � `′.

(c) Otherwise, Ŝ(`) = ∅, so there is nothing to show.

3. The last cases follow by the reasoning similar to above plus the standard reasoning
about intermediate locations [127].

2

Definition A.2.8 For a λ� derivation D, let the ith occurrence of [DOWN] be

[DOWN]
C; Γi `cfl e : τi; εi ~li = fl(Γ) ∪ fl(τ) C `cfl εi ≤~li

χi

C; Γi `cfl e : τi;χi

Let
~̀
i = ε∗i − χ∗i
~li = {l | ¬(C∗ `cp escapes(l,fl(Γi) ∪ fl(τi)))}

Here ~li are all the non-escaping locks and locations from [DOWN]. Notice that by def-
inition of ≤~li

we have `i ⊆ li. Then define Ci = ν~l[C ′; ε′] to be an alpha-renaming of
ν~li[C

∗|~li ; ~̀i] such that ~l is chosen to be distinct from all free and bound variables in C∗

and any other renaming for an occurrence of [DOWN]. (Hence C ′ is an alpha-renaming
of C∗|~li , and ε′ is an alpha-renaming of ~̀i.) Here C∗|~li are the constraints in C∗ that only
contain variables in ~li. Notice that by construction of escapes(), it must be the case that
in C∗, there are no constraints between a variable in ~li and a variable not in ~li.

Finally, define
C∗∗ = C∗ ∪

⋃
i

Ci

Lemma A.2.9 Let 〈C,~l, τ, S〉 be an instantiation context. Then C∗∗ `cp Ŝ(C∗∗).
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Proof: By Lemma A.2.7 we have C∗ `cp Ŝ(C∗), and all other constraint systems in C∗∗

contain no free variables. 2

Definition A.2.10 Define (∀.τ,~l)∗ = ∀~l[C∗∗].τ where ~l = (fl(τ) ∪ fl(C∗∗)) − ~l, i.e., we
generalize all variables in τ and C∗∗ that we can. Define (Γ, x : σ)∗ to be Γ∗, x : σ∗ (and
·∗ = ·, where · is the empty environment).

Lemma A.2.11 If C `cfl ρ ≤ ρ′ then C∗ `cp ρ ≤ ρ′.

Lemma A.2.12 If C `cfl ρ� ` then C∗ `cp ρ� `.

Lemma A.2.13 If C `cfl τ ≤ τ ′ then C∗ `cp τ ≤ τ ′.

Proof: The proofs of all three statements are trivial. The proof of the last statement uses
Lemma A.2.4 to show that the effect constraints from [SUB-FUN] in Figure 3.7 can be
translated to ⊆ conditions for [SUB-FUN] in Figure A.6. 2

Lemma A.2.14 Given a normal C; Γ `cfl e : τ ; ε that is consistently correlated, we have
ε∗ `ok C

∗∗

Proof: We show that the rules in Figure A.8 apply. First, we can ignore [CON-LOCK],
the L ≤1 ` hypothesis of [CON-ENCAP], and the last hypothesis of [CON-UNION], be-
cause constraints of the form {L ≤1 `} never appear in C∗∗. Also, by [CON-OTHER]
there is nothing to show for individual constraints.

To show that the disjoint unions in [CON-ENCAP] and [CON-UNION], and the
free label restrictions in [CON-UNION] hold, observe that in Definition A.2.8 we alpha-
renamed all the bindings to be distinct from all other bindings, and thus these hold by
construction.

For [CON-ENCAP], we need to show that in encapsulated constraint systems we
bind all ρ’s that are correlated with bound `’s, but that holds again by construction in
Definition A.2.8. And we need to show that ε′ ⊆ ~l, but that holds again by construction
in Definition A.2.8.

Thus in essence, the only thing to show is consistent correlation according to [con-
Union]. Since all of the bindings are alpha renamed, we need to show consistent correla-
tion of strip∗(C∗∗), i.e., that

for all ρ. |S(strip∗(C∗∗), ρ)| ≤ 1

But since we assumed C was consistently correlated, |S(C∗, ρ)| ≤ 1 for all ρ. Therefore
for any i we have |S(C∗|~li)| ≤ 1 also. And since all variables in Ci are bound, there will
be no overlapping ρ when we apply strip∗ to C∗∗ from different Ci, and hence the union
is consistently correlated. 2

Lemma A.2.15 (Reduction) If D is a normal derivation of C; Γ `cfl e : τ ; ε, then
C∗∗; Γ∗ `cp e : τ ; ε∗.
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Proof: By induction on the structure of the derivation D. The cases for the monomor-
phic rules follow by induction and Lemmas A.2.11, A.2.12, and A.2.13.

Case [LET]. We have

[LET]
C; Γ `cfl v1 : τ1; ∅ ~l = fl(Γ) C; Γ, f : (∀.τ1,~l) `cfl e2 : τ2; ε

C; Γ `cfl let f = v1 in e2 : τ2; ε

By induction we have C∗∗; Γ∗ `cp v1 : τ1; ∅ and C∗∗; Γ∗, f : ∀~l[C∗∗].τ1 `cp e2 : τ2; ε
∗,

where by construction~l = (fl(τ1)∪fl(C∗∗))−~l. (Notice that fl(Γ) = fl(Γ∗) by construc-
tion of Γ∗.) But then we can apply [LET] from λcp

� to yield

[LET]

C∗∗; Γ∗ `cp v1 : τ1; ∅ C∗∗; Γ∗, f : ∀~l[C∗∗].τ1 `cp e2 : τ2; ε
∗

~l ⊆ (fl(τ1) ∪ fl(C∗∗)) \ fl(Γ∗)

C∗∗; Γ∗ `cp let f = v1 in e2 : τ2; ε
∗

Case [INST]. We have

[INST]
I `cfl τ �i

+ τ ′ I `cfl ~l �i
±
~l

I;C; Γ, f : (∀.τ,~l) `cfl f i : τ ′; ∅

We want to show

[INST]
C∗∗ `cp Ŝ(C∗∗) dom(Ŝ) = ~l

C∗∗; Γ∗, f : ∀~l[C∗∗].τ `cp f i : Ŝ(τ); ∅

We apply Lemma A.2.9 to show that C∗∗ `cp Ŝ(C∗∗), where S is the substitution defined
by this instantiation. We have dom(Ŝ) = ~l by construction of Ŝ and choice of ~l. And
Ŝ(τ) = S(τ), by definition of Ŝ, so the type of f i is what we expect.

Case [FIX]. We have

[FIX]

C; Γ, f : (∀.τ,~l) `cfl v : τ ′; ∅ ~l = fl(Γ) C `cfl τ ′ ≤ τ C `cfl τ �i
+ τ ′′

C `cfl ~l �i
±
~l C `cfl ετ = ∅

C; Γ `cfl fix: f.vτ ′′; ∅

By induction, we have C∗∗; Γ∗, f : ∀~l[C∗∗].τ `cp v : τ ′; ∅, where by construction ~l =

(fl(τ) ∪ fl(C∗∗)) − ~l. (Note that we have fl(Γ) = fl(Γ∗) by construction of Γ∗.) Since
C `cfl τ ′ ≤ τ , by [SUB] and Lemma A.2.13 we have C∗∗; Γ∗, f : ∀~l[C∗∗].τ `cp v : τ ; ∅.
By Lemma A.2.9 we have C∗∗ `cp Ŝ(C∗∗), where S is the instantiation defined by this
substitution. We have dom(Ŝ) = ~l by construction of Ŝ and choice of ~l. Putting this
together, we get

[FIX]

C∗∗; Γ∗, f : f : ∀~l[C∗∗].τ `cp v : τ ; ∅
~l ⊆ (fl(τ) ∪ fl(C∗∗)) \ fl(Γ) C `cp S(C ′) dom(Ŝ) = ~l

C; Γ `cp fix: f.vŜ(τ); ∅
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And Ŝ(τ) = S(τ), by definition of Ŝ.

Case [DOWN]. Let this be the ith occurrence of [DOWN]. Our derivation looks like the
following:

[DOWN]
C; Γi `cfl e : τi; εi ~l = fl(Γi) ∪ fl(τi) C `cfl εi ≤~li

χi

C; Γi `cfl e : τi;χi

By induction, we have

C∗∗; Γ∗i `cp e : τi; ε
∗
i

Let ~̀i, ~li, and ν~li[C∗|~li ; ~̀i] be as in Definition A.2.8. Let S be the alpha-renaming
such that S(~li) = ~l, where ν~l[C ′; ε′] is the constraint in C∗∗.

First, by definition ε∗i = ~̀
i ] χ∗i . Also notice that since ~̀i ⊆ ~li by construction, we

have
ε′ = S(~̀i) ⊆ S(~li) = ~l (A.1)

Also we claim that S(Γi) = Γi and S(τi) = τi, since any locks or locations in Γi or
τi are not in ~li, by definition of escapes. Additionally, S(χ∗i ) = χ∗i , since any lock in χ∗i
escapes and hence is not in ~li. Then applying S to the induction hypothesis, we get

S(C∗∗); Γ∗i `cp e : τi;χ
∗
i ] S(~̀i)

or
S(C∗) ∪

⋃
i

Ci; Γi `cp e : τi;χ
∗
i ] ε′

since all variables in the Ci are bound. And by definition of escapes, there are no con-
straints between variables in ~li and variables not in ~li. Therefore we have

C∗|¬~li ∪ S(C∗|~li) ∪
⋃
i

Ci; Γi `cp e : τi;χ
∗
i ] ε′

Then by Lemma A.1.14 and the definition of C ′ (in Definition A.2.8) we have

C∗ ∪ (
⋃
i

Ci) ∪ C ′; Γi `cp e : τi;χ
∗
i ] ε′

Next let ~l′ = fl(strip∗(C∗∗))∪χ∗i , and let α~l′ and φ~l′α be alpha-conversions according
to Definition A.1.3. Also construct φ~l′α such that φ~l′α(~l) ∩ (fl(Γi) ∪ fl(τi)) = ∅. Applying
φ
~l′
α to our alpha-renamed inductive hypothesis yields

C∗ ∪ (
⋃
i

Ci) ∪ φ
~l′
α(C

′); Γi `cp e : τi;χ
∗
i ] φ

~l′
α(ε

′)

since again φ~l′α only renames elements in S(~l), which do not appear in Γi, τi, or χ∗i by
choice of the alpha renaming S in Definition A.2.8. By applying appropriate alpha con-
versions to the bound constraint systems in C ′, we get

φ
~l′
α(C

′) = strip∗(α~l
′
(ν~l[C ′; ε′]))
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(Note that C ′ contains no nested ν constraints, by construction, and hence strip∗(C ′) =
C ′.) Thus we have

C∗∗ ∪ strip(α
~l′(ν~l[C ′; ε′])); Γi `cp e : τi;χ

∗
i ] φ

~l′
α(ε

′) (A.2)

Then putting (A.2) together with (A.1), the construction of ~l′, and the construction
of φ~l′α, we can apply [DOWN] from λcp

� to yield:

[DOWN]

C∗∗ ∪ strip(α
~l′(ν~l[C ′; ε′])); Γi `cp e : τi;χ

∗ ] φ~l′α(ε′)
φ
~l′
α(
~l) ∩ (fl(Γi) ∪ fl(τi)) = ∅

ε′ ⊆ ~l ~l′ ⊇ fl(C∗∗) ∪ χ∗i
C∗∗; Γi `cp e : τi;χ

∗
i

And nothing that C∗∗ includes Ci = ν~l[C ′; ε′], and hence has the right shape. Thus we
have shown the conclusion. 2
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Appendix B

Soundness proof for existential label
flow analysis

B.1 Soundness proof for λcp
∃

We prove soundness for λcp
∃ using a standard subject-reduction style approach. We

begin by proving a number of helpful lemmas. First, we need to show that it is sound in
several places to weaken a constraint system C to a constraint system C ′ where C ′ ` C.
Intuitively this holds because C ′ contains all the “flows” of C, hence all typing judgments
are preserved.

Lemma B.1.1 If C ′ ` C then C;D ` l ≤ l′ implies C ′;D ` l ≤ l′

Proof: By definition, C ′ ` C requires C ⊆ C ′. There are two possible ways we could
have shown C;D ` l ≤ l′:
Case [SUB-LABEL-1].

[SUB-LABEL-1]
D(l) = D(l′) = 0 C ` l ≤ l′

C;D ` l ≤ l′

then {l ≤ l′} ⊆ C ′, and we hence we can apply [SUB-LABEL-1] to show C ′;D ` l ≤ l′.

Case [SUB-LABEL-2].

[SUB-LABEL-2]
D(l) > 0

C;D ` l ≤ l

Obviously, [SUB-LABEL-2] can be applied for any C, so we also have C ′;D ` l ≤ l. 2

Lemma B.1.2 (Constraint weakening in subtyping) If C;D ` τ ≤ τ ′ then for any C ′

such that C ′ ` C it holds that C ′;D ` τ ≤ τ ′
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Proof: By induction on the proof derivation of C;D ` τ ≤ τ ′.
Case [SUB-INT]. By assumption, we have

[SUB-INT]
C;D ` l ≤ l′

C;D ` int l ≤ int l′

Then from Lemma B.1.1 we get C ′;D ` l ≤ l′ so applying [SUB-INT] again we have
C ′;D ` int l ≤ int l′.

Case [SUB-PAIR]. By assumption, we have

[SUB-PAIR]

C;D ` l ≤ l′

C;D ` τ1 ≤ τ ′1
C;D ` τ2 ≤ τ ′2

C;D ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

From Lemma B.1.1 we have C ′;D ` l ≤ l′ and by induction we have C ′;D ` τ1 ≤ τ ′1
and C ′;D ` τ2 ≤ τ ′2. Then applying [SUB-PAIR] again, we can show C ′;D ` τ1 ×l τ2 ≤
τ ′1 ×l′ τ ′2.

Case [SUB-FUN]. Similar to [SUB-PAIR].

Case [SUB-∃]. By assumption, we have

[SUB-∃]

C1 ` C2

D′ = D[l 7→ D(l) + 1,∀l ∈ ~α]
C;D′ ` τ1 ≤ τ2
C;D ` l1 ≤ l2

C;D ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2

From Lemma B.1.1 we have C ′;D ` l1 ≤ l2. By the induction hypothesis, we have
C ′;D ` τ1 ≤ φ(τ2) so we can apply [SUB-∃] to prove C ′;D ` ∃~α[C1].τ1 ≤ ∃~α[C2].τ2

2

Lemma B.1.3 (Constraint weakening in judgment) If C; Γ ` e : τ and C ′ ` C then
C ′; Γ ` e : τ

Proof: By induction on the derivation of C; Γ ` e : τ . First, observe that if C ` l ≤ l′,
then C ′ ` l ≤ l′, by definition of C ′ ` C.
Case [ID], [INT], [APP], [LAM], [PAIR], [PROJ], and [COND]. The first case is trivial.
For the others, apply induction and observe thatC ′ ` L ≤ l orC ′ ` l ≤ L, as appropriate.

Case [SUB]. We have

[SUB]
C; Γ `cp e : τ C; ∅ ` τ ≤ τ ′

C; Γ `cp e : τ ′
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Apply induction, and observe that by Lemma B.1.2, C ′; ∅ ` τ ≤ τ ′.

Case [LET]. We have

[LET]

C ′′; Γ `cp e1 : τ1 C; Γ, f : ∀~α[C ′′].τ1 `cp e2 : τ2
~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2

By induction,C ′; Γ, f : ∀~α[C ′′].τ1 `cp e2 : τ2. Thus we can apply [LET] to showC ′; Γ `cp
let f = e1 in e2 : τ2.

Case [FIX]. We have

[FIX]

C ′′; Γ, f : ∀~α[C ′′].τ1 `cp e : τ1 C ` C ′′[~α 7→ ~l]
~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

C; Γ `cp fix: f.eτ1[~α 7→ ~l]

Then since C ′ ` C and C ` C ′′[~α 7→ ~l], we have C ′ ` C ′′[~α 7→ ~l]. Thus we can apply
[FIX] to yield C ′; Γ `cp fix f.e : τ1[~α 7→ ~l].

Case [INST]. We have

[INST]
C ` C ′′[~α 7→ ~l]

C; Γ, f : ∀~α[C ′′].τ `cp f i : τ [~α 7→ ~l]

Then C ′ ` C ′′[~α 7→ ~l], and thus by [INST], C ′; Γ, f : ∀~α[C ′′].τ `cp f i : τ [~α 7→ ~l].

Case [PACK]. We have

[PACK]

C; Γ `cp e : τ [~α 7→ ~l]

C ` C ′′[~α 7→ ~l] C ` L ≤ l

C; Γ `cp packi e L : ∃~α[C ′′].τ ′

By induction, C ′; Γ `cp e : τ [~α 7→ ~l]. Then C ′ ` C ′′[~α 7→ ~l]. As before, we also have
C ′ ` L ≤ l. Thus by [PACK], C ′; Γ `cp packi e L : ∃~α[C ′′].τ ′.

Case [UNPACK]. We have

[UNPACK]

C; Γ `cp e1 : ∃~α[C ′′].τ1 C ` l ≤ L
C ∪ C ′′; Γ, x : τ1 `cp e2 : τ

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ) ∪ fl(C))

C; Γ `cp unpack x = e1 in e2L : τ

By induction, C ′; Γ `cp e1 : ∃~α[C ′′].τ1. Since C ′ ` C, we have C ′ ` l ≤ L and
C ′ ∪ C ′′ ` C ∪ C ′′. Thus also by induction, C ′ ∪ C ′′; Γ, x : τ1 `cp e2 : τ . We can
always apply alpha renaming to ~α in C ′′ and τ1 so that fl(C ′) ∩ ~α = ∅, and therefore we
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have ~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(C ′) ∪ fl(τ)). Thus we can apply [UNPACK]
to show C ′; Γ `cp unpack x = e1 in e2L : τ . 2

The following lemma is useful for proving soundness of unpack. Intuitively, we
will use this lemma to reason about subtyping step C;D ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2.
Specifically, it will allow us to derive C; ∅ ` ψ(τ1) ≤ ψ(τ2) for a substitution ψ() on ~α,
because [SUB-LABEL-2] requires that any labels in ~α have identical occurrences in τ1
and τ2,

Lemma B.1.4 Let D = D′ ◦ [l 7→ 1,∀l ∈ ~α]), where dom(D′) ∩ ~α = ∅. Then if
C;D ` τ1 ≤ τ2 and dom(ψ) = ~α, then C;D′ ` ψ(τ1) ≤ ψ(τ2)

Proof: Proof by induction on the derivation C;D ` τ1 ≤ τ2.
Case [SUB-LABEL-1]. We have

[SUB-LABEL-1]
D(l) = D(l′) = 0 C ` l ≤ l′

C;D ` l ≤ l′

But then l 6∈ dom(ψ) and l′ 6∈ dom(ψ), so ψ(l) = l and ψ(l′) = l′. But then since
C ` l ≤ l′, clearly C; ∅ ` ψ(l) ≤ ψ(l′).

Case [SUB-LABEL-2]. We have

[SUB-LABEL-2]
D(l) > 0

C;D ` l ≤ l

This case is trivial, since C; ∅ ` ψ(l) ≤ ψ(l).

Case [SUB-PAIR]. We have

[SUB-PAIR]

C;D ` l ≤ l′

C;D ` τ1 ≤ τ ′1
C;D ` τ2 ≤ τ ′2

C;D ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

By induction, C; ∅ ` ψ(l) ≤ ψ(l′). Also by induction, C; ∅ ` ψ(τi) ≤ ψ(τ ′i). Hence by
[SUB-PAIR], C; ∅ ` ψ(τ1 ×l τ2) ≤ ψ(τ ′1 ×l′ τ ′2).

Case [SUB-INT], [SUB-FUN]. Similar to [SUB-PAIR].

Case [SUB-∃]. We have

[SUB-∃]

C1 ` C2

D′′ = D[l 7→ D(l) + 1,∀l ∈ ~β]
C;D′′ ` τ1 ≤ τ2
C;D ` l1 ≤ l2

C;D ` ∃l1 ~β[C1].τ1 ≤ ∃l2 ~β[C2].τ2
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By alpha conversion, we can assume that ~β ∩ dom(ψ) = ∅, ~β ∩ fl(rng(ψ)) = ∅, and
~β ∩ dom(D′) = ∅. Notice that D′′ = (D′[l 7→ D(l) + 1,∀l ∈ ~β]) ◦ [l 7→ 1,∀l ∈ ~α]. (The
order doesn’t matter because the domains of the substitutions are all different.) Then by
induction, C;D′[l 7→ D(l) + 1,∀l ∈ ~β] ` ψ(τ1) ≤ ψ(τ2). Further, since C1 ` C2, we
have ψ(C1) ` ψ(C2). Then since we assumed ψ did not replace or capture any variables
in ~β, by [SUB-∃], we have C;D′ ` ψ(∃l1 ~β[C1].τ1) ≤ ψ(∃l2 ~β[C2].τ2). 2

The next lemmas show that in a polymorphically constrained type, we can safely
weaken the bound constraints C into C ′ where C ′ ` C. Because existential types are
first-class in our system, changing the bound constraints may also change types τ on the
right-hand side of a typing judgment.

Let χ range over quantifiers, either ∀ or ∃. We define polytypes(τ) to be the set
{χi ~αi[Ci].τi} of occurrences of quantified types in τ . As a shorthand, we write χi for the
ith element of this set, and we define χi〈C ′〉 = χi ~αi[C

′ ∪ Ci].(τi〈C ′〉), i.e., we union C ′

with any bound constraint systems. We implicitly alpha rename bound type variables as
necessary to avoid capturing variables in C ′, i.e., we assume ~αi ∩ C ′ = ∅. Here τ〈C〉 is
τ where each χi ∈ polytypes(τ) is replaced by χi〈C〉. We define polytypes(Γ) to be the
set of occurrences of quantified types in the range of Γ, and we define Γ〈C〉 to be Γ with
〈C〉 applied to the range of Γ.

Lemma B.1.5 If C;D ` τ ≤ τ ′, then C;D ` τ〈C ′〉 ≤ τ ′〈C ′〉.

Proof: By induction on the derivation of C ` τ ≤ τ ′. The [SUB-PAIR], [SUB-FUN],
and [SUB-INT] cases are straightforward.
Case [SUB-∃]. We have

[SUB-∃]

C1 ` C2

D′ = D[l 7→ D(l) + 1,∀l ∈ ~α1]
C;D′ ` τ1 ≤ τ2
C;D ` l1 ≤ l2

C;D1;D2 ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2

By induction, we have C;D′ ` τ1〈C ′〉 ≤ τ2〈C ′〉. Further, since C1 ` C2, we have
C1∪C ′ ` C2∪C ′. Putting these together and applying [SUB-∃] yields C;D ` ∃l1~α[C1∪
C ′].(τ1〈C ′〉) ≤ ∃l2~α[C2 ∪ C ′].(τ2〈C ′〉). 2

Lemma B.1.6 (Constraint weakening in polymorphic types) If C; Γ ` e : τ , then C ∪
C ′; Γ〈C ′〉 ` e : τ〈C ′〉.

Proof: First, observe that by Lemma B.1.3, we may assume C ∪ C ′; Γ ` e : τ . Then
the proof proceeds by induction on the derivation of C ∪ C ′; Γ ` e : τ .
Case [ID]. We have

[ID]
C ∪ C ′; Γ, x : τ `cp x : τ
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Then trivially we have

[ID]
C ∪ C ′; Γ〈C ′〉, x : τ〈C ′〉 `cp x : τ〈C ′〉

Case [INT]. Trivial.

Case [LAM]. We have

[LAM]
C ∪ C ′; Γ, x : τ1 `cp e : τ2 C ∪ C ′ ` L ≤ l

C ∪ C ′; Γ `cp λx.eL : τ1 →l τ2

By induction we have C ∪ C ′; Γ〈C ′〉, x : τ1〈C ′〉 `cp e : τ2〈C ′〉. Then by [LAM], we have
C ∪ C ′; Γ〈C ′〉 `cp λx.eL : (τ1 →l τ2)〈C ′〉.

Case [APP], [PAIR], [PROJ], and [COND]. Similar to [LAM].

Case [SUB]. We have

[SUB]

C ∪ C ′; Γ `cp e : τ1
C ∪ C ′; ∅ ` τ1 ≤ τ2
C ∪ C ′; Γ `cp e : τ2

By induction, C∪C ′; Γ〈C ′〉 `cp e : τ1〈C ′〉. Further, by Lemma B.1.5, we haveC∪C ′; ∅ `
τ1〈C ′〉 ≤ τ2〈C ′〉. Thus applying [SUB], we have C ∪ C ′; Γ `cp e : τ2〈C ′〉.

Case [LET]. We have

[LET]

Cf ; Γ `cp e1 : τ1 C ∪ C ′; Γ, f : ∀~α[Cf ].τ1 `cp e2 : τ2
~α ⊆ (fl(τ1) ∪ fl(Cf )) \ fl(Γ)

C ∪ C ′; Γ `cp let f = e1 in e2 : τ2

By induction, we have Cf ∪ C ′; Γ〈C ′〉 `cp e1 : τ1〈C ′〉. Also by induction, we have
C ∪ C ′; Γ〈C ′〉, f : (∀~α[Cf ].τ1)〈C ′〉 `cp e2 : τ2〈C ′〉 since C ∪ C ′ ∪ C ′ = C ∪ C ′.
Since fl(C ′) ∩ ~α = ∅, we have (∀~α[Cf ].τ1)〈C ′〉 = ∀~α[Cf ∪ C ′].(τ1〈C ′〉). Further,
fl(Γ〈C ′〉) = fl(Γ) ∪ fl(C ′) and fl(τ1〈C ′〉) = fl(τ1) ∪ fl(C ′), hence we have ~α ⊆
(fl(τ1〈C ′〉) ∪ fl(Cf ∪ C ′))\fl(Γ)〈C ′〉. Thus we can apply [LET] to yieldC∪C ′; Γ〈C ′〉 `cp
let f = e1 in e2 : τ2〈C ′〉.

Case [FIX]. Similar to [LET].

Case [INST]. We have

[INST]
C ∪ C ′ ` Cf [~α 7→ ~l]

C ∪ C ′; Γ, f : ∀~α[Cf ].τ `cp f i : τ [~α 7→ ~l]

By our alpha-renaming convention, fl(C ′) ∩ ~α = ∅. Then (Γ, f : ∀~α[Cf ].τ)〈C ′〉 =

Γ〈C ′〉, f : ∀~α[Cf ∪ C ′].(τ〈C ′〉). Clearly C ∪ C ′ ` Cf [~α 7→ ~l] ∪ C ′, and by our alpha-
renaming convention Cf [~α 7→ ~l] ∪ C ′ = (Cf ∪ C ′)[~α 7→ ~l]. Therefore applying [INST]
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yields C ∪ C ′; (Γ, f : ∀~α[Cf ].τ)〈C ′〉 `cp f i : (τ〈C ′〉)[~α 7→ ~l]. Then since by our alpha-
renaming convention (τ〈C ′〉)[~α 7→ ~l] = (τ [~α 7→ ~l])〈C ′〉, we have shown the conclusion.

Case [PACK]. We have

[PACK]
C ∪ C ′; Γ `cp e : τ [~α 7→ ~l] C ∪ C ′ ` C1[~α 7→ ~l] C ∪ C ′ ` L ≤ l

C ∪ C ′; Γ `cp packi e L : ∃l~α[C1].τ

By induction, C ∪ C ′; Γ〈C ′〉 `cp (τ [~α 7→ ~l])〈C ′〉 since C ∪ C ′ ∪ C ′ = C ∪ C ′. By
our alpha-renaming convention, fl(C ′) ∩ ~α = ∅, so (τ [~α 7→ ~l])〈C ′〉 = (τ〈C ′〉)[~α 7→ ~l].
Clearly C ∪ C ′ ` C1[~α 7→ ~l] ∪ C ′, and also by our alpha-renaming convention C1[~α 7→
~l] ∪C ′ = (C1 ∪C ′)[~α 7→ ~l]. Thus applying [PACK] we have C ∪C ′; Γ〈C ′〉 ` packi e L :
∃l~α[C1 ∪ C ′].(τ〈C ′〉). And by our alpha-renaming convention, ∃l~α[C1 ∪ C ′].(τ〈C ′〉) =
(∃l~α[C1].τ)〈C ′〉, so we have shown the conclusion.

Case [UNPACK]. We have

[UNPACK]

C ∪ C ′; Γ `cp e1 : ∃l~α[C1].τ1 C ∪ C ′ ` l ≤ L
C ∪ C ′ ∪ C1; Γ, x : τ1 `cp e2 : τ

~α ⊆ (fl(τ1) ∪ fl(C1)) \ (fl(Γ) ∪ fl(τ) ∪ fl(C) ∪ fl(C ′))

C ∪ C ′; Γ `cp unpack x = e1 in e2L : τ

By induction, C ∪ C ′; Γ〈C ′〉 `cp e1 : (∃l~α[C1].τ1)〈C ′〉. By our alpha-renaming conven-
tion, (∃l~α[C1].τ1)〈C ′〉 = ∃l~α[C1∪C ′].(τ1〈C ′〉). Also by induction, C∪C ′∪C1; Γ〈C ′〉, x :
τ1〈C ′〉 `cp e2 : τ〈C ′〉. Finally,

~α ⊆ (fl(τ1〈C ′〉) ∪ fl(C1 ∪ C ′)) \ (fl(Γ〈C ′〉) ∪ fl(τ〈C ′〉) ∪ fl(C) ∪ fl(C ′))

since fl(Γ〈C ′〉) = fl(Γ) ∪ fl(C ′), fl(τ1〈C ′〉) = fl(τ1) ∪ fl(C ′), fl(τ〈C ′〉) = fl(τ) ∪
fl(C ′), and we assume by alpha-renaming that fl(C ′)∩~α = ∅. Thus applying [UNPACK]
yields C ∪ C ′; Γ `cp unpack x = e1 in e2L : τ〈C ′〉. 2

Next we prove the substitution lemma for monomorphic types. Because in rule
[LET], we fixed the set of constraints in the quantified type to be exactly the constraints
for e1 and e2, respectively, we need a slightly nonstandard lemma: When we replace a
variable with an expression, we might need to add the constraints for that expression to
quantified types in the environment and in the result type. Hence the definition of 〈C ′〉
above. While we could have used a [LET] rule that is simpler to reason about for sound-
ness, or changed the [UNPACK] rule to match [LET], this particular formulation turns out
to be very helpful in proving correspondence between the λcfl

∃ and λcp
∃ in Appendix B.2.

Lemma B.1.7 (Substitution lemma) If C; Γ, x : τ ′ `cp e : τ , C ` C ′, and C ′; Γ `cp e′ :
τ ′, then C; Γ〈C ′〉 `cp e[x 7→ e′] : τ〈C ′〉.
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Proof: The proof proceeds by induction on the derivation of C; Γ, x : τ ′ `cp e : τ .
Case [ID]. There are two cases. First, if e = x, we have

C; Γ, x : τ ′ `cp x : τ ′

Then τ = τ ′, and since x[x 7→ e′] = e′, by our assumption C ′; Γ `cp e′ : τ ′ we have
C; Γ〈C ′〉 `cp e′ : τ ′〈C ′〉 by Lemmas B.1.3 and B.1.6.

Otherwise, we have

C; Γ, x : τ `cp y : τ

where y 6= x. Hence y ∈ dom(Γ), and since y[x 7→ e′] = y, by Lemma B.1.6 we have
C; Γ〈C ′〉, x : τ〈C ′〉 `cp y : τ〈C ′〉.

Case [INT]. Trivial.

Case [LAM]. We have

[LAM]
C; Γ, x : τ ′, y : τ1 `cp e2 : τ2 C ` L ≤ l

C; Γ, x : τ ′ `cp λy.e2L : τ1 →l τ2

Using alpha renaming we can assume y 6= x, and hence C; Γ, y : τ1, x : τ ′ `cp e2 : τ2.
Then by induction we have C; Γ〈C ′〉, y : τ1〈C ′〉 `cp e2[x 7→ e′] : τ2〈C ′〉. Thus we can
apply [LAM] to yield C; Γ〈C ′〉 `cp (λy.e2L)[x 7→ e′] : (τ1 →l τ2)〈C ′〉.

Case [APP]. We have

[APP]

C; Γ, x : τ ′ `cp e1 : τ2 →l τ
C; Γ, x : τ ′ `cp e2 : τ2 C ` l ≤ L

C; Γ, x : τ ′ `cp e1 e2L : τ

Then by induction, we have C; Γ〈C ′〉 `cp e1[x 7→ e′] : (τ2 →l τ)〈C ′〉 and C; Γ〈C ′〉 `cp
e2[x 7→ e′] : τ2〈C ′〉. Therefore we can apply [APP] to yield C; Γ〈C ′〉 `cp (e1 e2L)[x 7→
e′] : τ〈C ′〉.

Case [PAIR], [PROJ], [COND]. Similar to [APP].

Case [SUB]. We have

[SUB]

C; Γ, x : τ ′ `cp e : τ1
C; ∅ ` τ1 ≤ τ2

C; Γ, x : τ ′ `cp e : τ2

By induction, we have C; Γ〈C ′〉 `cp e[x 7→ e′] : τ1〈C ′〉. By Lemma B.1.2, we have
C; ∅ ` τ1〈C ′〉 ≤ τ2〈C ′〉. Thus we can apply [SUB] to yield C; Γ〈C ′〉 `cp e[x 7→ e′] :
τ2〈C ′〉.

Case [LET]. We have

[LET]

C ′′; Γ, x : τ ′ `cp e1 : τ1
C; Γ, x : τ ′, f : ∀~α[C ′′].τ1 `cp e2 : τ2

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′))
C; Γ, x : τ ′ `cp let f = e1 in e2 : τ2
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By Lemma B.1.3 and induction, we have C ′ ∪ C ′′; Γ〈C ′〉 `cp e1[x 7→ e′] : τ1〈C ′〉.
Then since x 6= f (they are in different syntactic categories), by induction we also have
C; Γ〈C ′〉, f : (∀~α[C ′′].τ1)〈C ′〉 ` e2[x 7→ e′] : τ2〈C ′〉. By our alpha-renaming convention,
fl(C ′) ∩ ~α = ∅, so (∀~α[C ′′].τ1)〈C ′〉 = ∀~α[C ′ ∪ C ′′].τ1〈C ′〉. Finally,

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′))
⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
⊆ (fl(τ1〈C ′〉) ∪ fl(C ′′) ∪ fl(C ′)) \ fl(Γ〈C ′〉)

where the last step holds since we assume fl(C ′) ∩ ~α = ∅. Hence we can apply [LET] to
yield C; Γ〈C ′〉 `cp (let f = e1 in e2)[x 7→ e′] : τ2〈C ′〉.

Case [FIX]. Similar to [LET] and [INST].

Case [INST]. By Lemma B.1.6 we haveC; Γ〈C ′〉, x : τ ′〈C ′〉, f : (∀~α[C ′′∪C ′].(τ))〈C ′〉 `cp
f i : τ〈C ′〉. Then since fi[x 7→ e′] = fi (note we assume different syntactic forms for
functions and local variables), we trivially have C; Γ〈C ′〉, f : (∀~α[C ′′ ∪ C ′].(τ))〈C ′〉 `cp
f i[x 7→ e′] : τ〈C ′〉

Case [PACK]. We have

[PACK]
C; Γ, x : τ ′ `cp e : τ [~α 7→ ~l] C ` C ′′[~α 7→ ~l] C ` L ≤ l

C; Γ, x : τ ′ `cp packi e L : ∃l~α[C ′′].τ

By induction, C; Γ〈C ′〉 `cp e[x 7→ e′] : (τ [~α 7→ ~l])〈C ′〉. Since we assume by alpha
renaming that fl(C ′) ∩ ~α = ∅, we have (τ [~α 7→ ~l])〈C ′〉 = (τ〈C ′〉)[~α 7→ ~l]. Further,
since C ` C ′, we have C ` C ′ ∪ C ′′[~α 7→ ~l], and again since fl(C ′) ∩ ~α = ∅ we have
C ` (C ′ ∪ C ′′)[~α 7→ ~l]. Then applying [PACK] yields C; Γ〈C ′〉 `cp (packi e L)[x 7→ e′] :
(∃l~α[C ′′].τ)〈C ′〉.

Case [UNPACK]. We have

[UNPACK]

C; Γ, x : τ ′ `cp e1 : ∃l~α[C ′′].τ1 C ` l ≤ L
C ∪ C ′′; Γ, x : τ ′, y : τ1 `cp e2 : τ

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′) ∪ fl(τ) ∪ fl(C))

C; Γ, x : τ ′ `cp unpack y = e1 in e2L : τ

Assume by alpha renaming that x 6= y. Then by induction, C; Γ〈C ′〉 `cp e1[x 7→ e′] :
(∃l~α[C ′′].τ1)〈C ′〉. By our alpha renaming convention, we assume fl(C ′) ∩ ~α = ∅, hence
(∃l~α[C ′′].τ1)〈C ′〉 = ∃l~α[C ′∪C ′′].(τ1〈C ′〉). SinceC ` C ′, we haveC∪C ′∪C ′′ = C∪C ′′.
Thus by Lemma B.1.3 and induction we have C ∪C ′ ∪C ′′; Γ〈C ′〉, y : τ1〈C ′〉 `cp e2[x 7→
e′] : τ〈C ′〉. Finally,

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′) ∪ fl(τ) ∪ fl(C))
⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ) ∪ fl(C))
⊆ (fl(τ1〈C ′〉) ∪ fl(C ′′) ∪ fl(C ′)) \ (fl(Γ〈C ′〉) ∪ fl(τ〈C ′〉) ∪ fl(C))
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again because we assume fl(C ′) ∩ ~α = ∅. Hence we can apply [UNPACK] to yield
C; Γ〈C ′〉 `cp (unpack y = e1 in e2L)[x 7→ e′] : τ〈C ′〉.

2

Lemma B.1.8 (Polymorphic substitution lemma) If C; Γ, f : ∀~α[C ′].τ ′ `cp e : τ and
C ′; Γ `cp e′ : τ ′ where ~α ∩ fl(Γ) = ∅, then C; Γ `cp e[f 7→ e′] : τ .

Proof: By induction on the derivation of C; Γ, f : ∀~α[C ′].τ ′ `cp e : τ .
Case [ID]. Trivial, since x[f 7→ e′] = x (note we assume different syntactic forms for
functions and local variables).

Case [INT]. Trivial.

Case [LAM]. We have

[LAM]
C; Γ, f : ∀~α[C ′].τ ′, x : τ1 `cp e : τ2 C ` L ≤ l

C; Γ, f : ∀~α[C ′].τ ′ `cp λx.eL : τ1 →l τ2

By alpha conversion, we can assume ~α ∩ fl(τ1) = ∅ and C ′; Γ, x : τ1 `cp e′ : τ ′. Then
since x 6= f , by induction we have C; Γ, x : τ1 `cp e[f 7→ e′] : τ2. But then applying
[LAM] we have C; Γ `cp (λx.eL)[f 7→ e′] : τ1 →l τ2.

Case [APP]. We have

[APP]

C; Γ, f : ∀~α[C ′].τ ′ `cp e1 : τ2 →l τ1
C; Γ, f : ∀~α[C ′].τ ′ `cp e2 : τ2 C ` l ≤ L

C; Γ, f : ∀~α[C ′].τ ′ `cp e1 e2L : τ1

By induction, we have C; Γ `cp e1[f 7→ e′] : τ2 →l τ1 and C; Γ `cp e2[f 7→ e′] : τ2. Then
applying [APP] yields C; Γ `cp (e1 e2L)[f 7→ e′] : τ1.

Case [PAIR], [PROJ], [COND], [SUB]. Analogous to [APP].

Case [LET]. We have

[LET]

C ′′; Γ, f : ∀~α[C ′].τ ′ `cp e1 : τ1
C; Γ, f : ∀~α[C ′].τ ′, g : ∀~β[C ′′].τ1 `cp e2 : τ2

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′))

C; Γ, f : ∀~α[C ′].τ ′ `cp let g = e1 in e2 : τ2

By induction, C ′′; Γ `cp e1[f 7→ e′] : τ1. Assuming by alpha renaming that f 6= g, by
induction we also have

C; Γ, g : ∀~β[C ′′].τ1 `cp e2[f 7→ e′] : τ2

Finally,
~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′))

⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
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so we can apply [LET] to show C; Γ `cp (let g = e1 in e2)[f 7→ e′] : τ2.

Case [FIX]. Similar to [LET] and [INST].

Case [INST]. There are two cases. If e 6= f , then the conclusion holds trivially, since
e[f 7→ e′] = e. Otherwise, we have

[INST]
C ` C ′[~α 7→ ~l]

C; Γ, f : ∀~α[C ′].τ `cp f i : τ [~α 7→ ~l]

By assumption, C ′; Γ `cp e′ : τ ′. Then C ′[~α 7→ ~l]; Γ[~α 7→ ~l] `cp e′ : τ [~α 7→ ~l]. But
since by assumption ~α ∩ fl(Γ) = ∅, we then have C ′[~α 7→ ~l]; Γ `cp e′ : τ [~α 7→ ~l]. But
C ` C ′[~α 7→ ~l], and so by Lemma B.1.3, C; Γ `cp e′ : τ [~α 7→ ~l], and so we have shown
the conclusion, since f i[f 7→ e′] = e′.

Case [PACK]. We have

[PACK]
C; Γ, f : ∀~α[C ′].τ ′ `cp e : τ [~β 7→ ~l] C ` C ′′[~β 7→ ~l] C ` L ≤ l

C; Γ, f : ∀~α[C ′].τ ′ `cp packi e L : ∃l~β[C ′′].τ

By induction, we have C; Γ `cp e[f 7→ e′] : τ [~β 7→ ~l]. But then we can apply [PACK] to
show C; Γ `cp (packi e L)[f 7→ e′] : ∃l~β[C ′′].τ .

Case [UNPACK]. We have

[UNPACK]

C; Γ, f : ∀~α[C ′].τ ′ `cp e1 : ∃l~β[C ′′].τ1 C ` l ≤ L
C ∪ C ′′; Γ, f : ∀~α[C ′].τ ′, x : τ1 `cp e2 : τ

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′) ∪ fl(τ) ∪ fl(C))

C; Γ, f : ∀~α[C ′].τ ′ `cp unpack x = e1 in e2L : τ

By induction, we have C; Γ `cp e1[f 7→ e′] : ∃l~β[C ′′].τ1. Also by induction, assuming
that f 6= x (since functions are in a different syntactic category), we have C ∪ C ′′; Γ, x :
τ1 `cp e2[f 7→ e′] : τ . Finally,

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′) ∪ fl(τ) ∪ fl(C))
⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ) ∪ fl(C))

Thus we can apply [UNPACK] to show C; Γ ` (unpack x = e1 in e2L)[f 7→ e′] : τ . 2

Finally, we can state and prove our soundness theorem. We assume that the program
is well-typed with respect to the standard types. Hence, every program is either in normal
form or can take a step. We wish to prove that, for any destructor that consumes a value,
the actual constructor label that is consumed appears in the set of labels computed by
the analysis. If the program is in normal form this is trivial, because there are no more
evaluation steps. Hence we prove this statement below for the case when the program
takes a single step.
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Definition B.1.9 Suppose e −→ e′ and in the (single step) reduction, the destructor (if0,
@, .j, unpack) labeled L′ consumes the constructor (n, λ, (·, ·), pack) labeled L. Then
we write C ` e −→ e′ if C ` L ≤ L′. We also write C ` e −→ e′ if no value is consumed
during reduction (e.g., for let or fix).

Notice that if C ` e −→ e′ and E[e] −→ E[e′], then C ` E[e] −→ E[e′], since re-
ducing inside of a context does not change which destructor consumed which constructor.
We will use this fact implicitly in the proof below.

Lemma B.1.10 (Preservation) If C; Γ `cp e : τ and e −→ e′, then C; Γ〈C〉 `cp e′ :
τ〈C〉 and C ` e −→ e′.

Proof: The proof is by induction on the derivation of C; Γ `cp e : τ .
Case [ID], [INT]. These cases cannot happen, because we assume e −→ e′.

Case [LAM]. In this case, the tern is λx.eL, and the only possible reduction is λx.eL −→
λx.e′L. By assumption, we have

[LAM]
C; Γ, x : τ `cp e : τ ′ C ` L ≤ l

C; Γ `cp λx.eL : τ →l τ ′

By induction, C; Γ〈C〉, x : τ〈C〉 `cp e′ : τ ′〈C〉 and C ` e −→ e′. Then applying [LAM]
yields C; Γ〈C〉 `cp λx.e′L : (τ →l τ ′)〈C〉, and we also have C ` λx.eL −→ λx.e′L.

Case [APP]. In this case, the term is e1 e2L, and there are three possible reductions. In
the first case, when e1 e2L −→ e′1 e2L, we have

[APP]

C; Γ `cp e1 : τ2 →l τ1
C; Γ `cp e2 : τ2 C ` l ≤ L

C; Γ `cp e1 e2L : τ1

Then by induction, C; Γ〈C〉 `cp e′1 : (τ2 →l τ1)〈C〉. By Lemma B.1.6, C; Γ〈C〉 `cp e2 :
τ2〈C〉. Thus we can apply [APP] to yield C; Γ〈C〉 `cp e′1 e2L : τ1〈C〉. Also by induction,
C ` e1 −→ e′1, so C ` e1 e2L −→ e′1 e2L. The second case, when e1 e2L −→ e1 e

′
2L, is

similar.
In the last case, we have (λx.e1L) e2L

′ −→ e1[x 7→ e2]. In this case, we have

[LAM]
C; Γ, x : τ1 ` e1 : τ2 C ` L ≤ l′

C; Γ `cp λx.e1L : τ1 →l′ τ2 C; ∅ ` (τ1 →l′ τ2) ≤ (τ ′ →l τ)

C; Γ `cp λx.e1L : τ ′ →l τ
C; Γ `cp e2 : τ ′ C ` l ≤ L′

C; Γ ` (λx.e1L) e2L
′ : τ

Then C; ∅ ` τ ′ ≤ τ1, hence C; Γ `cp e2 : τ1. Then by Lemma B.1.7, C; Γ〈C〉 `cp
e1[x 7→ e2] : τ2〈C〉. By Lemma B.1.5, C; ∅ ` τ2〈C〉 ≤ τ〈C〉. Thus by [SUB] we have
C; Γ〈C〉 `cp e1[x 7→ e2] : τ〈C〉.
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Finally, in this reduction step L′ consumes L. But C ` L ≤ l′, C ` l′ ≤ l, and
C ` l ≤ L′, hence C ` L ≤ L′. Hence we have shown the conclusion.

Case [PAIR]. In this case, we have either (e1, e2)L −→ (e′1, e2)L or (e1, e2)L −→
(e1, e

′
2)L. In either case the proof proceeds by induction, similar to the first case of

[APP].

Case [PROJ]. In this case, the term is e.jL. There are two possible reductions. If
the reduction is e.jL −→ e′.jL, then we apply induction as in the first case of [APP].
Otherwise, the reduction is (e1, e2)L

′.jL −→ ej . In this case, our typing proof is of the
form

[PROJ]

[SUB]

[PAIR]
C; Γ ` e1 : τ ′1 C; Γ ` e2 : τ ′2 C ` L′ ≤ l′

C; Γ `cp (e1, e2)L
′ : τ ′1 ×l′ τ ′2

C; ∅ ` τ ′1 ×l′ τ ′2 ≤ τ1 ×l τ2

C; Γ `cp (e1, e2)L
′ : τ1 ×l τ2

C ` l ≤ L j = 1, 2

C; Γ `cp (e1, e2)L
′.jL : τj

Then C; Γ ` ej : τ ′j , and since C; ∅ ` τ ′j ≤ τj , we have C; Γ ` ej : τj . Then by
Lemma B.1.6, we have C; Γ〈C〉 ` ej : τj〈C〉. Also, C ` L′ ≤ l′, C ` l′ ≤ l, and
C ` l ≤ L, hence C ` L′ ≤ L, and we have shown the conclusion.

Case [COND]. In this case, the term is if0 e0 then e1 else e2L, and there are four
possible reductions. If the reduction occurs inside of e0, e1, or e2, then we proceed by
induction as usual. Otherwise, the reduction is either if0 nL

′
then e1 else e2L −→ e1 or

if0 nL
′
then e1 else e2L −→ e2, depending on whether n is 0. In either case, our typing

judgment looks like

[COND]

[SUB]

[INT]
C ` L′ ≤ l′

C; Γ `cp nL
′
: int l′

C; ∅ ` int l′ ≤ int l

C; Γ `cp nL
′
: int l

C ` l ≤ L C; Γ `cp e1 : τ C; Γ `cp e2 : τ

C; Γ `cp if0 nL
′
then e1 else e2L : τ

Then clearly C; Γ `cp ei : τ , and by Lemma B.1.6 we have C; Γ〈C〉 `cp ei : τ〈C〉. And
since C ` L′ ≤ l′, C ` l′ ≤ l, and C ` l ≤ L, we have C ` L′ ≤ L.

Case [SUB]. In this case, the reduction is e −→ e′, and we have

[SUB]
C; Γ `cp e : τ1 C; ∅ ` τ1 ≤ τ2

C; Γ `cp e : τ2

But by induction, C; Γ〈C〉 `cp e′ : τ1〈C〉. By Lemma B.1.5, C; ∅ ` τ1〈C〉 ≤ τ2〈C〉.
Hence we can apply [SUB] to show C; Γ〈C〉 `cp e′ : τ2〈C〉.

Case [LET]. In this case, the term is let f = e1 in e2. If the reduction occurs inside of

161



e1 or e2, then we proceed by induction as usual. Otherwise, the typing judgment is of the
form

[LET]

C ′; Γ `cp e1 : τ1 C; Γ, f : ∀~α[C ′].τ1 `cp e2 : τ2
~α ⊆ (fl(τ1) ∪ fl(C ′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2

and the reduction is let f = e1 in e2 −→ e2[f 7→ e1]. But then by Lemma B.1.8,
C; Γ ` e2[f 7→ e1] : τ2. Then by Lemma B.1.6, C; Γ〈C〉 ` e2[f 7→ e1] : τ2〈C〉. Since
no labeled values are consumed by this reduction, C ` let f = e1 in e2 −→ e2[f 7→ e1]
trivially, and we are done.

Case [FIX]. Analogous to [LET].

Case [INST]. This case cannot happen, because we assume e −→ e′.

Case [PACK]. This case proceeds by induction as usual. In this case the reduction must
be packi e L −→ packi e′ L, and so we proceed by the usual induction. The typing proof
is

[PACK]
C; Γ `cp e : τ [~α 7→ ~l] C ` C ′[~α 7→ ~l] C ` L ≤ l

C; Γ `cp packi e L : ∃l~α[C ′].τ

Then by induction, C; Γ〈C〉 `cp e′ : (τ [~α 7→ ~l])〈C〉 and C ` e −→ e′. By our alpha
renaming convention, (τ [~α 7→ ~l])〈C〉 = (τ〈C〉)[~α 7→ ~l]. Further, C ` C ∪C ′[~α 7→ ~l], and
again by our alpha renaming convention C ` (C∪C ′)[~α 7→ ~l]. Hence by [PACK] we have
C; Γ〈C〉 `cp packi e L : (∃l~α[C ′].τ)〈C〉, and we also haveC ` packi e L −→ packi e′ L.

Case [UNPACK]. In this case the term is unpack x = e1 in e2L, and there are three
possible reductions. If the reduction occurs inside e1 or e2 then apply induction as usual.
Otherwise, the reduction is unpack x = (packi e L′) in e2L −→ e2[x 7→ e], and the
typing proof is

[UNPACK]

[SUB]

[PACK]

C; Γ `cp e : τ1[~α 7→ ~l]

C ` C1[~α 7→ ~l] C ` L′ ≤ l1

C; Γ `cp packi e L′ : ∃l1~α[C1].τ1
C; ∅ `cp ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2

C; Γ `cp packi e L′ : ∃l2~α[C2].τ2
C ` l2 ≤ L C ∪ C2; Γ, x : τ2 `cp e2 : τ
~α ⊆ (fl(τ2) ∪ fl(C2)) \ (fl(Γ) ∪ fl(τ) ∪ fl(C))

C; Γ `cp unpack x = (packi e L′) in e2L : τ

Further, the subtyping derivation is

[SUB-∃]

C1 ` C2

D′ = [l 7→ 1,∀l ∈ ~α] C;D′ ` τ1 ≤ τ2 C;D ` l1 ≤ l2

C; ∅ ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2
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We show soundness by applying the Substitution Lemma. First, we have C ∪
C2; Γ, x : τ2 `cp e2 : τ . Let ψ be the substitution [~α 7→ ~l]. Applying this to our judgment
yields ψ(C) ∪ ψ(C2);ψ(Γ), x : ψ(τ2) `cp e2 : ψ(τ). But since ~α ∩ (fl(Γ) ∪ fl(τ) ∪
fl(C)) = ∅, we have C ∪ ψ(C2); Γ, x : ψ(τ2) `cp e2 : τ .

Further, since C1 ` C2, we have ψ(C1) ` ψ(C2). Then since C ` ψ(C1), we have
C ` ψ(C2). Then by Lemma B.1.3, we have the following conclusion:

C; Γ, x : ψ(τ2) `cp e2 : τ

By assumption, we have C; Γ `cp e : ψ(τ1). Also by assumption, we have C;D′ `
τ1 ≤ τ2. Then by Lemma B.1.4, we have C; ∅ ` ψ(τ1) ≤ ψ(τ2). Therefore by [SUB], we
have the following conclusion:

C; Γ `cp e : ψ(τ2)

Now we can apply Lemma B.1.7 to yield C; Γ〈C〉 `cp e2[x 7→ e] : τ〈C〉.
Finally, observe C ` L′ ≤ l1, C ` l1 ≤ l2, and C ` l2 ≤ L. Hence C ` L′ ≤ L,

and therefore C ` unpack x = (packi e L′) in e2L −→ e2[x 7→ e], so we are done. 2

Theorem B.1.11 (Soundness) If C; Γ `cp e : τ and e −→∗ e′, then C ` e −→∗ e′.

Proof: By induction on the length of the reduction e −→∗ e′, using Lemma B.1.10. 2

B.2 Reduction from λcfl
∃ to λcp

∃

In this section, we prove that typing proofs in λcfl
∃ reduce to equivalent proofs in

λcp
∃ . As mentioned earlier, λcfl

∃ is actually more restrictive than λcp
∃ in the programs it is

able to check.
We proceed following the basic proof technique in [38], but due to higher-order

polymorphic types, our proof is somewhat more complicated.

Definition B.2.1 (Polarity of label in type) Let τ be a λcfl
∃ type. We say that some label

l ∈ fl(τ) has positive polarity (+) in τ if one of the following holds:

1. τ = int l

2. τ = τ1 →l′ τ2 and l = l′ or l has + polarity in τ2 or l has − polarity in τ1.

3. τ = τ1 ×l′ τ2 and l = l′ or l has + polarity in τ1 or in τ2.

4. τ = ∃l′~α.τ ′ and either l = l′, or l /∈ ~α and l has + polarity in τ ′

Similarly, we say that some label l ∈ fl(τ) has negative polarity − in τ if one of the
following holds:

1. τ = τ1 →l′ τ2 and l has − polarity in τ2 or l has + polarity in τ1.

163



2. τ = τ1 ×l′ τ2 and l has − polarity in τ1 or in τ2.

3. τ = τ = ∃l′~α.τ ′ and l /∈ ~α and l has − polarity in τ ′.

Definition B.2.2 (Polarized constraint sets) Let C be a set of flow constraints, let τ be a
λcfl
∃ type and let F ⊆ fl(τ). We say that C is p-polarized with respect to τ and F , written
C �

p
F τ , if-f the following conditions hold for all l ∈ F :

1. whenever C ` l ≤ l′ with l 6= l′, then l has polarity p̄ in τ .

2. whenever C ` l′ ≤ l with l 6= l′, then l has polarity p in τ .

Lemma B.2.3 If l has polarity p in τ , I;D ` τ �i
p′ τ ′ : φ, and l 6∈ D, then I ` l �i

p·p′

φ(l), where p · p = + and p · p̄ = −.

Proof: Induction over the instantiation I;D ` τ �i
p′ τ ′ : φ:

Case [INST-INT]. We have

[INST-INT]
I;D ` l �i

p′ l′ : φ

I;D ` int l �i
p′ int l′ : φ

Since l 6∈ D, we conclude that I;D ` l �i
p l

′ : φ can only have been proved by [INST-
INDEX-1]. Thus

[INDEX-INDEX-1]
I ` l �i

p′ l′ {(l, l′)} ∈ φ
I; ∅; ∅ ` l �i

p′ l′ : φ

From this we get l′ = φ(l) and I ` l �i
p′ φ(l). But l has + polarity in int l. , and by

definition, p′ ·+ = p′, and thus we have I ` l �i
p′·+ φ(l).

Case [INST-PAIR]. We have

[INST-PAIR]

I;D ` l1 �i
p′ l2 : φ

I;D ` τ1 �i
p′ τ ′1 : φ I;D ` τ2 �i

p′ τ ′2 : φ

I;D ` τ1 ×l1 τ2 �i
p′ τ ′1 ×l2 τ ′2 : φ

There are two cases:

• l = l1. Then as in the previous case, since l 6∈ D we get l2 = φ(l1) and I `
l �i

p′ φ(l) from [INST-INDEX-1]. Then, since l has polarity + in τ1 ×l τ2, we have
I ` l �i

p′·+ φ(l).

• l ∈ fl(τi) (i = 1, 2). Then by Definition B.2.1, l has polarity p in τi. Then by
induction we have I ` l �i

p·p′ φ(l)
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Case [INST-FUN]. We have

[INST-FUN]

I;D ` l1 �i
p′ l2 : φ

I;D ` τ1 �i
p̄′ τ

′
1 : φ I;D ` τ2 �i

p′ τ ′2 : φ

I;D ` τ1 →l1 τ2 �i
p′ τ ′1 →l2 τ ′2 : φ

There are three cases:

• l = l1. Then since l 6∈ D, as before by [INST-INDEX-1] we have l2 = φ(l1) and
I ` l �i

p′ φ(l). Since l has polarity + in τ1 →l τ2, we then have I ` l �i
p′·+ φ(l).

• l ∈ fl(τ1). By Definition B.2.1, l has polarity p̄ in τ1. Then by induction we have
I ` l �i

p̄·p̄′ φ(l) But since p̄ · p̄′ = p · p′, this is equivalent to I ` l �i
p·p′ φ(l).

• l ∈ fl(τ2). By Definition B.2.1, l has polarity p in τ2. As before, by induction we
then have I ` l �i

p·p′ φ(l).

Case [INST-∃]. We have

[INST-∃]

D′ = D ⊕ ~α I;D′ ` τ1 �i
p′ τ2 : φ

I;D ` l1 �i
p′ l2 : φ

I;D ` ∃l1~α.τ1 �i
p′ ∃l2~α.τ2 : φ

There are two cases:

• Case l = l1. Then since l 6∈ D, by [INST-INDEX-1] we have l2 = φ(l1) and
I ` l �i

p′ φ(l). Since l has polarity + in ∃l1~α.τ1, we then have I ` l �i
p′·+ φ(l).

• Case l ∈ fl(τ1). We may assume l /∈ ~α, since otherwise l 6∈ fl(∃l1~α.τ1). Therefore
l 6∈ D′. Further, by Definition B.2.1 the polarity of l in τ1 is p. Then by induction
we have I ` l �i

p·p′ φ(l).

2

Definition B.2.4 (Instantiation context) Every application of an [INST]

[INST]

I; ∅ ` τ �i
+ τ ′ : φ

dom(φ) = ~α I ` ~l �i
+
~l I ` ~l �i

−
~l

I;C; Γ, f : (∀~α.τ,~l) `CFL f i : τ ′

defines a positive instantiation context 〈C, I, ~α,~l, τ, φ,+, i〉.
Every application of [PACK]

[PACK]

I;C; Γ `CFL e : τ ′ I; ∅ ` τ �i
− τ

′ : φ
dom(φ) = ~α C ` L ≤ l

I;C; Γ `CFL packi e L : ∃l~α.τ
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[LUBL]
C ` l1 ≤ l · · · C ` ln ≤ l

C ` (
⊔n
i=1 li) ≤ l

[LUBR]
j ∈ {1, . . . , n}

C ` lj ≤ (
⊔n
i=1 li)

Figure B.1: Extended Subtype Relation

defines a negative instantiation context 〈C, I, ~α, τ, φ,−, i〉
Since there is a unique i for every [INST] or [PACK] rule, we define InstCtx(i,D)

to be the instantiation context defined at the rule identified by i in the CFL derivation D.

Definition B.2.5 (Closure) Let C and I be CFL constraints. The we define the closure
of the constraints as C∗ under the rewriting rules in Figures 2.6 and 2.10.

Definition B.2.6 A set of instantiation constraints I is normal if whenever I ` l1 �i
p l2

and I ` l3 �j
p′ l4 with l1 6= l2 and l3 6= l4, then l2 6= l3.

Definition B.2.7 A positive instantiation context 〈C, I, ~α,~l, τ, φ,+, i〉 is normal if

1. I; ∅ ` τ �i
p τ

′ : φ

2. ~α ∩~l = ∅

3. C �+
~α τ

4. I ` ~l �i
+
~l and

5. I is normal

Notice that by definition of C �
p
~α τ we also have ~α ⊆ fl(τ). We will define normal

negative instantiation contexts after proving some important lemmas.
In order to show how derivations in λcfl

∃ relate to derivations in λcp
∃ , we will need

to relate types (∀~α.τ,~l) with types ∀~α[C].τ , and similarly for existential types. However,
notice that these types may be quantified over different variables—in the λcp

∃ type, we may
quantify over variables appearing in τ and C, whereas in the λcfl

∃ type we only explicitly
quantify over variables appearing in τ . To make these match, we need to observe that if a
variable appears in C and not in τ or ~l, then it is an intermediate variable—the only thing
that we really need to capture is how it induces constraints among variables that appear in
τ . Hence we add to our system formal joins (

⊔n
i=1 li) of label variables. In the course of

the proof, we will replace all intermediate variables in with joins among the variables in τ ,
the variables in ~l, and constants. Figure B.1 gives additional rules we use when checking
C ` l1 ≤ l2 in addition to containment {l1 ≤ l2} ∈ C. For the remainder of this section,
we write C ` C ′ if for all {l1 ≤ l2} ∈ C ′ we have C ` l1 ≤ l2.
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Formally, we define ΦS(l) = {l′ ∈ S ∪ L | C∗ ` l′ ≤ l}. For a set of labels S, we
then define a substitution

ψS(l) =

{
l l ∈ S ∪ L⊔

ΦS(l) otherwise

Finally, for a set of labels S, we define C∗
S = ψS(C∗), i.e., we replace labels in C∗ that

are not in S by the least-upper bound of labels in S that flow to it.

Lemma B.2.8 If S ⊆ S ′, then C∗
S′ ` C∗S .

Proof: Pick some l ∈ S. Then in C∗
S , there are two cases. Either l is mapped to itself,

if l ∈ S, or l is mapped to
⊔

ΦS(l). Now suppose C∗ ` l1 ≤ l2. If l1 ∈ S and l2 ∈ S
then C∗

S ` l1 ≤ l2 and C∗S′ ` l1 ≤ l2 by the above reasoning. If l1 /∈ S and l2 6∈ S,
then we have C∗

S `
⊔

ΦS(l1) ≤
⊔

ΦS(l2). Then by [LUBL] and [LUBR], there exists
an l′2 ∈ ΦS(l2) such that for all l′1 ∈ ΦS(l1), we have C∗

S ` l′1 ≤ l′2, and notice that
l′1, l

′
2 ∈ S ⊆ S ′. Thus we have C∗

S′ ` l′1 ≤ l′2. But since this holds for all l′1 and some
l′2, by [LUBL] and [LUBR] we have C∗

S′ `
⊔

ΦS(l1) ≤
⊔

ΦS(l2). The reasoning for the
other possibilities for l1 and l2 is similar. 2

Lemma B.2.9 If S ⊆ S ′, then ψS(C∗
S′) = C∗S .

Lemma B.2.10 If 〈C, I, ~α,~l, τ, φ,+, i〉 is a normal positive instantiation context, then
C∗ �

p
~α τ .

Proof: We will show one case; the other polarity is similar. Suppose C∗ ` l ≤ l′ with
l 6= l′ and l ∈ ~α. Then we have I;C ` l  m l′. We need to show that l has polarity p̄ in
τ . The proof is by induction on the derivation of I;C ` l m l′.
Case [LEVEL]. We have C ` l ≤ l′. But then since the instantiation context is normal,
C �

p
~α τ , and thus l has polarity p̄ in τ .

Case [TRANS]. We have I;C ` l  m l′′ and I;C ` l′′  m l′. By induction,
I;C ` l m l′′ implies that l has polarity p̄ in τ .

Case [CONSTANT]. This case cannot occur, because we assume l ∈ ~α.

Case [MATCH]. We have I ` l1 �i
− l, I;C ` l1  m l2, and I ` l2 �i

+ l′. Then suppose
for a contradiction that l1 6= l. Since l ∈ ~α and ~α ∩ ~l = ∅, we have I ` l �i

p′ φ(l) with
φ(l) 6= l. Then since the instantiation context is normal, we have l 6= l, a contradiction.
Thus l1 = l. But then we have I;C ` l  m l2, and so by induction we have that l has
polarity p̄ in τ . 2

Intuitively, the following lemma shows that subsets of C∗ are closed with respect
to substitutions φ that correspond to instantiation constraints. In order to show this, we
extend a substitution φ to a substitution φ̂, which is the same as φ except that interme-
diate variables are replaced by joins. We will use this lemma in proving correspondence
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between [INST] and [PACK] rules of the two systems. Below we write L for the set of
constant labels.

Given a normal positive instantiation context 〈C, I, ~α,~l, τ, φ,+, i〉, we define Φi =

ΦSi
where Si = ~α ∪~l ∪ L.

Lemma B.2.11 Let 〈C, I, ~α,~l, τ, φ,+, i〉 be a normal positive instantiation context. If
~α ∪~l ⊆ S ′ and φ(S ′) ⊆ S, then C∗

S ` φ̂(C∗S′), where

φ̂(l) =


φ(l) l ∈ ~α

l l ∈ ~l ∪ L⊔
φ̂(Φi(l)) otherwise

Proof: Suppose {l′1 ≤ l′2} ∈ φ̂(C∗
S′). Then there are l1, l2 ∈ S ′ such that {l1 ≤ l2} ∈

C∗
S′ , where φ̂(l1) = l′1 and φ̂(l2) = l′2, and thus C∗ ` l1 ≤ l2 by Lemma B.2.8. Notice

we can assume l1 6= l2, since otherwise the proof is trivial. We can also assume without
loss of generality that neither l1 nor l2 is a join, because if it is, we can use [LUBL] and
[LUBR] to reduce the inequality to a set of inequalities among labels, as in Lemma B.2.8.
So then we need to show C∗

S ` l′1 ≤ l′2. There are nine possible cases, depending on
where each of l ∈ {l1, l2} appears:

1. l ∈ ~l ∪ L, and so φ̂(l) = l

2. l ∈ ~α, and so φ̂(l) = φ(l) (this is disjoint from the first case since the instantiation
context is normal)

3. otherwise φ̂(l) =
⊔
φ̂(Φi(l))

We proceed by case analysis.

1. l1 ∈ ~l ∪ L and l′1 = φ̂(l1) = l1. The cases for l2 are:

(a) l2 ∈ ~l ∪ L and l′2 = φ̂(l2) = l2. Then since C∗ ` l1 ≤ l2 and l′i = li, we have
C∗ ` l′1 ≤ l2. And since φ(S ′) ⊆ S, we have l′1, l

′
2 ∈ S. Thus C∗

S ` l′1 ≤ l′2.

(b) l2 ∈ ~α and l′2 = φ̂(l2) = φ(l2). Then since the instantiation context is normal,
we have C �

p
~α τ . Then by Lemma B.2.10 we have C∗ �

p
~α τ . But then since

C∗ ` l1 ≤ l2 and l2 ∈ ~α, we know l2 has polarity p in τ . Then since l2 6∈ ~l,
by Lemma B.2.3 we have I ` l2 �i

+ φ(l2), since p · p = + and in the
instantiation D = ∅. Since the instantiation context is normal, we either have
l1 ∈ ~l or l1 ∈ L, all of which imply I ` l1 �i

± l1 (the former by [INST] or
[PACK], and the latter by [CONSTANT]). Then by [MATCH], we have

[MATCH]
I ` l1 �i

− φ(l1) I;C ` l1  m l2 I ` l2 �i
+ φ(l2)

I;C ` φ(l1) m φ(l2)

and so C∗ ` l′1 ≤ l′2. Since φ(S ′) ⊆ S, we have l′1, l
′
2 ∈ S. Thus C∗

S ` l′1 ≤ l′2.
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(c) Otherwise l′2 = φ̂(l2) =
⊔
φ̂(Φi(l2)) Then sinceC∗ ` l1 ≤ l2 and either l1 ∈ ~l,

or l1 ∈ L, we have l1 ∈ Φi(l2). Since φ̂(l1) = l1, we have l1 ∈ φ̂(Φi(l2)).
But then from [LUBR], we get C∗ ` l1 ≤ φ̂(l2) =

⊔
φ̂(Φi(l2)). And since

φ(S ′) ⊆ S, we have l′1 ∈ S and thus C∗
S ` l′1 ≤ l′2.

2. l1 ∈ ~α. Then l′1 = φ̂(l1) = φ(l1). The cases for l2 are:

(a) l2 ∈ ~l∪L and φ̂(l2) = l2. This is analogous to case 1(b). Since the instantiation
context is normal, we have C�

p
~α τ . Then by Lemma B.2.10, we have C∗�

p
~α τ .

But since C∗ ` l1 ≤ l2 and l1 ∈ ~α, we know that l1 has polarity p̄ in τ . Then
since l1 6∈ ~l, Then by Lemma B.2.3, we have I ` l1 �i

− φ(l1), since p̄ · p = −
and in the instantiation D = ∅. Since the instantiation context is normal and
either l2 ∈ ~l or l2 ∈ L, we also have I ` l2 �i

± l2. Then by [MATCH], we
have

[MATCH]
I ` l1 �i

− φ̂(l1) I;C ` l1  m l2 I ` l2 �i
+ φ̂(l2)

I;C ` φ̂(l1) m φ̂(l2)

and so C∗ ` l′1 ≤ l′2. And since φ(S ′) ⊆ S, we have l′1, l
′
2 ∈ S. Thus

C∗
S ` l′1 ≤ l′2.

(b) l2 ∈ ~α and φ̂(l2) = φ(l2). As in 2(a) above, we have C∗ �
p
~α τ . Since C∗ `

l1 ≤ l2, l1 ∈ ~α, l1 6∈ ~l, and l2 ∈ ~α, we know that l1 has polarity p̄ in τ and l2
has polarity p in τ , and in the instantiation D = ∅. Then by Lemma B.2.3, we
have I ` l1 �i

− l
′
1 and I ` l2 �i

+ l′2. Then we have

[MATCH]
I ` l1 �i

− φ̂(l1) I;C ` l1  m l2 I ` l2 �i
+ φ̂(l2)

I;C ` φ̂(l1) m φ̂(l2)

so C∗ ` l′1 ≤ l′2. And since φ(S ′) ⊆ S, we have l′1, l
′
2 ∈ S. Thus C∗

S ` l′1 ≤ l′2.

(c) Otherwise l′2 = φ̂(l2) =
⊔
φ̂(Φi(l2)). Then since C∗ ` l1 ≤ l2 and l1 ∈ ~α, we

have l1 ∈ Φi(l2). So then l′1 = φ̂(l1) ∈ φ̂(Φi(l2)). Then from [LUBR] we have
C∗ ` l′1 ≤

⊔
φ̂(Φi(l2)). And since φ(S ′) ⊆ S, we have l′1 ∈ S. Therefore

C∗
S ` l′1 ≤ l′2.

3. Otherwise, l′1 = φ̂(l1) =
⊔
φ̂(Φi(l1)). The cases for l2 are:

(a) l2 ∈ ~l ∪ L and φ̂(l2) = φ(l2) = l2. Then since C∗ ` l1 ≤ l2, we have
C∗ ` l′ ≤ l2 for all l′ ∈ Φi(l1) (and l′ ∈ S ′ by assumption) by [TRANS] and
[LUBL]. Moreover, for each l′ ∈ Φi(l1), there are two cases.

i. l′ ∈ ~l ∪ L. Apply case 1(a) to show C∗
S ` φ̂(l′) ≤ l′2.

ii. l′ ∈ ~α. Apply case 2(a) to show C∗
S ` φ̂(l′) ≤ l′2.

Thus for all l′ ∈ Φi(l1), we have C∗
S ` φ̂(l′) ≤ l′2. Then by [LUBL], we have

C∗
S `

⊔
φ̂(Φi(l1)) ≤ φ̂(l2), or C∗

S ` l′1 ≤ l′2.
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(b) l2 ∈ ~α and φ̂(l2) = φ(l2). Since C∗ ` l1 ≤ l2, we have C∗ ` l′ ≤ l2 for all
l′ ∈ Φi(l1) by [TRANS] (and l′ ∈ S ′ by assumption). For each l′ ∈ Φi(l1),
there are two cases. If l′ ∈ ~l ∪ L, apply case 1(b) to show C∗

S ` φ̂(l′) ≤ l′2. If
l′ ∈ ~α, apply case 2(b) to show C∗

S ` φ̂(l′) ≤ l′2. Then by [LUBL] as before,
C∗
S ` l′1 ≤ l′2.

(c) Otherwise l′2 = φ̂(l2) =
⊔
φ̂(Φi(l2)). Then since C∗ ` l1 ≤ l2, we have

C∗ ` l′ ≤ l2 for all l′ ∈ Φi(l1) by [TRANS]. But then Φi(l1) ⊆ Φi(l2) ⊆ S ′.
Therefore φ̂(Φi(l1)) ⊆ φ̂(Φi(l2)) ⊆ S. Then by [LUBR] we have C∗ `
l′ ≤ (

⊔
φ̂(Φi(l2))) for all l′ ∈ φ̂(Φi(l1)), and so by [LUBL] we have C∗ `

(
⊔
φ̂(Φi(l1))) ≤ (

⊔
φ̂(Φi(l2))). Since φ̂(Φi(l1)) ⊆ φ̂(Φi(l2)) ⊆ S, we have

C∗
S ` l′1 ≤ l′2.

2

Definition B.2.12 A negative instantiation context 〈C, I, ~α, τ, φ,−, i〉 is normal if

1. I; ∅ ` τ �i
p τ

′ : φ

2. C �−
~α τ

3. fl(τ ′) ∩ ~α = ∅

4. I is normal

Next we define a notion of a normal λcfl
∃ derivation, which intuitively is one that

corresponds directly to a derivation in λcp
∃ .

Definition B.2.13 (Normal λcfl
∃ derivation) A λcfl

∃ derivation D is normal if

1. Every instantiation context InstCtx(i,D) is normal

2. For all universal types (∀~α.τ,~l), it is the case that ~α = fl(τ) \~l.

3. For all existential types ∃~l~α.τ l, it is the case that C∗
~α�−

~α τ , i.e., the constraint sets in
translated existential types are always negatively polarized with respect to the base
type.

4. All polymorphic types created in [LET] and [PACK] have distinct bound labels ~α.

5. For every two sub-derivations D1, D2 in D, where D1 is not a part of D2 and
conversely, the only common labels between D1 and D2 are in the Γ assumptions
and concluding types of D1 and D2.

Notice that every sub-derivation of a normal λcfl
∃ derivation is normal.

Lemma B.2.14 If I;C; Γ `CFL e : τ , then there exists a normal CFL derivation I ′;C ′; Γ `CFL
e : τ .

170



Proof: We walk through the conditions. Satisfying conditions 4 and 5 is a matter of
picking fresh labels wherever possible. Condition 2 is satisfied by construction of [LET]
and [FIX]. And condition 1 follows by reasoning similar to [38]. Observe that reasoning
similar to Lemma B.2.19 below shows that C �

p
~α τ at uses of [PACK].

The only tricky condition to show is 3. We sketch the proof. Consider the con-
straints generated in the e2 sub-derivation portion of [UNPACK]:

I;C; Γ, x : τ `CFL e2 : τ ′

Within the body of e2, we can assume that [SUB] is always applied after x. Thus for any
l appearing positively in τ , we will only generate constraints l ≤ l′, and vice-versa for la-
bels appearing negatively. Thus the constraints generated in this portion of the derivation
are negatively polarized with respect to τ and ~α, and so far C∗

~α �−
~α τ , since transitively

closing these constraints does not affect polarity, and neither does restricting to ~α.
Otherwise, suppose we have an application of [SUB] with

C; ∅; ∅ ` ∃l′1 ~α1.τ1 ≤ ∃l′2 ~α2.τ2

Then let li ∈ ~αi be labels in the same positions in τi. Each occurs with the same polarity.
Suppose the li appear positively. Then [SUB-INDEX-2] generates the constraint C ` l1 ≤
l2. Clearly we have violated the polarity restriction for l2 in C. However, observe that
in C∗

~α2
, we have that l1 is the join of no elements, and this holds transitively even with

more applications of [SUB], since they can only add lower bounds to l2 that do not appear
in ~α2. (Only [UNPACK] can add constraints in the other direction, and once we unpack
something we cannot re-pack it in the same scope). Thus this constraint is vacuous, and
we ignore it for computing polarities. (If we did not ignore these constraints, then [LUBL]
would allow us to put any label on the right hand side of a constraint, in any constraint
system.) Similarly, if the li appear negatively, [SUB] generates the constraint C ` l2 ≤ l1,
but in C∗

~α2
, we have that l1 is the join of some elements including l2, which is again

vacuous, and more applications of [SUB] can only add upper bounds to l2 that do not
appear in ~α2.

Otherwise, suppose we have an application of [INST] with

I; ∅ ` ∃l′1~α.τ1 �i
+ ∃l′2~α.τ2

Then [INST-INDEX-2] generates no constraints, and reasoning about the type ∃l′1~α.τ1
shows that positively occurring labels in τ1 can only have lower bounds and negatively
occurring labels can only have upper bounds.

Finally, otherwise suppose we have an application of [PACK] with

I; ∅ ` ∃l′2~α.τ2 �i
− ∃l

′
1~α.τ1

Then [INST-INDEX-2] generates no constraints, and reasoning about the type ∃l′1~α.τ1
shows that positively occurring labels in τ1 can only have upper bounds and negatively
occurring labels can only have lower bounds.

The cases of uses of [SUB], [PACK], and [INST] deeper in a type are similar.
2
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ΨC,I(int l) = int l
ΨC,I(τ1 →l τ2) = ΨC,I(τ1) →l ΨC,I(τ2)
ΨC,I(τ1 ×l τ2) = ΨC,I(τ1)×l ΨC,I(τ2)

ΨC,I(∃l~α.τ) = ∃l~α[C∗
~α].(ΨC,I(τ))

ΨC,I(Γ, f : (∀~α.τ,~l)) = ΨC,I(Γ), f : ∀~α[C∗
(~α∪~l)].(ΨC,I(τ))

ΨC,I(Γ, x : τ) = ΨC,I(Γ), (ΨC,I(τ))

Figure B.2: Translation from λcfl
∃ types to λcp

∃ types

Finally, we can prove that for every normal λcfl
∃ derivation, there exists an equivalent

λcp
∃ derivation. Intuitively, a program type checks under λcfl

∃ constraints I and C, then it
should type check under λcp

∃ with constraints C∗ (this turns out not quite to work; see
below). When translating the derivation, we also need to choose the constraint systems
for polymorphic λcp

∃ types, and these systems are implicit in λcfl
∃ . Rehof, Fähndrich, and

Das [38] choose C∗ as the constraint system for all polymorphic types. However, this
does not work in our system, because existentials are higher-order. We could translate
the type (∀~α.(∃l′ ~α′.τ),~l) to ∀~β[C∗].(∃l′ ~β′[C∗].τ), but when we instantiate the latter, the
instantiation might cause substitutions on some of the variables in theC∗ of the existential
type. Instead, for existentials, we put in a subset ofC∗ that is restricted to the bound labels
in the type. By construction of the λcfl

∃ system, these bound labels can never mix with free
labels. Similarly, for universal types, we plug in C∗ restricted to the bound labels and the
free labels of the universal; for universals, free labels do not cause problems, because they
are not first-class. Figure B.2 defines a translation function ΨC,I that takes λcp

∃ types and
transforms them to λcfl

∃ types. For an existential ∃l~α.τ , we choose as the λcp
∃ constraints

C∗
~α. The strong hypothesis in [UNPACK] in Figure 4.8 guarantees that this is safe, because

quantified labels can never mix with non-quantified labels. For universal types, on the
other hand, we allow quantified types to be constrained by non-quantified types, and thus
for a type (∀~α.τ,~l)) we choose the constraints C∗

(~α∪~l). Intuitively, these are exactly the
labels that “matter” to a caller of the quantified type—those that are bound in the type
and those that may be free in the type. Any other labels (for example, intermediate labels
constructed in the function body) are irrelevant except for their effects on ~α and ~l.

Lemma B.2.15 For any substitution φ, we have φ(ΨC,I(τ)) = ΨC,I(φ(τ)).

Proof: By induction on the definition of ΨC,I . The interesting cases are existentials and
universals. Letting φ′(l) = l for l ∈ ~α and φ′(l) = φ(l) otherwise, we have

φ(ΨC,I(∃l~α.τ)) = φ(∃l~α[C∗
~α].(ΨC,I(τ)))

= ∃φ(l)~α[φ′(C∗
~α)].φ

′(ΨC,I(τ)))

= ∃φ(l)~α[C∗
~α].φ

′(ΨC,I(τ))) by definition of φ′

= ∃φ(l)~α[C∗
~α].ΨC,I(φ

′(τ))) by induction
= ΨC,I(φ(∃l~α.τ))

2
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Lemma B.2.16 For any set S, we have ψ(fl(Γ)∪S)(ΨC,I(Γ)) = ΨC,I(Γ).

Proof: The proof is by induction. Let ψ = ψ(fl(Γ)∪S). For regular types τ in the range
of Γ, we have ψ(ΨC,I(τ)) = ΨC,I(ψ(τ)) by Lemma B.2.15. But since τ is in the range of
Γ, ψ(τ) = τ .

For universals, let ψ′(l) = l for l ∈ ~α and ψ′(l) = ψ(l) otherwise, and then we have

ψ(ΨC,I((∀~α.τ,~l))) = ψ(∀~α[C∗
(~α∪~l)].(ΨC,I(τ)))

= ∀~α[ψ′(C∗
(~α∪~l))].ψ

′(ΨC,I(τ))

= ∀~α[C∗
(~α∪~l)].ψ

′(ΨC,I(τ)) Since ~l ∈ fl(Γ)

= ∀~α[C∗
(~α∪~l)].ΨC,I(ψ

′(τ)) by Lemma B.2.15

= ΨC,I(ψ((∀~α.τ,~l)))
2

Lemma B.2.17 fl(ΨC,I(τ)) = fl(τ)

Proof: By induction on the definition of ΨC,I . The only interesting case is ΨC,I(∃l~α.τ) =
∃l~α[C∗

~α].(ΨC,I(τ)). By induction, we have fl(ΨC,I(τ)) = fl(τ). Then observe that
fl(C∗

~α) = ~α. Thus fl(∃l~α[C∗
~α].(ΨC,I(τ))) = {l} ∪ ((fl(ΨC,I(τ)) ∪ fl(C∗

~α)) \ ~α) =
{l} ∪ ((fl(ΨC,I(τ)) \ ~α) = {l} ∪ (fl(τ) \ ~α) = fl(∃l~α.τ). 2

Lemma B.2.18 Given types from a normal derivation, fl(ΨC,I(Γ)) ⊆ fl(Γ).

Proof: The interesting case (ignoring the environment and focusing on the ∀ type) is
ΨC,I((∀~α.τ,~l)) = ∀~α[C∗

(~α∪~l)].(ΨC,I(τ)). Since the derivation is normal, ~α = fl(τ) \ ~l.
Thus

fl(∀~α[C∗
(~α∪~l)].(ΨC,I(τ))) =

(
fl(C∗

(~α∪~l)) ∪ fl(ΨC,I(τ))
)
\ ~α

⊆
(
~α ∪~l ∪ fl(τ)

)
\ ~α

= ~l ∪ (fl(τ) \ ~α)

= fl((∀~α.τ,~l))
2

Lemma B.2.19 Given a type ∃l~α.τ from a normal λcfl
∃ derivation, we have C∗

~α �−
~α τ ,

i.e., the constraint sets in translated existential types are always negatively polarized with
respect to the base type.

Proof: 2

Lemma B.2.20 Let 〈C, I, ~α, τ, φ,−, i〉 be a negative instantiation context in a normal
λcfl
∃ derivation. If ~α ⊆ S ′ and φ(S ′) ⊆ S, then C∗

S ` φ̌(C∗
S′), where

φ̌(l) =


φ(l) l ∈ ~α
l l ∈ L⊔
φ̌(Φi(l)) otherwise
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Proof: The proof is the same as in Lemma B.2.11, observing that all l ∈ ~α only appear
on the left-hand side of an instantiation constraint, by [INST-INDEX-2] and assumption
that the derivation is normal. 2

In order to translate subtyping derivations, we also need to translate the D from
Figure 4.9 into the D of Figure 4.6. We define ΨC,I(∅) = ∅, and ΨC,I(D ⊕ ~α) =
(ΨC,I(D))[l 7→ ΨC,I(D) + 1,∀l ∈ ~α].

Lemma B.2.21 If C;D;D ` l ≤ l′ then C∗
(l,l′); ΨC,I(D) `cp l ≤ l′.

Proof: By induction on C;D;D ` l ≤ l′.
Case [SUB-INDEX-1]. We have

[SUB-INDEX-1 (λcfl
∃ )]

C ` l ≤ l′

C; ∅; ∅ ` l ≤ l′

Then since ΨC,I(∅) = ∅ and ∅(l) = ∅(l′) = 0, we have

[SUB-LABEL-1 (λcp
∃ )]

(ΨC,I(D))(l) = (ΨC,I(D))(l′) = 0
C∗

(l,l′) ` l ≤ l′

C∗
(l,l′); ΨC,I(D) `cp l ≤ l′

Case [SUB-INDEX-2]. We have

[SUB-INDEX-2 (λcfl
∃ )]

C ` lj ≤ lj

C;D ⊕ {l1, . . . , ln};D ⊕ {l1, . . . , ln} ` lj ≤ lj

Notice that by assumption both Di’s must be the same. Also, notice that ΨC,I(D ⊕
{l1, . . . , ln})(lj) > 0 by definition.

[SUB-LABEL-2 (λcp
∃ )]

(ΨC,I(D ⊕ {l1, . . . , ln}))(l) > 0

C∗
(lj)

; ΨC,I(D ⊕ {l1, . . . , ln}) `cp lj ≤ lj

Case [SUB-INDEX-3]. We have

[SUB-INDEX-3 (λcfl
∃ )]

C;D;D ` l ≤ l′ l 6= li l′ 6= lj ∀i, j ∈ [1..n]

C;D ⊕ {l1, . . . , ln};D ⊕ {l1, . . . , ln} ` l ≤ l′

By induction, C∗
(l,l′); ΨC,I(D) `cp l ≤ l′. Let ~α = {l1, . . . , ln}. Then since l, l′ 6= li for

any i, we have (ΨC,I(D⊕~α))(l) = (ΨC,I(D))(l) and (ΨC,I(D⊕~α))(l′) = (ΨC,I(D))(l′).
Then there are two cases:

1. If C∗
(l,l′); ΨC,I(D) `cp l ≤ l′ by [SUB-LABEL-1 (λcp

∃ )], then (ΨC,I(D))(l) =

(ΨC,I(D))(l′) = 0. But then (ΨC,I(D ⊕ ~α)(l) = (ΨC,I(D ⊕ ~α)(l′) = 0, so we
have

[SUB-LABEL-1 (λcp
∃ )]

(ΨC,I(D ⊕ ~α))(l) = (ΨC,I(D ⊕ ~α))(l′) = 0
C∗

(l,l′) ` l ≤ l′

C∗
(l,l′); ΨC,I(D ⊕ ~α) `cp l ≤ l′
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2. If C∗
(l,l′); ΨC,I(D) `cp l ≤ l′ by [SUB-LABEL-2 (λcp

∃ )], then (ΨC,I(D))(l) > 0 and
l = l′, and therefore (ΨC,I(D ⊕ ~α))(l) > 0, and so we have

[SUB-LABEL-2 (λcp
∃ )]

(ΨC,I(D ⊕ ~α))(l) > 0

C∗
(l,l′); ΨC,I(D ⊕ ~α) `cp l ≤ l′

2

Lemma B.2.22 (Subtyping reduction from λcfl
∃ to λcp

∃ ) Let D be a normal λcfl
∃ deriva-

tion of C;D;D ` τ ≤ τ ′. Then C∗
(τ,τ ′); ΨC,I(D) `cp ΨC,I(τ) ≤ ΨC,I(τ

′).

Proof: By induction on the given λcfl
∃ derivation.

Case [SUB-INT]. We have

[SUB-INT (λcfl
∃ )]

C;D;D ` l ≤ l′

C;D;D ` int l ≤ int l′

Then by Lemma B.2.21 we have C∗
(l,l′); ΨC,I(D) `cp l ≤ l′. But then we have

[SUB-INT (λcp
∃ )]

C∗
(l,l′); ΨC,I(D) `cp l ≤ l′

C∗
(l,l′); ΨC,I(D) `cp int l ≤ int l′

Case [SUB-PAIR], [SUB-FUN]. By induction, using Lemma B.2.21 and the definition
of ΨC,I .

Case [SUB-∃]. We have

[SUB-∃]

D1 = D ⊕ ~α1 D2 = D ⊕ ~α2

C;D1;D2 ` τ1 ≤ τ2 C;D;D ` l1 ≤ l2

C;D;D ` ∃l1 ~α1.τ1 ≤ ∃l2 ~α2.τ2

Let T = {l1, l2} ∪ (fl(τ1) \ ~α1) ∪ (fl(τ2) \ ~α2). Let φ be an alpha-renaming such
that φ( ~α2) = ~α1. This is always well-defined by the assumption that the derivation is
normal and by the subtyping rules of Figure 4.9. Then φ(D2) = D1, and thus since
C;D1;D2 ` τ1 ≤ τ2, we have C;D1;D1 ` τ1 ≤ φ(τ2). Then by induction we have
C∗

(τ1,φ(τ2)); ΨC,I(D1) `cp ΨC,I(τ1) ≤ ΨC,I(φ(τ2)). But notice that by [SUB-LABEL-2]
in Figure 4.6, no (nontrivial) constraints between variables in ΨC,I(D1) are ever gener-
ated. Thus we have C∗

((τ1,φ(τ2))\ ~α1); ΨC,I(D1) `cp ΨC,I(τ1) ≤ ΨC,I(φ(τ2)). Notice that by
definition of φ, we have

((fl(τ1) \ ~α1) ∪ (fl(τ2) \ ~α2)) = ((fl(τ1) \ ~α1) ∪ (φ(fl(τ2)) \ ~α1))

And thus by Lemmas B.2.8 and B.2.15 we haveC∗
T ; ΨC,I(D1) `cp ΨC,I(τ1) ≤ φ(ΨC,I(τ2)).

Also by Lemmas B.2.21 and B.2.8 we have C∗
T ,ΨC,I(D) ` l1 ≤ l2.
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We need to show that C∗
~α1
` φ(C∗

~α2
). Since the derivation is normal, we have

C∗
~α2

�−
~α2
τ2. Observe that by the subtyping rules in Figure 4.9, for label l ∈ ~α2, if l has

polarity + in τ2 then φ(l) ≤ l, and if l has polarity − in τ2 then l ≤ φ(l).
Pick a label l ∈ ~α2. Suppose that C∗

~α2
` l′ ≤ l. Then by definition, l has polarity −

in τ2. Thus l ≤ φ(l). By construction, l′ is a join of the constants and labels in ~α2, and by
[LUBL], we have that for all labels l′′ ∈ l′ we have C∗

~α2
` l′′ ≤ l′. Then l′′ has polarity

+ in τ2, and thus φ(l′′) ≤ l′′. But then C∗ ` φ(l′′) ≤ φ(l). And since this holds for all
l′′ ∈ l′, by [LUBL] we have C∗

~α1
` φ(l′′) ≤ φ(l), since φ(l′′), φ(l) ∈ ~α1.

Similarly, Suppose that C∗
~α2
` l ≤ l′. Then by definition, l has polarity + in τ2, and

hence φ(l) ≤ l. By construction, l′ is a join of the constants and labels in ~α2. There are
two cases. If C∗

~α2
` l ≤ (ltS) by [LUBR] for some set S, there is nothing to prove, since

by [LUBR] we have C∗
~α1
` φ(l) ≤ (φ(l) t φ(S)). Otherwise, we have C∗

~α2
` l ≤ l′′ for

some l′ ∈ ~α2. Then l′′ has polarity − in τ2, and thus l′′ ≤ φ(l′′). Then C∗ ` φ(l) ≤ φ(l′′),
and thus C∗

~α1
` φ(l) ≤ φ(l′′), since φ(l), φ(l′′) ∈ ~α1.

Thus we have C∗
~α1
` φ(C∗ ~α2). Notice that there is not requirement that these con-

straints are part of C∗
T , which follows the λcp

∃ system pattern that constraints on existential
types do not “leak” out to the outer constraint context upon subtyping them.

Finally, by alpha-conversion we have ∃l2 ~α2[C
∗
~α2

].τ2 = ∃l2φ( ~α2)[φ(C∗
~α2

)].φ(τ2)
Thus we have

[SUB-∃]

C∗
~α1
` φ(C∗ ~α2)

D1 = (ΨC,I(D))[l 7→ (ΨC,I(D))(l) + 1,∀l ∈ ~α1]
C∗
T ;D1 ` ΨC,I(τ1) ≤ φ(ΨC,I(τ2))

C∗
T ; ΨC,I(D) ` l1 ≤ l2

C∗
T ; ΨC,I(D) ` ∃l1 ~α1[C∗ ~α1 ].ΨC,I(τ1) ≤ ∃l2 ~α2[C

∗
~α2

].ΨC,I(τ2)

2

Theorem B.2.23 (Reduction from λcfl
∃ to λcp

∃ ) Let D be a normal λcfl
∃ derivation of I;C; Γ `CFL

e : τ . Then C∗
(fl(Γ)∪fl(τ)); ΨC,I(Γ) `cp e : ΨC,I(τ).

Proof: By induction on the given λcfl
∃ derivation. As a shorthand notation in the proof,

we define C∗
Γ as C∗

fl(Γ), C∗τ as C∗fl(τ), and we use commas in place of unions when
subscripting.
Case [ID]. We have

[ID (λcfl
∃ )]

I;C; Γ, x : τ `CFL x : τ

Thus trivially

[ID (λcp
∃ )]

C∗
(Γ,τ); ΨC,I(Γ), x : ΨC,I(τ) `cp x : ΨC,I(τ)

Case [INT]. We have

[INT (λcfl
∃ )]

C ` L ≤ l

I;C; Γ `CFL nL : int l
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Then since C ` L ≤ l and l ∈ fl(int l) = {l} we have C∗
(Γ,l) ` L ≤ l. Thus

[INT (λcp
∃ )]

C∗
(Γ,l) ` L ≤ l

C∗
(Γ,l); ΨC,I(Γ) `cp nL : int l

and ΨC,I(int l) = int l.

Case [LAM]. We have

[LAM (λcfl
∃ )]

I;C; Γ, x : τ `CFL e : τ ′ C ` L ≤ l

I;C; Γ `CFL λx.eL : τ →l τ ′

Then since l ∈ fl(τ →l τ ′) we haveC∗
(Γ,τ,τ ′,l) ` L ≤ l. By induction,C∗

(Γ,τ,τ ′); ΨC,I(Γ), x :

ΨC,I(τ) `cp e : ΨC,I(τ
′). Then by Lemmas B.2.8 and B.1.3, we haveC∗

(Γ,τ,τ ′,l); ΨC,I(Γ), x :

ΨC,I(τ) `cp e : ΨC,I(τ
′). Thus we have

[LAM (λcp
∃ )]

C∗
(Γ,τ,τ ′,l); ΨC,I(Γ), x : ΨC,I(τ) `cp e : ΨC,I(τ

′) C∗
(Γ,τ,τ ′,l) ` L ≤ l

C∗
(Γ,τ,τ ′,l); ΨC,I(Γ) `cp λx.eL : ΨC,I(τ) →l ΨC,I(τ

′)

and ΨC,I(τ →l τ ′) = ΨC,I(τ) →l ΨC,I(τ
′).

Case [APP]. We have

[APP (λcfl
∃ )]

I;C; Γ `CFL e1 : τ →l τ ′

I;C; Γ `CFL e2 : τ
C ` l ≤ L

I;C; Γ `CFL e1 e2L : τ ′

Let ψ = ψ(Γ,τ ′). By induction, C∗
(Γ,τ,τ ′,l); ΨC,I(Γ) `cp e1 : ΨC,I(τ) →l ΨC,I(τ

′).
Then

ψ(C∗
(Γ,τ,τ ′,l));ψ(ΨC,I(Γ)) `cp e1 : ψ(ΨC,I(τ) →l ΨC,I(τ

′))

But ψ(C∗
(Γ,τ,τ ′,l)) = C∗(Γ,τ ′) and ψ(ΨC,I(Γ)) = ΨC,I(Γ) by Lemma B.2.16. Similarly,

ψ(ΨC,I(τ
′)) = ΨC,I(τ

′). Thus

C∗
(Γ,τ ′),ΨC,I(Γ) `cp e1 : ψ(ΨC,I(τ)) →ψ(l) ΨC,I(τ

′)

Also by induction, C∗
(Γ,τ); ΨC,I(Γ) `cp e2 : ΨC,I(τ), and by similar reasoning and

Lemma B.2.8 we get C∗
(Γ,τ ′); ΨC,I(Γ) `cp e2 : ψ(ΨC,I(τ)).

Finally, since C ` l ≤ L, we have C∗
(Γ,τ ′) ` ψ(l) ≤ ψ(L) or C∗

(Γ,τ ′) ` ψ(l) ≤ L.
But then we have

[APP (λcp
∃ )]

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e1 : ψ(ΨC,I(τ)) →ψ(l) ΨC,I(τ

′)

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e2 : ψ(ΨC,I(τ)) C∗

(Γ,τ ′) ` ψ(l) ≤ L

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e1 e2L : ΨC,I(τ

′)
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Case [PAIR], [PROJ], [COND]. Similar to [APP].

Case [SUB]. We have

[SUB (λcfl
∃ )]

I;C; Γ `CFL e : τ C; ∅ ` τ ≤ τ ′

I;C; Γ `CFL e : τ ′

By induction and Lemma B.2.8, we have

C∗
(Γ,τ,τ ′); ΨC,I(Γ) `cp e : ΨC,I(τ)

Let ψ = ψ(Γ,τ ′). Then

ψ(C∗
(Γ,τ,τ ′));ψ(ΨC,I(Γ)) `cp e : ψ(ΨC,I(τ))

But by Lemma B.2.16 we have ψ(ΨC,I(Γ)) = ΨC,I(Γ). And ψ(C∗
(Γ,τ,τ ′)) = C∗

(Γ,τ ′). Thus
we have

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e : ψ(ΨC,I(τ))

Next, by Lemma B.2.22, we haveC∗
(τ,τ ′) `cp ΨC,I(τ) ≤ ΨC,I(τ

′). Thus by Lemma B.2.8
we have C∗

(Γ,τ,τ ′) `cp ΨC,I(τ) ≤ ΨC,I(τ
′) Then

ψ(C∗
(Γ,τ,τ ′)) `cp ψ(ΨC,I(τ)) ≤ ψ(ΨC,I(τ

′))

But ψ(ΨC,I(τ
′)) = ΨC,I(ψ(τ ′)) by Lemma B.2.15, and ΨC,I(ψ(τ ′)) = ΨC,I(τ

′) by defi-
nition of ψ. And ψ(C∗

(Γ,τ,τ ′)) = C∗(Γ,τ ′). Thus by Lemma B.2.8 we have

C∗
(Γ,τ ′) `cp ψ(ΨC,I(τ)) ≤ ΨC,I(τ

′)

Then we have

[SUB (λcp
∃ )]

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e : ψ(ΨC,I(τ))

C∗
(Γ,τ ′); ∅ `cp ψ(ΨC,I(τ)) ≤ ΨC,I(τ

′)

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e : ΨC,I(τ

′)

Case [LET]. We have

[LET (λcfl
∃ )]

I;C; Γ `CFL e1 : τ1 I;C; Γ, f : (∀~α.τ1,~l) `CFL e2 : τ2
~α = fl(τ1) \~l ~l = fl(Γ)

I;C; Γ `CFL let f = e1 in e2 : τ2

By induction, we haveC∗
(Γ,τ1); ΨC,I(Γ) `cp e1 : ΨC,I(τ1). But~l = fl(Γ), and ~α = fl(τ1)\~l.

Thus fl(Γ) ∪ fl(τ1) = ~α ∪~l. Therefore C∗
(~α,~l)

; ΨC,I(Γ) `cp e1 : ΨC,I(τ1).

Then since ~l = fl(Γ), by induction we also have

C∗
(Γ,τ2); ΨC,I(Γcp), f : ∀~α[C∗

(~α,~l)
].(ΨC,I(τ1)) `cp e2 : ΨC,I(τ2)
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Finally, by Lemma B.2.17 we have fl(ΨC,I(τ1)) = fl(τ1), and by Lemma B.2.18
we have fl(ΨC,I(Γ)) ⊆ fl(Γ). Thus

~α = fl(τ1) \~l ⊆
(
fl(ΨC,I(τ1)) ∪ fl(C∗

(~α,~l))
)
)
\ fl(ΨC,I(Γ))

Therefore we can apply [LET] rule of the λcp
∃ system to prove

[LET (λcp
∃ )]

C∗
(~α,~l)

; ΨC,I(Γ) `cp e1 : ΨC,I(τ1)

C∗
(Γ,τ2); ΨC,I(Γcp), f : ∀~α[C∗

(~α,~l)
].(ΨC,I(τ1)) `cp e2 : ΨC,I(τ2)

~α ⊆
(
fl(ΨC,I(τ1)) ∪ fl(C∗

(~α,~l))
)
)
\ fl(ΨC,I(Γ))

C∗
(Γ,τ2); ΨC,I(Γ) `cp let f = e1 in e2 : ΨC,I(τ2)

Case [FIX]. Similar to [LET] and [INST]

Case [INST]. We have

[INST (λcfl
∃ )]

I;C; ∅ ` τ �i
+ τ ′ : φ

dom(φ) = ~α I ` ~l �i
+
~l I ` ~l �i

−
~l

I;C; Γ, f : (∀~α.τ,~l) `CFL f i : τ ′

By definition ΨC,I((∀~α.τ,~l)) = ∀~α[C∗
(~α,~l)

].(ΨC,I(τ)). Notice that~l is the set of free labels
at the point where f was bound by [LET] or [FIX], and that this use of [INST] is nested
inside that derivation. Thus ~l ⊆ fl(Γ), and by [INST (λcfl

∃ )] we have φ(~l) = ~l. Further,
since φ(τ) = τ ′ we have φ(~α) ⊆ fl(τ ′). Thus φ(~α ∪ ~l) ⊆ fl(τ ′) ∪ fl(Γ). Then by
Lemma B.2.11, we have C∗

(Γ,τ ′) ` φ̂(C∗(~α,~l)).
Thus we can apply the [INST] rule of λcp

∃ :

[INST (λcp
∃ )]

C∗
(Γ,τ ′) ` φ̂(C∗(~α,~l))

C∗
(Γ,τ ′); ΨC,I(Γ), f : ∀~α[C∗

(~α,~l)
].(ΨC,I(τ)) `cp f i : φ̂(ΨC,I(τ))

Finally, by Lemma B.2.15 we have φ̂(ΨC,I(τ)) = ΨC,I(φ̂(τ)) = ΨC,I(τ
′),

Case [PACK]. We have

[PACK (λcfl
∃ )]

I;C; Γ `CFL e : τ ′ I;C; ∅ ` τ �i
− τ

′ : φ
dom(φ) = ~α C ` L ≤ l

I;C; Γ `CFL packi e L : ∃l~α.τ

SinceC ` L ≤ lwe haveC∗
(Γ,l,τ ′) ` L ≤ l. By definition ΨC,I(∃l~α.τ) = ∃l~α[C∗

~α].(ΨC,I(τ)).
By induction and Lemma B.2.8 we have C∗

(Γ,l,τ ′),ΨC,I(Γ) ` e : ΨC,I(τ
′). But φ(τ) = τ ′,

so by Lemma B.2.15 we have ΨC,I(τ
′) = φ̌(ΨC,I(τ)). Also, since the instantiation con-

text is normal, and since φ(~α) ⊆ fl(τ ′), by Lemma B.2.20 we have C∗
(Γ,l,τ ′) ` φ̌(C∗~α).
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Putting this together yields

[PACK (λcp
∃ )]

C∗
(Γ,l,τ ′); ΨC,I(Γ) `cp e : φ̌(ΨC,I(τ)) C∗

(Γ,l,τ ′) ` φ̌(C∗
~α)

C∗
(Γ,l,τ ′) ` L ≤ l

C∗
(Γ,l,τ ′); ΨC,I(Γ) `cp packi e L : ∃l~α[C∗

~α].(ΨC,I(τ))

Let ψ = ψ(Γ,l,(τ\~α)). Then we have

ψ(C∗
(Γ,l,τ ′));ψ(ΨC,I(Γ)) `cp packi e L : ψ(∃l~α[C∗

~α].(ΨC,I(τ)))

Notice that fl(τ) \ ~α ⊆ fl(τ ′). Then ψ(C∗
(Γ,l,τ ′)) = C∗(Γ,l,(τ\~α)). And by Lemma B.2.16

we have ψ(ΨC,I(Γ)) = ΨC,I(Γ). Finally, ψ(∃l~α[C∗
~α].(ΨC,I(τ))) = ∃l~α[C∗

~α].(ΨC,I(τ)),
since ψ(l) = l by definition, all the labels in C∗

~α are bound, and since fl(ΨC,I(τ)) = fl(τ)
by Lemma B.2.17 and the only unbound labels of τ are those in fl(τ) \ ~α, which ψ does
not affect by definition. Thus

C∗
(Γ,l,(τ\~α)); ΨC,I(Γ) `cp packi e L : ∃l~α[C∗

~α].(ΨC,I(τ))

Case [UNPACK]. We have

[UNPACK (λcfl
∃ )]

I;C; Γ `CFL e1 : ∃l~α.τ I;C; Γ, x : τ `CFL e2 : τ ′

~l = fl(Γ) ∪ (fl(τ) \ ~α) ∪ fl(τ ′) ∪ L ~α ⊆ fl(τ) \~l C ` l ≤ L

∀l ∈ ~α, l′ ∈ ~l.(I;C 6 `l m l′ and I;C 6 `l′  m l)

I;C; Γ `CFL unpack x = e1 in e2L : τ ′

By induction and Lemma B.1.2, we have

C∗
(Γ,l,(τ\~α),τ ′); ΨC,I(Γ) ` e1 : ∃l~α[C∗

~α].ΨC,I(τ)

Let ψ = ψ(Γ,τ ′). Then we have

ψ(C∗
(Γ,l,(τ\~α),τ ′));ψ(ΨC,I(Γ)) ` e1 : ψ(∃l~α[C∗

~α].ΨC,I(τ))

Then by Lemma B.2.16 we have ψ(ΨC,I(Γ)) = ΨC,I(Γ). Also, we have ψ(C∗
(Γ,l,(τ\~α))) =

C∗
(Γ,τ ′). Finally, notice that ψ(∃l~α[C∗

~α].ΨC,I(τ)) = ∃ψ(l)~α[C∗
~α].ψ

′(ΨC,I(τ)), where ψ′(l) =

l if l ∈ ~α and ψ′(l) = ψ(l) otherwise. Further, all labels in C∗
~α are bound. Thus we have

C∗
(Γ,τ ′); ΨC,I(Γ) ` e1 : ∃ψ(l)~α[C∗

~α].ψ
′(ΨC,I(τ))

Also by induction C∗
(Γ,τ,τ ′); ΨC,I(Γ), x : ΨC,I(τ) ` e2 : ΨC,I(τ

′). Then we claim

C∗
(Γ,(τ\~α),τ ′) ∪ C∗

~α ` C∗
(Γ,(τ\~α),~α,τ ′) = C∗

(Γ,τ,τ ′)

To see why, suppose C∗
(Γ,τ,(τ\~α),τ ′) ` l ≤ l′. Then without loss of generality, assume l

and l′ are labels rather than joins. If l or l′ is in L, then the result holds trivially. Also, if
l, l′ ∈ fl(Γ)∪ (fl(τ) \ ~α)∪fl(τ ′) or l, l′ ∈ ~α, then the result holds trivially. Otherwise, we
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have I;C ` l m l′ with one of l, l′ in fl(Γ) ∪ (fl(τ) \ ~α) ∪ fl(τ ′) and one in ~α, which is
impossible by the last hypothesis of [UNPACK]. Thus by Lemma B.1.2 we have

C∗
(Γ,(τ\~α),τ ′) ∪ C∗

~α; ΨC,I(Γ), x : ΨC,I(τ) ` e2 : ΨC,I(τ
′)

But then we have

ψ′(C∗
(Γ,(τ\~α),τ ′) ∪ C∗

~α);ψ
′(ΨC,I(Γ)), x : ψ′(ΨC,I(τ)) ` e2 : ψ′(ΨC,I(τ

′))

ψ′ and ψ only differ on ~α, and by assumption ~α ∩ ~l = ∅. Thus by Lemma B.2.16 we
have ψ′(ΨC,I(Γ)) = Γ and ψ′(ΨC,I(τ

′)) = ΨC,I(τ
′). Further, ψ′ does not affect ~α, so

ψ′(C∗
(Γ,(τ\~α),τ ′) ∪ C∗

~α) = ψ′(C∗(Γ,(τ\~α),τ ′)) ∪ C∗
~α. And ψ′(C∗(Γ,(τ\~α),τ ′)) = C∗

(Γ,τ ′), again

since ~α ∩~l = ∅. Putting this all together, we have

C∗
(Γ,τ ′) ∪ C∗

~α; ΨC,I(Γ), x : ψ′(ΨC,I(τ)) ` e2 : ΨC,I(τ
′)

Finally, since C ` l ≤ L, we have C∗
(Γ,τ ′) ` ψ(l) ≤ ψ(L) or C∗

(Γ,τ ′) ` ψ(l) ≤ L.

Also, ~α ⊆ fl(τ) \~l. By Lemma B.2.18 we have fl(ΨC,I(Γ)) ⊆ fl(Γ). By Lemma B.2.17
we have fl(ΨC,I(τ

′)) = fl(τ ′). And fl(C∗
(Γ,τ ′)) ⊆ fl(Γ) ∪ fl(τ ′). And since ~l ⊇ fl(Γ) ∪

fl(τ ′) we have

~α ⊆ (fl(ΨC,I(τ)) ∪ fl(C∗
~α)) \

(
fl(ΨC,I(Γ)) ∪ fl(C∗

(Γ,τ ′)) ∪ fl(ΨC,I(τ
′))

)
Putting these all together, we get

[UNPACK (λcp
∃ )]

C∗
(Γ,τ ′); ΨC,I(Γ) `cp e1 : ∃ψ(l)~α[C∗~α].ψ′(ΨC,I(τ)) C∗

(Γ,τ ′) ` ψ(l) ≤ L

C∗
(Γ,τ ′) ∪ C∗~α; ΨC,I(Γ), x : ψ′(ΨC,I(τ)) `cp e2 : ΨC,I(τ

′)

~α ⊆ (fl(ΨC,I(τ)) ∪ fl(C∗
~α)) \

(
fl(ΨC,I(Γ)) ∪ fl(C∗

(Γ,τ ′)) ∪ fl(ΨC,I(τ
′))

)
C∗

(Γ,τ ′); ΨC,I(Γ) `cp unpack x = e1 in e2L : ΨC,I(τ
′)

2
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Appendix C

Soundness proof for contextual effects

C.1 Additional definitions
We add a typing rule for heap locations:

[TLOC]
Γ(r) = τ

Φ∅; Γ ` rL : ref {L}(τ)
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We also add a list of evaluation rules that define when a program goes wrong:

[CALL-W]

〈α, ω,H, e1〉
ε1−→ 〈α′, ω′, H ′, v〉

v 6= λx.e

〈α, ω,H, e1 e2〉
∅−→ 〈α, ω,H, err〉

[IF-W]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, v1〉
v1 6= n

〈α, ω,H, if0 e1 then e2 else e3〉
∅−→ 〈α, ω,H, err〉

[DEREF-H-W]

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, rL〉
r /∈ dom(H ′)

〈α, ω,H, ! e〉 ∅−→ 〈α, ω,H, err〉

[DEREF-L-W]

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, rL〉
r ∈ dom(H ′)
L /∈ ω′

〈α, ω,H, ! e〉 ∅−→ 〈α, ω,H, err〉

[ASSIGN-H-W]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, rL〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v〉

r /∈ dom(H2)

〈α, ω,H, e1 := e2〉
∅−→ 〈α, ω,H, err〉

[ASSIGN-L-W]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, rL〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, (H2, r 7→ v′), v〉
L /∈ ω2

〈α, ω,H, e1 := e2〉
∅−→ 〈α, ω,H, err〉

Definition C.1.1 (Heap Typing) We say heap H is well-typed under Γ, written Γ ` H ,
if

1. dom(Γ) = dom(H) and

2. for every r ∈ dom(H), we have Φ∅; Γ ` H(r) : Γ(r).

C.2 Soundness for standard effects
Theorem C.2.1 (Standard Effect Soundness) If

1. Φ; Γ ` e : τ ,

2. Γ ` H and
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3. 〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, R〉

then there is a Γ′ ⊇ Γ such that:

1. R is a value v for which Φ∅; Γ
′ ` v : τ ,

2. Γ′ ` H ′ and

3. ε ⊆ Φε.

Proof: Proof by induction on the evaluation derivation.

case [ID] :

[ID]
〈1, 1, H, v〉 ∅−→ 〈1, 1, H, v〉

Then obviously v is a value and Φ; Γ ` v : τ is given from hypothesis.

case [CALL] :
From the assumptions, we have an evaluation derivation:

[CALL]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, λx.e〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1, H2, v2〉

〈1, 1, H2, [v2 7→ e]x〉 ε3−→ 〈1, 1, H ′, v〉

〈1, 1, H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈1, 1, H ′, v〉

and also a typing derivation Φ; Γ ` e1 e2 : τ2. The typing derivation could be
produced either by [TSUB] or [TAPP]. We show how to handle [TSUB] now and
ignore it for the other cases:

[TSUB]

Φ′; Γ ` e1 e2 : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

Φ; Γ ` e1 e2 : τ

Assuming the theorem holds for the premise:

Γ′ ⊇ Γ (C.1)
Γ′ ` H1 (C.2)
ε ⊆ Φ′ε (C.3)

Then from Φ′ ≤ Φ we get that ε ⊆ Φ′ε ⊆ Φε.

In the case that the last rule of the typing derivation is [TAPP]:

[TAPP]

Φ1; Γ ` e1 : τ1 →Φf τ2
Φ2; Γ ` e2 : τ1

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
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We inductively apply the theorem on the first premise:

Γ1 ⊇ Γ (C.4)
Φ∅; Γ1 ` λx.e : τ1 →Φf τ2 (C.5)

Γ1 ` H1 (C.6)
ε1 ⊆ Φε

1 (C.7)

From the second premise of [TAPP], Γ1 ⊇ Γ and Lemma C.3.5 we get Φ2; Γ1 `
e2 : τ1. From this, Γ1 ` H1 and the second premise of the [CALL] rule, we apply
the theorem inductively and get:

Γ2 ⊇ Γ1 (C.8)
Φ∅; Γ2 ` v2 : τ1 (C.9)

Γ2 ` H2 (C.10)
ε2 ⊆ Φε

2 (C.11)

Finally, we apply Lemma C.3.5 to get:

Φ∅; Γ2 ` λx.e : τ1 →Φf τ2 (C.12)
Φ∅; Γ2 ` v2 : τ1 (C.13)

(C.14)

From the first we get:

[TLAM]
Φf ; Γ2, x : τ1 ` e : τ2

Φ∅; Γ2 ` λx.e : τ1 →Φf τ2

From the premise and (C.13) it follows from Lemma C.3.4 that Φf ; Γ2 ` [v2 7→
e]x : τ2. Inductively applying the theorem then gives:

Γ3 ⊇ Γ2 (C.15)
Γ3 ` H ′ (C.16)

Φ∅; Γ3 ` v : τ2 (C.17)
ε3 ⊆ Φε

f (C.18)

From Φ1 � Φ2 � Φf ↪→ Φ we get Φε
1 ∪ Φε

2 ∪ Φε
f = Φε.

Finally, we have shown that:

Γ3 ⊇ Γ2 ⊇ Γ1 ⊇ Γ (C.19)
Γ3 ` H ′ (C.20)

Φ∅; Γ3 ` v : τ2 (C.21)
ε1 ∪ ε2 ∪ ε3 ⊆ Φε

1 ∪ Φε
2 ∪ Φε

f = Φε (C.22)
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case [REF] :
From assumptions:

[TREF]
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L}(τ)
(C.23)

Γ ` H (C.24)

[REF]

〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, v〉
r /∈ dom(H ′)

〈1, 1, H, refL e〉 ε−→ 〈1, 1, (H ′, r 7→ v), rL〉
(C.25)

Let H ′′ = (H ′, r 7→ v).

From the premises of the above derivations we can apply the theorem inductively
and get

Γ′ ⊇ Γ (C.26)
Φ∅; Γ

′ ` v : τ (C.27)
Γ′ ` H ′ (C.28)
ε ⊆ Φε (C.29)

From Γ′ ` H ′ and r /∈ dom(H ′) we have r /∈ dom(Γ′). So, we select Γ′′ = Γ′, r 7→
τ . Obviously Γ′′ ⊇ Γ′ ⊇ Γ, and Γ′′(r) = τ , from which we get

[TLOC]
Γ′′(r) = τ

Φ∅; Γ
′′ ` rL : ref {L}(τ)

Moreover, H ′′(r) = v. Also, dom(Γ′′) = dom(Γ′) ∪ {r} = dom(H ′) ∪ {r} =
dom(H ′′). From Lemma C.3.5 we get Φ∅; Γ

′′ ` v : τ , which means Φ∅; Γ
′′ `

H ′′(r) : Γ′′(r). It follows that Γ′′ ` H ′′.

case [DEREF] :
From assumptions:

[TDEREF]

Φ1; Γ ` e : ref ε1(τ)
Φε

2 = ε1

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ
(C.30)

Γ ` H (C.31)

[DEREF]

〈1, 1, H, e〉 ε−→ 〈1, 1 ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈1, 1, H, ! e〉 ε∪{L}−−−→ 〈1 ∪ {L}, 1, H ′, H ′(r)〉
(C.32)

By applying the theorem inductively we get

Γ′ ⊇ Γ (C.33)
Γ′ ` H ′ (C.34)

Φ∅; Γ
′ ` rL : ref ε(τ) (C.35)

ε ⊆ Φε
1 (C.36)
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From (C.35) and [TLOC] we have:

[TLOC]
Γ′(r) = τ

Φ∅; Γ
′ ` rL : ref {L}(τ)

which means {L} = ε1 and Γ′(r) = τ . From Φε
2 = ε1 = {L} and Φ1 � Φ2 ↪→ Φ

we have Φε = Φε
1 ∪Φε

2 = Φε
1 ∪{L}. Also, from Γ′ ` H ′ and r ∈ dom(H ′) we have

Φ∅; Γ
′ ` H ′(r) : Γ(r).

Then, for Γ′ it is the case that:

Γ′ ⊇ Γ (C.37)
Γ′ ` H ′ (C.38)

Φ∅; Γ
′ ` H ′(r) : τ (C.39)

ε ∪ {L} ⊆ Φε
1 ∪ {L} = Φε (C.40)

case [ASSIGN] :
From assumption

[TASSIGN]

Φ1; Γ ` e1 : ref ε(τ)
Φ2; Γ ` e2 : τ

Φε
3 = ε

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ
(C.41)

Γ ` H (C.42)

[ASSIGN]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, rL〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1 ∪ {L}, (H2, r 7→ v′), v〉

〈1, 1, H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈1 ∪ {L}, 1, (H2, r 7→ v), v〉

(C.43)

We apply the theorem inductively on the first premise:

Γ1 ⊇ Γ (C.44)
Γ1 ` H1 (C.45)

Φ∅; Γ1 ` rL : ref ε(τ) (C.46)
ε1 ⊆ Φε

1 (C.47)

From (C.46) and [TLOC] we have

[TLOC]
Γ1(r) = τ

Φ∅; Γ1 ` rL : ref {L}(τ)

So Φε
3 = ε = {L} and Γ1(r) = τ . From Γ1 ` H1 we have Φ∅; Γ1 ` H1(r) : τ .

We then apply the theorem inductively to the second premise:

Γ2 ⊇ Γ1 (C.48)
Γ2 ` (H2, r 7→ v′) (C.49)

Φ∅; Γ2 ` v : τ (C.50)
ε2 ⊆ Φε

2 (C.51)
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Using Lemma C.3.5 we get Φ1; Γ2 ` rL : ref {L}(τ). From (C.49) we get Φ∅; Γ2 `
v′ : τ . Therefore, dom(Γ2) = dom(H2, r 7→ v′) = dom(H2, r 7→ v). and for all
r′ ∈ dom(H2) ∪ {r}.Φ∅; Γ2 ` (H2, r 7→ v)(r′) : Γ2(r).

Finally:

Γ2 ⊇ Γ1 ⊇ Γ (C.52)
Γ2 ` (H2, r 7→ v) (C.53)

Φ∅; Γ2 ` v : τ (C.54)
ε1 ∪ ε2 ∪ {L} ⊆ Φε

1 ∪ Φε
2 ∪ Φε

3 = Φε (C.55)

case [IF-T] :
From assumption

[TIF]

Φ1; Γ ` e1 : int
Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ
(C.56)

Γ ` H (C.57)

[IF-T]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, v1〉

v1 = 0
〈1, 1, H1, e2〉

ε2−→ 〈1, 1, H2, v〉

〈1, 1, H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈1, 1, H2, v〉

(C.58)

We apply the theorem inductively to the first premise:

Γ1 ⊇ Γ (C.59)
Γ1 ` H1 (C.60)

Φ∅; Γ1 ` v1 : int (C.61)
ε1 ⊆ Φε

1 (C.62)

By Lemma C.3.5 and the second premise of [TIF] we have Φ2; Γ1 ` e2 : τ . So, we
can apply the theorem inductively to get:

Γ2 ⊇ Γ1 (C.63)
Γ2 ` H2 (C.64)

Φ∅; Γ2 ` v : τ (C.65)
ε2 ⊆ Φε

2 (C.66)

From Φ1 � Φ2 ↪→ Φ we have Φε = Φε
1 ∪ Φε

2

Finally we show

Γ2 ⊇ Γ1 ⊇ Γ (C.67)
Γ2 ` H2 (C.68)

Φ∅; Γ2 ` v : τ (C.69)
ε1 ∪ ε2 ⊆ Φε

1 ∪ Φε
2 = Φε (C.70)
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case [IF-F] :
Similar to the above.

case [LET] :
Similar to [CALL].

case [CALL-W] :
Assume:

[TAPP]

Φ1; Γ ` e1 : τ1 →Φf τ2
Φ2; Γ ` e2 : τ1

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
(C.71)

Γ ` H (C.72)

[CALL-W]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H ′, v〉

v 6= λx.e

〈1, 1, H, e1 e2〉
∅−→ 〈1, 1, H, err〉

(C.73)

We apply the theorem recursively to the first premise:

Γ′ ⊇ Γ (C.74)
Γ′ ` H ′ (C.75)

Φ∅; Γ
′ ` v : τ1 →Φf τ2 (C.76)

ε1 ⊆ Φε
1 (C.77)

Then the only rule that can create a derivation for (C.76) is [TLAM], meaning v =
λx.e. But we have v 6= λx.e, a contradiction. Therefore, there is no derivation for
〈1, 1, H, e1 e2〉

∅−→ 〈1, 1, H, err〉 when Γ ` H and Φ; Γ ` e1 e2 : τ2.

case [IF-W] :
Assume:

[TIF]

Φ1; Γ ` e1 : int
Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ
(C.78)

Γ ` H (C.79)

[IF-W]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, v1〉

v1 6= n

〈1, 1, H, if0 e1 then e2 else e3〉
∅−→ 〈1, 1, H, err〉

(C.80)
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We apply the theorem recursively to the first premise:

Γ′ ⊇ Γ (C.81)
Γ′ ` H ′ (C.82)

Φ∅; Γ
′ ` v1 : int (C.83)
ε1 ⊆ Φε

1 (C.84)

Then the only rule that can create a derivation for (C.83) is [TINT], meaning v1 = n.
But we have v1 6= n, a contradiction.

case [DEREF-H-W] :
Proof by contradiction, similar to the previous case. Assume there is a derivation
that evaluates to err, under the assumptions:

[TDEREF]

Φ1; Γ ` e : ref ε1(τ)
Φε

2 = ε1

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ
(C.85)

Γ ` H (C.86)

[DEREF-H-W]

〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, rL〉
r /∈ dom(H ′)

〈1, 1, H, ! e〉 ∅−→ 〈1, 1, H, err〉
(C.87)

We apply the theorem inductively to the premise:

Γ′ ⊇ Γ (C.88)
Γ′ ` H ′ (C.89)

Φ∅; Γ
′ ` rL : ref ε1(τ) (C.90)

ε ⊆ Φε
1 (C.91)

(C.92)

From (C.89) and [TLOC] we have r ∈ dom(Γ′). Then (C.89) gives r ∈ dom(H ′).
But we have that r /∈ dom(H ′), a contradiction. Therefore, there is no derivation
for 〈1, 1, H, ! e〉 ∅−→ 〈1, 1, H, err〉 that ends by [DEREF-H-W] when Γ ` H and
Φ; Γ ` e1 e2 : τ2.

case [DEREF-L-W] :

[DEREF-L-W]

〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, rL〉
r ∈ dom(H ′)

L /∈ 1

〈1, 1, H, ! e〉 ∅−→ 〈1, 1, H, err〉
It is obvious that this rule cannot be applied, as L /∈ 1 is tautologically false.
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case [ASSIGN-H-W] :

[TASSIGN]

Φ1; Γ ` e1 : ref ε(τ)
Φ2; Γ ` e2 : τ

Φε
3 = ε

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ
(C.93)

Γ ` H (C.94)

[ASSIGN-H-W]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, rL〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1, H2, v〉

r /∈ dom(H2)

〈1, 1, H, e1 := e2〉
∅−→ 〈1, 1, H, err〉

(C.95)

Similarly to the case for [DEREF-H-W], we apply the theorem inductively on the
first premise:

Γ1 ⊇ Γ (C.96)
Γ1 ` H1 (C.97)

Φ∅; Γ1 ` rL : ref ε(τ) (C.98)
ε1 ⊆ Φε

1 (C.99)

From Lemma C.3.5 we get Φ2; Γ1 ` e2 : τ and apply the theorem on the second
premise:

Γ2 ⊇ Γ1 (C.100)
Γ2 ` H2 (C.101)

Φ∅; Γ2 ` v : τ (C.102)
ε2 ⊆ Φε

2 (C.103)

From (C.98) and [TLOC] we have r ∈ dom(Γ1). Then from (C.100) we have that
dom(Γ1) ⊆ dom(Γ2) and from (C.101) we get dom(Γ2) = dom(H2). It follows
that r ∈ dom(H2). But we have r /∈ dom(H2) from hypothesis, a contradiction.
Therefore, there is no derivation for 〈1, 1, H, e1 := e2〉

∅−→ 〈1, 1, H, err〉 that ends
by [ASSIGN-H-W] when Γ ` H and Φ; Γ ` e1 := e2 : τ .

case [ASSIGN-L-W] :

[ASSIGN-L-W]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, rL〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1, (H2, r 7→ v′), v〉
L /∈ 1

〈1, 1, H, e1 := e2〉
∅−→ 〈1, 1, H, err〉

It is obvious that this rule cannot be applied, as L /∈ 1 is tautologically false.

2
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C.3 Auxiliarry lemmas and definitions

Lemma C.3.1 (Weakening of evaluation sub-derivations) Given a derivation 〈α, ω,H, e〉 ε−→
〈α′, ω′, H ′, v〉, there exists a derivation 〈α∪αw, ω∪ωw, H, e〉

ε−→ 〈α′∪αw, ω′∪ωw, H ′, v〉,

Proof: Proof by induction on the derivation.

case [ID] :
Given

[ID]
〈α, ω,H, v〉 ∅−→ 〈α, ω,H, v〉

then we can apply [ID] again:

[ID]
〈α ∪ αw, ω ∪ ωw, H, v〉

∅−→ 〈α ∪ αw, ω ∪ ωw, H, v〉

case [CALL] :

[CALL]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, λx.e〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈α′, ω′, H ′, v〉

〈α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈α′, ω′, H ′, v〉

Assuming the lemma holds for the premises:

〈α ∪ αw, ω ∪ ωw, H, e1〉
ε1−→ 〈α1 ∪ αw, ω1 ∪ ωw, H1, λx.e〉 (C.104)

〈α1 ∪ αw, ω1 ∪ ωw, H1, e2〉
ε2−→ 〈α2 ∪ αw, ω2 ∪ ωw, H2, v2〉 (C.105)

〈α2 ∪ αw, ω2 ∪ ωw, H2, [v2 7→ e]x〉 ε3−→ 〈α′ ∪ αw, ω′ ∪ ωw, H ′, v〉 (C.106)

From these, we can apply [CALL] again to get the wanted

〈α ∪ αw, ω ∪ ωw, H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈α′ ∪ αw, ω′ ∪ ωw, H ′, v〉

case [REF] :

[REF]

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈α, ω,H, refL e〉 ε−→ 〈α′, ω′, (H ′, r 7→ v), rL〉
Assuming the lemma holds for the premise:

〈α ∪ αw, ω ∪ αw, H, e〉
ε−→ 〈α′ ∪ αw, ω′ ∪ αw, H ′, v〉

we can then apply [REF] again to get

〈α ∪ αw, ω ∪ ωw, H, refL e〉 ε−→ 〈α′ ∪ αw, ω′ ∪ ωw, (H, r 7→ v), rL〉
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case [DEREF] :

[DEREF]

〈α, ω,H, e〉 ε−→ 〈α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈α, ω,H, ! e〉 ε∪{L}−−−→ 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉
Assuming the lemma holds for the premise we have:

〈α ∪ αw, ω ∪ ωw, H, e〉
ε−→ 〈α′ ∪ αw, ω′ ∪ {L} ∪ ωw, H ′, rL〉

Then we can apply [DEREF] again to get the weakened derivation.

case [ASSIGN] :

case [IF-T] :

case [IF-F] :

case [LET] :
These cases are similar.

2

Lemma C.3.2 (Canonical Derivation) If and only if 〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, v〉 then
there exists a derivation 〈∅, ω,H, e〉 ε−→ 〈α, ∅, H ′, v〉, and also ω = α = ε.

Proof: The only-if case trivially follows from C.3.1 by adding 1 to both α and ω in the
given derivation. We prove the if case by induction on the derivation:

case [ID] :
Given

[ID]
〈1, 1, H, v〉 ∅−→ 〈1, 1, H, v〉

then it is also the case that

[ID]
〈∅, ∅, H, v〉 ∅−→ 〈∅, ∅, H, v〉

case [CALL] :

[CALL]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, λx.e〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1, H2, v2〉

〈1, 1, H2, [v2 7→ e]x〉 ε3−→ 〈1, 1, H ′, v〉

〈1, 1, H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈1, 1, H ′, v〉
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Assuming the lemma holds for the premises:

〈∅, ε1, H, e1〉
ε1−→ 〈ε1, ∅, H1, λx.e〉 (C.107)

〈∅, ε2, H1, e2〉
ε2−→ 〈ε2, ∅, H2, v2〉 (C.108)

〈∅, ε3, H2, [v2 7→ e]x〉 ε3−→ 〈ε3, ∅, H ′, v〉 (C.109)

Then from Lemma C.3.1 we get:

〈∅, ε1 ∪ ε2 ∪ ε3, H, e1〉
ε1−→ 〈ε1, ε2 ∪ ε3, H1, λx.e〉 (C.110)

〈ε1, ε2 ∪ ε3, H1, e2〉
ε2−→ 〈ε1 ∪ ε2, ε3, H2, v2〉 (C.111)

〈ε1 ∪ ε2, ε3, H2, [v2 7→ e]x〉 ε3−→ 〈ε1 ∪ ε2 ∪ ε3, ∅, H ′, v〉 (C.112)

Then we can apply [CALL] again to get

〈∅, ε1 ∪ ε2 ∪ ε3, H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈ε1 ∪ ε2 ∪ ε3, ∅, H ′, v〉

case [REF] :

[REF]

〈1, 1, H, e〉 ε−→ 〈1, 1, H ′, v〉
r /∈ dom(H ′)

〈1, 1, H, refL e〉 ε−→ 〈1, 1, (H ′, r 7→ v), rL〉
Assuming the lemma holds for the premise, we can apply [REF] again and get

〈∅, ε,H, refL e〉 ε−→ 〈ε, ∅, (H, r 7→ v), rL〉

case [DEREF] :

[DEREF]

〈1, 1, H, e〉 ε−→ 〈1, 1 ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈1, 1, H, ! e〉 ε∪{L}−−−→ 〈1 ∪ {L}, 1, H ′, H ′(r)〉
We write 1 ∪ {L} for clarity in the premise, however L ∈ 1 so 1 ∪ {L} = 1.
Assuming the lemma holds for the premise we have:

〈∅, ε,H, e〉 ε−→ 〈ε, ∅, H ′, rL〉

We apply Lemma C.3.1 to get

〈∅, ε ∪ {L}, H, e〉 ε−→ 〈ε, ∅ ∪ {L}, H ′, rL〉

Then, we can apply [DEREF] again to get:

〈∅, ε ∪ {L}, H, ! e〉 ε∪{L}−−−→ 〈ε ∪ {L}, ∅, H ′, H ′(r)〉
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case [ASSIGN] :

[ASSIGN]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, rL〉

〈1, 1, H1, e2〉
ε2−→ 〈1, 1 ∪ {L}, (H2, r 7→ v′), v〉

〈1, 1, H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈1 ∪ {L}, 1, (H2, r 7→ v), v〉

where obviously 1 ∪ {L} = 1, since L ∈ 1. Assuming the lemma holds for the
premises we get:

〈∅, ε1, H, e1〉
ε1−→ 〈ε1, ∅, H1, rL〉 (C.113)

〈∅, ε2, H1, e2〉
ε2−→ 〈ε2, ∅, (H2, r 7→ v′), v〉 (C.114)

Applying Lemma C.3.1 we get:

〈∅, ε1 ∪ ε2 ∪ {L}, H, e1〉
ε1−→ 〈ε1, ε2 ∪ {L}, H1, rL〉 (C.115)

〈ε1, ε2 ∪ {L}, H1, e2〉
ε2−→ 〈ε1 ∪ ε2, {L}, (H2, r 7→ v′), v〉 (C.116)

Then we can apply [ASSIGN] again to get:

〈∅, ε1 ∪ ε2 ∪ {L}, H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈ε1 ∪ ε2 ∪ {L}, ∅, (H2, r 7→ v), v〉

case [IF-T] :

[IF-T]

〈1, 1, H, e1〉
ε1−→ 〈1, 1, H1, v1〉

v1 = 0
〈1, 1, H1, e2〉

ε2−→ 〈1, 1, H2, v〉

〈1, 1, H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈1, 1, H2, v〉

Assuming the lemma holds for the premises we have:

〈∅, ε1, H, e1〉
ε1−→ 〈ε1, ∅, H1, v1〉 (C.117)

〈∅, ε2, H1, e2〉
ε2−→ 〈ε2, ∅, H2, v〉 (C.118)

We can transform these with Lemma C.3.1 to:

〈∅, ε1 ∪ ε2, H, e1〉
ε1−→ 〈ε1, ε2, H1, v1〉 (C.119)

〈ε1, ε2, H1, e2〉
ε2−→ 〈ε1 ∪ ε2, ∅, H2, v〉 (C.120)

then we apply [IF-T] again to get:

〈∅, ε1 ∪ ε2, H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈ε1 ∪ ε2, ∅, H2, v〉

case [IF-F] :
Similar to the above.
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case [LET] :
Similar to [CALL].

2

Lemma C.3.3 (Adequacy of Semantics) If

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉

then

1. α′ = α ∪ ε

2. ω = ω′ ∪ ε

Proof: Proof by induction on the evaluation derivation.

case [ID] :

[ID]
〈α, ω,H, v〉 ∅−→ 〈α, ω,H, v〉

Obviously, α = α ∪ ∅, ω = ω ∪ ∅.

case [CALL] :

[CALL]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, λx.e〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈α′, ω′, H ′, v〉

〈α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈α′, ω′, H ′, v〉

Assuming the lemma holds for the premises, we have:

α1 = α ∪ ε1 (C.121)
α2 = α1 ∪ ε2 (C.122)
α′ = α2 ∪ ε3 (C.123)
ω = ω1 ∪ ε1 (C.124)
ω1 = ω2 ∪ ε2 (C.125)
ω2 = ω′ ∪ ε3 (C.126)

From (C.123), (C.122), (C.121) we have α′ = α2 ∪ ε3 = (α1 ∪ ε2)∪ ε3 = α∪ ε1 ∪
ε2 ∪ ε3.

Similarly, from (C.124), (C.125), (C.126) we get: ω = ω′ ∪ ε1 ∪ ε2 ∪ ε3.
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case [REF] :

[REF]

〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈α, ω,H, refL e〉 ε−→ 〈α′, ω′, (H ′, r 7→ v), rL〉

This case is trivially proven by induction hypothesis for the premise.

case [DEREF] :

[DEREF]

〈α, ω,H, e〉 ε−→ 〈α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈α, ω,H, ! e〉 ε∪{L}−−−→ 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

From induction hypothesis we have:

α′ = α ∪ ε (C.127)
ω = (ω′ ∪ {L}) ∪ ε (C.128)

By adding {L} to both sides of the above equations and parenthesizing for read-
ability, we get

α′ ∪ {L} = α ∪ (ε ∪ {L}) (C.129)
ω = ω′ ∪ (ε ∪ {L}) (C.130)

which proves the case.

case [ASSIGN] :

[ASSIGN]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, rL〉

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω,H, e1 := e2〉
ε1∪ε2∪{L}−−−−−−→ 〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

From the induction hypothesis we have:

α1 = α ∪ ε1 (C.131)
α2 = α1 ∪ ε2 (C.132)
ω = ω1 ∪ ε1 (C.133)

ω1 = (ω2 ∪ {L}) ∪ ε2 (C.134)

From the first two we have α2 = α∪ε1∪ε2 therefore α2∪{L} = α∪ε1∪ε2∪{L}.

From the second two we have ω = ω2 ∪ ε1 ∪ ε2 ∪ {L}.
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case [IF-T] :

[IF-T]

〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, v1〉 v1 = 0

〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v〉

〈α, ω,H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈α2, ω2, H2, v〉

From induction on the premises we have

α1 = α ∪ ε1 (C.135)
α2 = α1 ∪ ε2 (C.136)
ω = ω1 ∪ ε1 (C.137)
ω1 = ω2 ∪ ε2 (C.138)

The first two give α2 = α ∪ ε1 ∪ ε2

The last two give ω = ω2 ∪ ε1 ∪ ε2

case [IF-F] :
Similar to the above.

case [LET] :
Similar to [CALL].

2

Lemma C.3.4 (Substitution) If

Φ; Γ, x : τ ` e : τ ′

Φ∅; Γ ` v : τ

then
Φ; Γ ` [v 7→ e]x : τ ′

Proof: Proof is straightforward by induction on the typing derivation. 2

Lemma C.3.5 (Weakening of environment) If Φ; Γ ` e : τ and Γ′ ⊇ Γ then Φ; Γ′ ` e :
τ .

Proof: Proof is straightforward by induction on the typing derivation. 2

Definition C.3.6 (Canonical typing) We say that a typing derivation is canonical when

1. It ends with [TSub] and the rule above [TSub] is not [TSub] again

2. All sub-derivations of the rule above [TSub] are canonical.

Lemma C.3.7 (Construct canonical typing) If there exists a typing derivation proving
the judgment Φ; Γ ` e : τ then there exists a canonical typing derivation that proves it as
well.

198



Proof: Trivial. 2

Definition C.3.8 (Substitution) Given Te :: [Φe; Γ, x : τ ` e : τ ′] and a canonical typing
derivation Tv :: [Φ∅; Γ ` v : τ ], we define a substitution algorithm

SUBST ([Te] , [Tv])

that constructs a canonical typing derivation for

Φe; Γ ` [v 7→ e]x : τ ′

based on the substitution lemma.

SUBST ([Φ; Γ, x : τ ` n : int ] , [Φ∅; Γ ` v : τ ]) =
[TSUB]

[TINT]
Φ∅; Γ ` n : int
Φ∅ ≤ Φ

int ≤ int

Φ; Γ ` n : int



SUBST

[Φ; Γ, x : τ ` x : τ ] ,

[TSUB]

T ′
v :: Φ∅; Γ ` v : τ ′

Φ∅ ≤ Φ∅
τ ′ ≤ τ

Tv :: Φ∅; Γ ` v : τ



 =

[TSUB]

T ′
v :: Φ∅; Γ ` v : τ ′

Φ∅ ≤ Φ
τ ′ ≤ τ

Φ; Γ ` v : τ


SUBST

([
[TVAR]

(Γ, x : τ)(y) = τ ′

Φ∅; Γ, x : τ ` y : τ ′

]
, [Φ∅; Γ ` v : τ ]

)
where x 6= y =

[TSUB]

[TVAR]
Γ(y) = τ ′

Φ∅; Γ ` y : τ ′

Φ∅ ≤ Φ∅
τ ′ ≤ τ ′

Φ∅; Γ ` y : τ ′


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SUBST



[TAPP]

T1 :: Φ1; Γ, x : τ ` e1 : τ1 →Φf τ2
T2 :: Φ2; Γ, x : τ ` e2 : τ1

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ, x : τ ` e1 e2 : τ2

 , [Tv :: Φ∅; Γ ` v : τ ]

 =

[TAPP]

SUBST ([T1] , [Tv])
SUBST ([T2] , [Tv])

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` [v 7→ e1 e2]x : τ2


The other cases are similar and follow the substitution lemma.

Definition C.3.9 (Weakening) Similarly to substitution, we define a weakening function,
that constructs a weakened typing derivation using a given Γ′ (following the structure of
the proof of the weakening lemma):

WEAKEN ([Φ; Γ ` e : τ ] ,Γ′) = (Φ; Γ′ ` e : τ)

Given Γ′ ⊇ Γ, we define:

WEAKEN ([Φ; Γ ` n : int ] ,Γ′) =(
[TINT]

Φ; Γ′ ` n : int

)

WEAKEN

([
[TVAR]

Γ(x) = τ

Φ; Γ ` x : τ

]
,Γ′

)
=(

[TVAR]
Γ′(x) = τ

Φ; Γ′ ` x : τ

)

WEAKEN



[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2
T2 :: Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

 ,Γ
′

 =

[TAPP]

WEAKEN ([T1] ,Γ
′)

WEAKEN ([T2] ,Γ
′)

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ′ ` e1 e2 : τ2


The other cases are similar.
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C.4 Soundness proof strategy
To prove the soundness of the contextual effect system, we must show that the effect

Φ of a term e approximates the trace α and promise ω of its evaluation. Note, however,
that as the program reduces to a value, individual subterms might change through substi-
tutions. It is therefore not always obvious which Φ in the typing derivation for the original
term corresponds to a subterm produced during evaluation. To make this connection ex-
plicit, we define a typed operational semantics that annotates each state in the evaluation
with a typing derivation. Our semantics is “natural,” in the sense that as subterms are
modified by substitutions, our semantics “preserves” the Φ associated with them.

Note that since the terms might change during evaluation, the typing derivations
that we use to annotate the evaluation need not be parts of the original typing—but the
Φ’s that show up in the new typings always are. By defining this new semantics, we can
easily express soundness for contextual effects: the Φ assigned to an evaluated term by
our semantics always over-approximates the α and ω for the term at runtime. To show
the soundness property is not vacuous, we also need to show that we can always construct
such a typed operational semantics derivation, given any ordinary evaluation derivation
and typing derivation.

C.5 Typed operational semantics
Typed evaluations have the form:

〈T, α, ω,H, e〉 ∅−→ 〈T ′, α′, ω′, H ′, v〉

where T is a canonical typing derivation for the expression e that is evaluated:

Φ; Γ ` e : τ

and T ′ is a canonical typing derivation for the result of the evaluation:

Φ∅; Γ
′ ` v : τ

Since T is a canonical derivation, it must end with an application of [TSUB] which
follows the “normal” typing of the value v. Since v is a value, T ′ can always use Φ∅ to
type it, which simplifies the rules. The new environment Γ′ is not in general the same as Γ,
because it might contain extra typings for pointers r that are created during the evaluation
of e, but we will show that it is always a superset of Γ. The type of the value is always the
same as the type τ of e.

Fig. C.1 presents the typed evaluation rule for values. As in the untyped operational
semantics, a value v evaluates to itself without changing the state of the heap, or the
trace or promise sets. We have added a typing T in the input state and a typing T ′ in the
output state. Note that we list the constraints on typing derivations T and T ′ after the
rule, even though they are actually premises of the rule, to improve readability and reduce
the complexity of the presentation. We follow this practice for the rest of the annotated
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[ID-A]
〈T, α, ω,H, v〉 ∅−→ 〈T ′, α, ω,H, v〉

where

[TSUB]

Φ∅; Γ ` v : τ ′

τ ′ ≤ τ
Φ∅ ≤ Φ

T :: Φ; Γ ` v : τ

and
T ′ :: Φ∅; Γ ` v : τ

Figure C.1: Typed operational semantics for values

evaluation rules, writing the constraints on typing derivations T that annotate states after
the rule as side conditions.

A more interesting case is the rule for typed semantics of the evaluation of function
calls [CALL-A], shown in Fig. C.2. As before, we annotate the first and last state of
each evaluation (both in the conclusion and the premises of the rule) with a typing. For
the conclusion, we require the typing T of the application to be canonical (ending with
[TSUB], followed by [TAPP]). We require the typing for the evaluation of e1 in the first
premise to be the same as in the premise of T , this way forcing Φ1 to be the same between
the typing of e1 in the premise and the typing of e1 as a subterm of the conclusion. Note
that this constraint is essentially the definition of which Φ in the typing of the super-term
is the “correct” one to use for a subterm. In other words, this constraint specifies that Φ1

in the typing T is the effect of the evaluation of e1. This way, we assign static effects Φ
from the static typing of a term to the evaluations of its sub-terms. We can then prove that
this assignment is indeed sound, i.e. the Φ1 we selected for the evaluation of e1 provides
a sound approximation for the actual contextual effect of the evaluation of e1.

We require the typing T ′
1 of the result of the first premise to be canonical (ending

with [TSUB]) followed by [TLAM] since the result is a lambda-term. The typing T ′
1 uses

environment Γ′ which will be a superset of Γ, possibly with extra bindings. We annotate
the second premise of the typed evaluation with a typing T2, constructed by weakening
T1 to use Γ′. The partial function WEAKEN ([] , ) is only applicable when Γ′ ⊇ Γ. We
cannot directly use T2 to annotate the initial state of the second premise, because we need
to maintain the invariant that the environment in each state types all the locations of the
heap at that state. For that reason we constrain T ′

2 to be a weakened version of T2, and later
prove that Γ′ is always a superset of Γ and therefore the weakening is well defined and T ′

2

is a valid derivation. In any case T2 and T ′
2 share the same Φ2 from the original typing,

which we later prove that correctly approximates the contextual effects of the evaluation
in the second premise.

As before, we annotate the resulting state of the second premise with a canonical
derivation T ′′

2 , which types the resulting value v2 under environment Γ2 to produce the
same type τ1 as T2. As before, we do not need to constrain Γ2, since we can prove that
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Γ2 ⊇ Γ1.
Interestingly, the third premise of the [CALL] evaluation does not reduce a term

that exists in the super-term, but instead the term that results from substituting x with v
in e, where e is the body of the lambda term of the first premise. Therefore, there is no
straightforward way to use an existing typing derivation from the sub-derivations of T to
annotate the third evaluation. Instead, we construct the correct typing derivation from the
premises of Tf (the typing of the lambda term) and T ′′

2 (the typing of v2). We define a
partial function SUBST ([T ] , [T ′]) that constructs a typing for [x 7→ e]v given appropriate
typings for e and v, similarly to the weakening function. We later prove that it can be
applied and will construct a typing for the term under Φf , the effect used to type the body
of the function in T ′

1. Note that this is one of the few cases where we need the typing
that annotates the result of a typed evaluation. Finally, we annotate the result of the third
premise of the evaluation with Tv, a typing of v under Φ∅ and Γ3, which we will show is
a superset of Γ2, to give the same type τ ′ as T .

Definition C.5.1 (Consistent type state) A typed operational semantics state

〈T, α, ω,H, e〉

where
T :: Φ; Γ ` e : τ

is consistent, written
` 〈T, α, ω,H, e〉

if
Γ ` H

C.6 Soundness proof
Lemma C.6.1 (Environment grows, types do not) If

〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

and
T :: Φ; Γ ` e : τ

and
Tv :: Φ′; Γ′ ` v : τ ′

then
Γ′ ⊇ Γ

and
τ = τ ′
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[CALL-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈T ′

1, α1, ω1, H1, λx.e〉
〈T ′

2, α1, ω1, H1, e2〉
ε2−→ 〈T ′′

2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈Tv, α′, ω′, H ′, v〉

〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2
T2 :: Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
τ2 ≤ τ ′ Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

[TSUB]

[TLAM]
Tf :: Φ′

f ; Γ1, x : τ ′1 ` e : τ ′2

Φ∅; Γ1 ` λx.e : τ ′1 →
Φ′

f τ ′2
τ ′1 →

Φ′
f τ ′2 ≤ τ1 →Φf τ2 Φ∅ ≤ Φ∅

T ′
1 :: Φ∅; Γ1 ` λx.e : τ1 →Φf τ2

T ′
2 = WEAKEN ([T2] ,Γ1)

[TSUB]

Tv2 :: Φ∅; Γ2 ` v2 : τ ′′1
τ ′′1 ≤ τ1 Φ∅ ≤ Φ∅

T ′′
2 :: Φ∅; Γ2 ` v2 : τ1

T ′
f = WEAKEN ([Tf ] , (Γ2, x : τ ′1))

T3 is SUBST





T ′
f :: Φ′

f ; Γ2, x : τ ′1 ` e : τ ′2
τ ′2 ≤ τ2 ≤ τ ′

Φ′
f ≤ Φf

Φf ; Γ2, x : τ ′1 ` e : τ ′

 ,


Tv2 :: Φ∅; Γ2 ` v2 : τ ′′1
τ ′′1 ≤ τ1 ≤ τ ′1

Φ∅ ≤ Φ∅

Φ∅; Γ2 ` v2 : τ ′1




and

Tv :: Φ∅; Γ3 ` v : τ ′

Figure C.2: Typed operational semantics for function call
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[REF-A]

〈T1, α, ω,H, e〉
ε−→ 〈Tv, α′, ω′, H ′, v〉

r /∈ dom(H ′)

〈T, α, ω,H, refL e〉 ε−→ 〈Tr, α′, ω′, (H ′, r 7→ v), rL〉
where

[TSUB]

[TREF]
T1 :: Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L}(τ)
ref {L}(τ) ≤ ref ε(τ ′)

Φ ≤ Φ′

T :: Φ′; Γ ` refL e : ref ε(τ ′)

and
Tv :: Φ∅; Γ

′ ` v : τ

and

[TSUB]

Φ∅; (Γ1, r 7→ τ) ` rL : ref {L}(τ)
Φ∅ ≤ Φ∅

ref {L}(τ) ≤ ref ε(τ ′)

Tr :: Φ∅; (Γ1, r 7→ τ) ` rL : ref {ε}(τ ′)

Figure C.3: Typed operational semantics for reference

Proof: Trivial. 2

Lemma C.6.2 (Consistent typed states) If

〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

and
` 〈T, α, ω,H, e〉

then
` 〈Tv, α′, ω′, H ′, v〉

Proof:

case [ID-A] :
Given

〈T, α, ω,H, v〉 ε−→ 〈T, α, ω,H, v〉

and
` 〈T, α, ω,H, v〉

then obviously
` 〈T, α, ω,H, v〉
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[DEREF-A]

〈T1, α, ω,H, e〉
ε−→ 〈Tr, α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈T, α, ω,H, ! e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉
where

[TSUB]

[TDEREF]

T1 :: Φ1; Γ ` e : ref ε(τ ′)
Φε

2 = ε
Φ1 � Φ2 ↪→ Φ′

Φ′; Γ ` ! e : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

T :: Φ; Γ ` ! e : τ

and

[TSUB]

[TLOC]
Γ′(r) = τ

Φ∅; Γ
′ ` rL : ref {L}(τ)

Φ∅ ≤ Φ∅
ref {L}(τ) ≤ ref ε(τ ′)

Tr :: Φ∅; Γ
′ ` rL : ref ε(τ ′)

and
Tv = Φ∅; Γ

′ ` v : τ

Figure C.4: Typed operational semantics for dereference
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[IF-T-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tv1 , α1, ω1, H1, v1〉

v1 = 0 〈T ′
2, α1, ω1, H, e2〉

ε1−→ 〈Tv, α2, ω2, H2, v〉

〈T, α, ω,H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈Tv, α2, ω2, H2, v〉

where

[TIF]

T1 :: Φ1; Γ ` e1 : int T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ Φ1 � Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ

Tv1 :: Φ∅; Γ1 ` v1 : int

T ′
2 = WEAKEN ([T2] ,Γ1)

Tv :: Φ∅; Γ2 ` v : τ

[IF-F-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tv1 , α1, ω1, H1, v1〉

v1 6= 0 〈T ′
2, α1, ω1, H, e3〉

ε2−→ 〈Tv, α2, ω2, H2, v〉

〈T, α, ω,H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈Tv, α2, ω2, H2, v〉

where

[TIF]

T1 :: Φ1; Γ ` e1 : int T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ Φ1 � Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ

Tv1 :: Φ∅; Γ1 ` v1 : int

T ′
2 = WEAKEN ([T2] ,Γ1)

Tv :: Φ∅; Γ2 ` v : τ

Figure C.5: Typed operational semantics for conditional
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[LET-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tv1 , α1, ω1, H1, v1〉

〈T ′
2, α1, ω1, H1, [v1 7→ e2]x〉

ε2−→ 〈Tv, α′, ω′, H ′, v〉

〈T, α, ω,H, let x = e1 in e2〉
ε1∪ε2−−−→ 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1
T2 :: Φ2; Γ, x : τ1 ` e2 : τ2

Φ1 � Φ2 ↪→ Φ′

Φ′; Γ ` let x = e1 in e2 : τ2
τ2 ≤ τ
Φ′ ≤ Φ

T :: Φ; Γ ` let x = e1 in e2 : τ

and
Tv1 :: Φ∅; Γ1 ` v1 : τ1

and
Tv :: Φ∅; Γ2 ` v : τ2

and
T ′

2 = WEAKEN ([T2] , (Γ1, x : τ1))

and
T ′′

2 = SUBST ([T ′
2] , [Tv1 ])

Figure C.6: Typed operational semantics for let
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case [CALL-A] :
Given

[CALL-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈T ′

1, α1, ω1, H1, λx.e〉
〈T ′

2, α1, ω1, H1, e2〉
ε2−→ 〈T ′′

2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈Tv, α′, ω′, H ′, v〉

〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2
T2 :: Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
τ2 ≤ τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

and
` 〈T, α, ω,H, e1 e2〉

we have
Γ ` H

From that and T1 we have
` 〈T1, α, ω,H, e1〉

Therefore, by induction we get

` 〈T ′
1, α1, ω1, H1, λx.e〉

where
T ′

1 :: Φ∅; Γ1 ` λx.e : τ1 →Φf τ2

which gives
Γ1 ` H1

and
Tf :: Φ′

f ; Γ, x : τ ′1 ` e : τ ′2

Also, lemma C.6.1 gives Γ1 ⊇ Γ, therefore

T ′
2 = WEAKEN ([T2] ,Γ1)

gives
` 〈T ′

2, α1, ω1, H1, e2〉

By induction we get
` 〈T ′′

2 , α2, ω2, H2, v2〉

where
T ′′

2 :: Φ∅; Γ2 ` v2 : τ1
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Γ2 ` H2

and lemma C.6.1 gives Γ2 ⊇ Γ1, therefore

T ′
f = WEAKEN ([Tf ] ,Γ2, x : τ ′1)

is
T ′
f :: Φ′

f ; Γ2, x : τ ′1 ` e : τ ′2

From T ′′
2 and τ1 ≤ τ ′1 we get

T ′′′
2 :: Φ∅; Γ2 ` v2 : τ ′1

Then with
T3 = SUBST

([
T ′
f

]
, [T ′′′

2 ]
)

we have
` 〈T3, α2, ω2, H2, [v2 7→ e]x〉

and by induction
` 〈Tv, α′, ω′, H ′, v〉

case [REF-A] :
Given

[REF-A]

〈T1, α, ω,H, e〉
ε−→ 〈Tv, α′, ω′, H ′, v〉

r /∈ dom(H ′)

〈T, α, ω,H, refL e〉 ε−→ 〈Tr, α′, ω′, (H ′, r 7→ v), rL〉

and
` 〈T, α, ω,H, refL e〉

Similarly to the above, we get

` 〈T1, α, ω,H, e〉

and by induction
` 〈Tv, α′, ω′, H ′, v〉

where Tv :: Φ∅; Γ
′ ` v : τ . Then for Γ′′ = (Γ′, r 7→ τ H ′′ = (H ′, r 7→ v) we have

Γ′′ ` H ′′ Also Γ′′ ⊇ Γ′ and from lemma C.6.1 we get Γ′ ⊇ Γ, therefore

` 〈Tr, α′, ω′, H ′′, rL〉

case Other :
The remaining cases are similar.

2
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Lemma C.6.3 (A typed evaluation derivation exists) If

T :: Φ; Γ ` e : τ

and
D :: 〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉

and
` 〈α, ω,H, e〉

then there exists Tv such that

〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

Proof:
case [ID] :

Given
T :: Φ; Γ ` v : τ

and
D :: 〈α, ω,H, v〉 ∅−→ 〈α, ω,H, v〉

From [ID-A] we get

〈T, α, ω,H, v〉 ∅−→ 〈T, α, ω,H, v〉

case [CALL] :
The assumptions are:

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2
T2 :: Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
τ2 ≤ τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

and

[CALL]

D1 :: 〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, λx.e〉

D2 :: 〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v2〉

D3 :: 〈α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈α′, ω′, H ′, v〉

D :: 〈α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈α′, ω′, H ′, v〉

and Γ ` H . From T1,D1 and Γ ` H , by induction we have: E1 :: 〈T1, α, ω,H, e1〉
ε1−→

〈T ′
1, α1, ω1, H1, λx.e〉 where

[TSUB]

[TLAM]
Tf :: Φ′

f ; Γ1, x : τ ′1 ` e : τ ′2

Φ∅; Γ1 ` λx.e : τ ′1 →
Φ′

f τ ′2
τ ′1 →

Φ′
f τ ′2 ≤ τ1 →Φf τ2
Φ∅ ≤ Φ∅

T ′
1 :: Φ∅; Γ1 ` λx.e : τ1 →Φf τ2
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is a canonical typing, Γ1 ⊇ Γ and Γ1 ` H1.

From T2 and Γ1 ⊇ Γ we get T ′
2 = WEAKEN ([T2] ,Γ1).

From T ′
2, D2, and Γ1 ` H1, we get by induction: E2 :: 〈T ′

2, α1, ω1, H1, e2〉
ε2−→

〈Tv2 , α2, ω2, H2, v2〉 where Tv2 :: Φ∅; Γ2 ` v2 : τ1, Γ2 ⊇ Γ1 and Γ2 ` H2.

From τ ′1 →
Φ′

f τ ′2 ≤ τ1 →Φf τ2 we get τ1 ≤ τ ′1, τ ′2 ≤ τ2 and Φ′
f ≤ Φf , therefore

[TSUB]

Tv2 :: Φ∅; Γ2 ` v2 : τ1
τ1 ≤ τ ′1
Φ∅ ≤ Φ∅

T ′′
2 :: Φ∅; Γ2 ` v2 : τ ′1

Also, from Γ2 ⊇ Γ1 we get a T ′
f = WEAKEN ([Tf ] ,Γ2). Then we construct T ′

3 =

SUBST
([
T ′
f

]
, [T ′′

2 ]
)

such that T ′
3 :: Φ′

f ; Γ2 ` [v2 7→ e]x : τ ′2. Finally, from τ ′2 ≤ τ2
we construct T3:

[TSUB]

T ′
3 :: Φ′

f ; Γ2 ` [v2 7→ e]x : τ ′2
τ ′2 ≤ τ2

Φ′
f ≤ Φf

T3 :: Φf ; Γ2 ` [v2 7→ e]x : τ2

From the last and induction, we get 〈T3, α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈Tv, α′, ω′, H ′, v〉
where Tv :: Φ∅; Γ3 ` v : τ2, Γ3 ⊇ Γ2 and Γ3 ` H ′.

So, we can apply [CALL-A] to get

[CALL-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈T ′

1, α1, ω1, H1, λx.e〉
〈T2, α1, ω1, H1, e2〉

ε2−→ 〈Tv2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈Tv, α′, ω′, H ′, v〉

〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈Tv, α′, ω′, H ′, v〉

case [REF] :
Given

[TSUB]

[TREF]
T1 :: Φ′; Γ ` e : τ ′

Φ; Γ ` refL e : ref {L}(τ ′)
Φ′ ≤ Φ

ref {L}(τ ′) ≤ ref ε
′
(τ)

T :: Φ; Γ ` refL e : ref ε
′
(τ)

and

[REF]

D1 :: 〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

D :: 〈α, ω,H, refL e〉 ε−→ 〈α′, ω′, (H ′, r 7→ v), rL〉
and Γ ` H
By induction, T1 and D1 we have

〈T1, α, ω,H, e〉
ε−→ 〈Tv, α′, ω′, H ′, v〉
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where Tv :: Φ∅; Γ
′ ` e : τ ′ is a canonical typing, Γ′ ⊇ Γ and Γ′ ` H ′

We extend Γ′ and H ′ to define Γ′′ = (Γ′, r 7→ τ ′) and H ′′ = (H ′, r 7→ v) respec-
tively. Then clearly Γ′′ ⊇ Γ′ and Γ′′ ` H ′′.

Therefore we can apply [REF-A], 〈T, α, ω,H, e〉 ε−→ 〈Tr, α′, ω′, (H ′, r 7→ v), rL〉
where

[TSUB]

[TLOC]
Γ′′(r) = τ ′

Φ∅; Γ
′′ ` rL : ref {L}(τ ′)

ref {L}(τ ′) ≤ ref ε
′
(τ)

Φ∅ ≤ Φ∅

Tr :: Φ∅; Γ
′′ ` rL : ref {ε}(τ)

Γ′ ⊇ Γ and Γ′′ ` H ′′

case [DEREF] :
Given

[TSUB]

[TDEREF]

Φ1; Γ ` e : ref ε1(τ ′)
Φε

2 = ε1

Φ1 � Φ2 ↪→ Φ′

Φ′; Γ ` ! e : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

Φ; Γ ` ! e : τ

and

[DEREF]
D1 :: 〈α, ω,H, e〉 ε−→ 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

D :: 〈α, ω,H, ! e〉 ε∪{L}−−−→ 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

and Γ ` H .

By induction, T1 and D1 we have

〈T1, α, ω,H, e〉
ε−→ 〈Tr, α′, ω′ ∪ {L}, H ′, rL〉

where

[TSUB]

[TLOC]
Γ′(r) = τ ′

Φ∅; Γ
′ ` rL : ref ε

′
(τ ′)

Φ∅ ≤ Φ∅
ref ε

′
(τ ′) ≤ ref ε(τ)

Tr :: Φ∅; Γ
′ ` rL : ref ε(τ)

and Γ′ ` H ′.

From Γ′ ` H ′ we have r ∈ dom(H ′) = dom(Γ′) and

Tv :: Φ∅; Γ
′ ` H ′(r) : Γ′(r)
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Now we can apply [DEREF-A]:

[DEREF-A]

〈T1, α, ω,H, e〉
ε−→ 〈Tr, α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈T, α, ω,H, ! e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

case [ASSIGN] :
Similar to [DEREF].

case [IF-T] :
Given

[IF-T]

D1 :: 〈α, ω,H, e1〉
ε1−→ 〈α1, ω1, H1, v1〉 v1 = 0

D2 :: 〈α1, ω1, H1, e2〉
ε2−→ 〈α2, ω2, H2, v〉

D :: 〈α, ω,H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈α2, ω2, H2, v〉

and

[TIF]

T1 :: Φ1; Γ ` e1 : int
T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ

Φ1 � Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ

and Γ ` H .

By induction, D1 and T1 we have

〈T1, α, ω,H, e1〉
ε1−→ 〈Tv1 , α1, ω1, H1, v1〉

where

[TSUB]

[TINT]
Φ∅; Γ1 ` v1 : int
Φ∅ ≤ Φ∅
int ≤ int

Tv1 :: Φ∅; Γ1 ` v1 : int

and Γ1 ⊇ Γ and Γ1 ` H1.

We have Γ1 ⊇ Γ, so we get T ′
2 = WEAKEN ([T2] ,Γ1) :: Φ2; Γ1 ` e2 : τ .

By induction, T ′
2 and D2 we get

〈T ′
2, α1, ω1, H, e1〉

ε1−→ 〈Tv, α2, ω2, H2, v〉

where
Tv :: Φ∅; Γ2 ` v : τ

and Γ2 ⊇ Γ1 and Γ2 ` H2.

Then we can apply [IF-T-A] to get

[IF-T-A]

〈T1, α, ω,H, e1〉
ε1−→ 〈Tv1 , α1, ω1, H1, v1〉
v1 = 0

〈T ′
2, α1, ω1, H, e1〉

ε1−→ 〈Tv, α2, ω2, H2, v〉

〈T, α, ω,H, if0 e1 then e2 else e3〉
ε1∪ε2−−−→ 〈Tv, α2, ω2, H2, v〉
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case [IF-F] :
Similar to [IF-T].

case [LET] :
Similar to [CALL].

2

Lemma C.6.4 (The typed evaluation derivation is complete w.r.t. the evaluation) If

E :: 〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

Then
〈α, ω,H, e〉 ε−→ 〈α′, ω′, H ′, v〉

Proof: Trivial. Sketch: all typed evaluation rules have a corresponding untyped evalua-
tion rule, we can convert each typed evaluation rule to its corresponding untyped by just
removing the annotation T . 2

Theorem C.6.5 (Prior and Future Effect Soundness) If

E :: 〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

where
T :: Φ; Γ ` e : τ

and
α ⊆ Φα

and
ω′ ⊆ Φω

then for all sub-derivations Ei of E,

Ei :: 〈Ti, αi, ωi, Hi, ei〉
ε−→ 〈Tvi

, α′i, ω
′
i, H

′
i, vi〉

where
Ti :: Φi; Γi ` ei : τi

it will hold that
αi ⊆ Φα

i

and
ω′i ⊆ Φω

i
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Proof:

case [ID-A] :
Given

[ID-A]
E :: 〈T, α, ω,H, v〉 ∅−→ 〈T, α, ω,H, v〉

T :: Φ; Γ ` e : τ

α ⊆ Φα

ω′ ⊆ Φω

There are no sub-derivations, therefore the lemma holds vacuously.

case [CALL-A] :
Given

[CALL-A]

E1 :: 〈T1, α, ω,H, e1〉
ε1−→ 〈T ′

1, α1, ω1, H1, λx.e〉
E2 :: 〈T ′

2, α1, ω1, H1, e2〉
ε2−→ 〈T ′′

2 , α2, ω2, H2, v2〉
E3 :: 〈T3, α2, ω2, H2, [v2 7→ e]x〉 ε3−→ 〈Tv, α′, ω′, H ′, v〉

E :: 〈T, α, ω,H, e1 e2〉
ε1∪ε2∪ε3−−−−−→ 〈Tv, α′, ω′, H ′, v〉

and
T :: Φ; Γ ` e1 e2 : τ ′

α ⊆ Φα

ω′ ⊆ Φω

From [CALL-A] we have:

T1 :: Φ1; Γ ` e1 : τ1 →Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

T ′
2 = WEAKEN ([T2] ,Γ1)

T3 :: Φf ; Γ2 ` [v2 7→ e]x : τ ′

Using Destruction of the typed evaluation (Lemma C.6.4), we get the corresponding
untyped evaluation toE. We can then use Weakening of evaluations (Lemma C.3.1)
to relax α and ω to 1, we can apply Standard Effect soundness (Theorem C.2.1) to
get

ε1 ⊆ Φε
1

ε2 ⊆ Φε
2

ε3 ⊆ Φε
f

From
Φ1 � Φ2 � Φf ↪→ Φ
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we get
Φα

1 = Φα

Φα
2 = Φα ∪ Φε

1

Φα
f = Φα ∪ Φε

1 ∪ Φε
2

and
Φω

1 = Φω ∪ Φε
2 ∪ Φε

f

Φω
2 = Φω ∪ Φε

f

Φω
f = Φω

From Traces and Promises (Lemma C.3.3) we get

α1 = α ∪ ε1

α2 = α ∪ ε1 ∪ ε2

and
ω1 = ω ∪ ε2 ∪ ε3

ω2 = ω ∪ ε3

Therefore, for E1

α ⊆ Φα = Φα
1

ω1 = ω ∪ ε2 ∪ ε3 ⊆ Φω ∪ Φε
2 ∪ Φε

f = Φω
1

We can now apply the lemma inductively onE1 to get that then for all sub-derivations
Ei of E1,

Ei :: 〈Ti, αi, ωi, Hi, ei〉
ε−→ 〈Tvi

, α′i, ω
′
i, H

′
i, vi〉

where
Ti :: Φi; Γi ` ei : τi

it will hold that
αi ⊆ Φα

i

and
ω′i ⊆ Φω

i

For E2

α1 = α ∪ ε1 ⊆ Φα ∪ Φε
1 = Φα

2

ω2 = ω ∪ ε3 ⊆ Φω ∪ Φε
f = Φω

2

Similarly to E1, we can now apply induction to get the wanted property for all
sub-derivations of E2.

For E3

α2 = α ∪ ε1 ∪ ε2 ⊆ Φα ∪ Φε
1 ∪ Φε

2 = Φα
f

ω′ = ω ⊆ Φω = Φω
f

As before, we can now apply induction to get the wanted property for all sub-
derivations of E3.
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case [REF-A] :
From [REF-A] we have

[REF-A]

E1 :: 〈T1, α, ω,H, e〉
ε−→ 〈Tv, α′, ω′, H ′, v〉

r /∈ dom(H ′)

E :: 〈T, α, ω,H, refL e〉 ε−→ 〈Tr, α′, ω′, (H ′, r 7→ v), rL〉

T :: Φ; Γ ` refL e : ref ε(τ)

α ⊆ Φα

ω′ ⊆ Φω

From the premises of [REF-A]

T1 :: Φ′; Γ ` e : τ ′

Φ′ ≤ Φ

Clearly, for E1 we have from the last

α ⊆ Φα ⊆ Φ′α

ω′ ⊆ Φω ⊆ Φ′ω

Similarly to the previous case, we get the wanted property for all sub-derivations
by induction.

case [DEREF-A] :

[DEREF-A]

E1 :: 〈T1, α, ω,H, e〉
ε−→ 〈Tr, α′, ω′ ∪ {L}, H ′, rL〉

r ∈ dom(H ′)

E :: 〈T, α, ω,H, ! e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉
T :: Φ; Γ ` ! e : τ

α ⊆ Φα

ω′ ⊆ Φω

From the premises
Φε

2 = ε

Φ1 � Φ2 ↪→ Φ′

Φ′ ≤ Φ

ref {L}(τ) ≤ ref ε(τ ′)

Therefore
Φα

1 = Φ′α
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Φω
1 = Φ′ω ∪ Φε

2

For E1 we have
α ⊆ Φα ⊆ Φ′α = Φα

1

ω′ ∪ {L} ⊆ Φω ∪ ε ⊆ Φ′ω ∪ Φε
2 = Φω

1

As before, we get the wanted property for all sub-derivations by induction.

case Other :
The other cases are similar.

2

Theorem C.6.6 (Contextual Effect Soundness) Given a program ep with no free vari-
ables, its typing T and its canonical evaluation D, we can construct a typed evaluation E

such that for every sub-derivation

E :: 〈T, α, ω,H, e〉 ε−→ 〈Tv, α′, ω′, H ′, v〉

in E, where T :: Φ; Γ ` e : τ , it is always the case that α ⊆ Φα ε ⊆ Φε and ω ⊆ Φω′
.

Proof: Sketch: Follows as a corollary from Lemmas C.6.5 and C.6.3, with initial Γp = ∅
and Hp = ∅. Since D is canonical, it is αp = ω′p = ∅ for the whole program (base case)
and by induction we get the theorem for all sub-derivations. 2
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