
Parallelization, Optimization, and Performance Analysis of
Portfolio Choice Models

Ahmed Abdelkhalek and Angelos Bilas
Dept. of Elec. and Comp. Eng.

10 King’s College Road
University of Toronto

Toronto, ON M5S 3G4, Canada
{abdel, bilas}@eecg.toronto.edu

Alexander Michaelides
Department of Economics

University of Cyprus
P. O. Box 20537

1678, Nicosia, Cyprus
alexm@ucy.ac.cy

Abstract

In this work we show how applications in computational
economics can take advantage of modern parallel architectures
to reduce the computation time in a wide array of models that
have been, to date, computationally intractable. The specific
application we use computes the optimal consumption and port-
folio choice policy rules over the life–cycle of the individual.
Our goal is two–fold: (i) To understand the behavior of a class
of emerging applications and provide an efficient parallel im-
plementation and (ii) to introduce a new benchmark for parallel
computer architectures from an emerging and important class
of applications.

We start from an existing sequential algorithm for solving
a portfolio choice model. We present a number of optimiza-
tions that result in highly optimized sequential code. We then
present a parallel version of the application. We find that: (i)
Emerging applications in this area of computational economics
exhibit adequate parallelism to achieve, after a number of opti-
mization steps, almost linear speedup for system sizes up to 64
processors. (ii) The main challenges in dealing with applica-
tions in this area are computational imbalances introduced by
algorithmic dependencies and the parallelization method and
granularity. (iii) We present preliminary results for a problem
that has not been, to the best of our knowledge, solved in the
financial economics literature to date.

1. Introduction and Background

Household portfolio choice and asset management models
are an emerging area in computational economics that have
generated significant research interest. Household portfolio
choice models determine the optimal amount of savings and
its optimal allocation in alternative assets with the goal of max-
imizing the expected discounted sum of future utility. The op-

timal choices necessarily depend on the economic environment
(preferences, endowments, investment opportunities and vari-
ous market frictions like the inability to borrow) and the com-
putational problem can become more or less difficult to solve
depending on the assumptions that the researcher is willing
to make. Asset management models determine the optimal
asset allocation decision with the goal of maximizing the ex-
pected utility of wealth. These models are more appropriate for
fund managers where real time decisions require quick compu-
tational algorithms to make the models operational.

Recent progress in computational economics has led to the
desire of attacking these large scale problems using compu-
tational methods in a number of areas in economics and fi-
nance [2, 13, 15]. Generally, a common numerical method
employed to solve these problems discretizes the endogenously
evolving state variables and computes the optimal policy rules
as functions of these variables [7, 20]. Working with multiple
state variables results in complicated models that suffer from
the “curse of dimensionality” [18], or exponential growth of the
configuration space with the number of state variables. More-
over, limiting the configuration space, may have an impact on
the accuracy of the results. In household portfolio choice mod-
els, for instance, the menu of assets is usually limited to a risk-
less asset and a risky stock market investment opportunity. In
asset management models, the horizon is usually kept short to
limit the level of uncertainty to (computationally) manageable
levels and to a point that can offer real time advice to fund man-
agers. Solution methods that would speed up the computational
time would achieve both the introduction of more realistic eco-
nomic assumptions in the models but also provide real time ad-
vice to professional fund managers.

In this work we explore whether parallel systems can enable
researchers to study economic models for real–life problems
that have not been feasible to date. We focus on a particular
economic model that has recently received substantial attention
in the financial economics literature [6–8, 11, 20]. The version

of the model we use [9] solves for the optimal consumption and
portfolio choice policy rules over the life–cycle. It assumes the
presence of undiversifiable labor income risk, one risky asset
that earns the historically observed equity premium, one risk-
less asset, a precautionary savings motive, a no borrowing con-
straint, and a no short sales constraint. This model is known to
have high computational demands.

Recent improvements in parallel architectures have resulted
in efficient hardware distributed shared memory (DSM) mul-
tiprocessors that require modest effort in parallelizing existing
sequential applications and they perform well for wide classes
of applications [12]. We choose to work with a shared address
space (SAS) abstraction for the following reasons: (i) The SAS
abstraction is a high level abstraction that does not require ex-
plicit data movement. (ii) The shared address space abstrac-
tion is currently provided across a large number of architec-
tures: small scale SMPs, tightly–coupled hardware DSM ma-
chines, and loosely–coupled clusters. (iii) One of our goals is
to drive systems work in efficiently supporting a shared mem-
ory abstraction on modern architectures. For this reason we
are interested in using this application as a benchmark repre-
sentative of an emerging class of applications. The platform
that we choose for our experiments is a 64–processor hard-
ware distributed shared memory (DSM) system, an SGI Ori-
gin2000 [14] that is representative of today’s aggressive hard-
ware cache–coherent systems.

In this work we first port an existing sequential version of
the application [9] to the environment we use and describe its
behavior, computational, and memory access characteristics.
Then we present a number of optimizations over the original
sequential algorithm. In particular, we present a heuristic that
improves the convergence speed and practically makes the com-
putational time of the sequential version independent of the ini-
tial guesses used. Then, we provide an efficient parallel imple-
mentation for the shared address space abstraction. We present
the major issues in parallelizing this class of applications, we
propose a parallel algorithm, and describe its behavior and com-
putational characteristics.

Our high–level contributions and conclusions are: (i) Using
problem specific knowledge we improve the execution time of
the sequential code by a factor of about 15. This gives us con-
fidence that our parallelization effort is compared with a highly
optimized sequential version. (ii) Emerging applications in this
area of computational economics exhibit adequate parallelism
to achieve, after a number of optimization steps, almost lin-
ear speedup for system sizes up to 64 processors, on today’s
tightly–coupled hardware–DSMs. (iii) The major challenges
in this class of applications are imbalances in the computation
and the induced synchronization. Data locality and coherency
traffic is not a problem despite the producer–consumer mem-
ory access pattern to the main data structures, due to the small
communication to computation ratio.

The rest of this paper is organized as follows. Section 2 de-
scribes at a high level the particular model we use. Section 3

describes our testbed. Section 4 describes the sequential ver-
sion of the code and the optimizations we apply. Sections 5
and 6 discuss the parallelization of the application and our re-
sults. Section 7 presents related work. Finally, Section 8 draws
our conclusions.

2. Economic Problem Statement and Model

We first summarize the most basic aspects of the consump-
tion and portfolio choice model to be parallelized. More de-
tails can be found in [9]. The model computes the optimal
consumption policy and portfolio choice over the life–cycle.
There is one non-durable good, one riskless financial asset,
and a risky time varying investment opportunity. The risk-
less asset yields aconstant gross after tax real return,Rf ,
while the gross real return on the risky asset is denoted byR̃.
Time is discrete. At timet, the agent enters the period with
invested wealth in the stock marketS(t − 1) and the bond
marketB(t − 1) and receivesY (t) units of the non-durable
good. Following [8], cash on hand in periodt is denoted by
X(t) = S(t − 1)R̃(t) + B(t − 1)Rf + Y (t). The investor
then chooses savingsB(t) in the bond market andS(t) in the
stock market to maximize welfare. Given these choices, the
consumption policy functionC(t) is determined by the relation
C(t) = X(t) − S(t) −B(t).

The particular assumptions made about the economic envi-
ronment are as follows:

(i) Preferences are of the constant relative risk aversion fam-

ily: U(C(t)) = C(t)1−ρ

1−ρ whenρ > 0 andρ �= 1; if ρ = 1, then
U(C(t)) = lnC(t).

(ii) The agent lives for a maximum ofT periods (0 ≤ t <
T), and retirement occurs at timeK, K < T. For simplicity
K is assumed to be exogenous and deterministic. We allow for
uncertainty inT in the manner of [11]. The probability that a
consumer/investor is alive at timet + 1 conditional on being
alive at timet is denoted byp(t) (p(0) = 1). Bequests are not
left at the end of life: the numerical solution can accommodate
a bequest motive, as part of future work.

(iii) No borrowing and no short sales of stocks are allowed;
B(t) ≥ 0 andS(t) ≥ 0.

(iv) The exogenous stochastic process for individual earn-
ings is given byY (t) = P (t)V (t) andP (t) = GP (t−1)N(t),
as described in [6]. The processY (t) is decomposed into a per-
manent componentP (t) with a shockN(t) and a growth rate
g = lnG and a transitory componentV (t). lnV (t) andlnN(t)
are i.i.d. normal with meanµv = −.5 ∗ σ2

v andµn = −.5 ∗ σ2
n,

and variancesσ2
v andσ2

n, respectively.
(v) We assume that there is a single factor that can predict

future excess returns. If we letrf , r(t), f(t) denote the net risk
free rate, the net stock market return, and the factor that predicts
future excess returns respectively, thenr(t+ 1)− rf = f(t) +
z(t+1). The autoregressive factorf(t) predicting future returns
(e.g. the dividend yield) follows a persistent process given by

f(t + 1) = µ + φ(f(t) − µ) + ε(t + 1). z(t + 1), ε(t + 1)
are innovations that can be contemporaneously correlated,µ is
the unconditional mean off(t), andφ (φ > 0) measures the
persistence strength off(t).

In this economic environment, the individual’s goal is to
maximize

MAX{S(t),B(t)}T
t=1

E(1)
T∑

t=1

βt−1{Πt−1
j=0p(j)}U(C(t)),

whereE(1) is the expectation conditional on information avail-
able at timet = 1, andβ = 1

1+δ is the constant discount factor.
The two Euler equations at any given aget are given in [9].
Given the nonstationary process followed by labor income,
we normalize by the permanent component of earningsP (t)
(see [6]). If we letλ(C) = C−ρ denote the marginal utility
of consumption, defineZ(t + 1) = P (t+1)

P (t) , take advantage of
the homogeneity of degree−ρ of the marginal utility function,
and label them factor statesi, j = 1, ...,m, then there arem
bond and stock demand functions defined by the following two
normalized Euler equations:

λ(c(x(t), t, i)) = MAX [(1)

λ(x(t) − s(x(t), t, i)),
1 + r

1 + δ
E(t){{Z(t+ 1)−ρ}λ(c(x(t + 1), t + 1, j))}]

λ(c(x(t), t, i)) = MAX [(2)

λ(x(t) − b(x(t), t, i)),
1

1 + δ
E(t){R̃(t + 1){Z(t+ 1)}−ρλ(c(x(t + 1), t+ 1, j))}]

In these equations the consumption policy functionc and the
normalized equivalentx(t) of the endogenous state variable
X(t) are given by:

c(x(t + 1), t+ 1, j) = x(t + 1)
−s(x(t + 1), t+ 1, j) − b(x(t + 1), t+ 1, j)

x(t + 1) = V (t + 1)

+{Z(t+ 1)}−1(s(x(t), t, i)R̃(t+ 1) + b(x(t), t, i)Rf)

Finally, the variablej denotes the next period of factor value,
E(t) denotes the expectation conditional on information at time
t, and lower case variables are normalized byP (t).

2.1. Computational Method

Equations (1) and (2) form a system of two equations in two
unknownss(x(t), t, i), b(x(t), t, i). In this work we first solve
the simplest problem where the next period stock return cannot
be predicted by current variables and therefore the factori does
not enter as a separate state variable in the optimal control prob-
lem; the two unknown functions to be solved for are then given
by s(x(t), t), b(x(t), t). In Section 6 we present preliminary
results for the full problem.

The two unknown functionss(x(t), t), b(x(t), t) are computed
from equations (1) and (2) using the following iterative algo-
rithm. Starting with an assumption about the consumption pol-
icy function c(x(t + 1), t+ 1) in the terminal period of life
t = T − 1, we solve simultaneously this system of Euler equa-
tions using backward induction and a discrete grid over cash on
hand,0 ≤ x(t) < xmax. For each yeart, s(x(t), t), b(x(t), t)
become functions of one state variablex(t). The sequential im-
plementation for the above model computes the consumption
policy function c(x(t), t) by computings(x(t), t), b(x(t), t)
from the set of equations (1) and (2).
Two questions arise: (i) Do solutions fors(x(t), t), b(x(t), t)
that satisfy (1) and (2) exist? (ii) Are these solutions unique? If
we assume thatc(x(t + 1), t+ 1) is given and is an increasing
function ofx(t+1), then one can show that givens(x(t), t) the
right hand side of (1) is decreasing inb(x(t), t) while the left
hand side is increasing inb(x(t), t). This guarantees existence
and uniqueness of a solution forb(x(t), t) from the bond Euler
equation. The argument works in exactly the same fashion for
s(x(t), t) by symmetry givenb(x(t), t) for (2).
The iterative sequential algorithm [9] we use takes the follow-
ing form:

for (t = T-2; t >= 0; t--) {
for (v = 0; v <= GRID; v++) {

s(x(t,v), t) = guess();
repeat {
s’(x(t,v), t) = s(x(t,v),t);
b(x(t,v),t) = BisectEq1(s’(x(t,v),t));
s(x(t,v),t) = BisectEq2(b(x(t,v),t));

} until (|s’(x(t,v),t)-s(x(t,v),t)| < e);
}

}

(i) Given an initial guess fors(x(t), t), equation (1) is a non–
linear equation with one unknownb(x(t), t). Thus, we can
solve forb(x(t), t) using a standard bisection algorithm [13].
(ii) Given b(x(t), t) from the previous step, find with the same
methods(x(t), t) from equation (2).
(iii) If the maximum of the absolute differences between the
initial s(x(t), t) and its update from the previous step is less
than a convergence condition, then a solution has been found
and the algorithm proceeds to the next pairs(x(t − 1), t− 1),
b(x(t − 1), t− 1). If not, the updateds(x(t), t) becomes the
new guess and we go back to the first step.
Alternative methods for solving this set of equations are dis-
cussed in Section 7.

3 Experimental Platform

For our work we use a 64–processor SGI Origin2000 with 16
GBytes of main memory and routers connected in a full hyper–
cube topology [14]. The SGI Origin2000 is a system that is
considered “aggressive” in terms of the communication archi-
tecture for today’s standards. Table 1 compares the Origin2000
with other modern, hardware–DSM systems.

The nodes in the system are connected with a hardware cache–
coherent interconnect that provides a shared memory abstrac-
tion to the programmer. Each pair of nodes share a router [14].
Routers are connected in a hypercube topology. Each network
link has a peak bandwidth of 780 MBytes/s. The minimum (un-
contented) latency for accessing remote memory (in clean state)
is about 650ns.
Each node has two 300 MHz MIPS R12000 processors. Each
processor has separate 32–KByte 2–way set–associative first–
level instruction and data caches, and a unified, 8–MByte
second–level cache with a 128–byte block size. The two pro-
cessors in a node share ahub, memory, a communication con-
troller (which sees all cache misses and incoming transactions),
and a non–coherent memory bus. The memory bus in each node
has a theoretical peak bandwidth of 780 MBytes/s. Coherency
is provided within nodes in the same way as across nodes at
cache–line granularity.

System Local Remote Remote Remote
Local

Remote
Local

Clean Dirty in 3rd Ratio Ratio
(ns) (ns) node (ns) (Clean) (Dirty)

Origin2000 338 656 892 2:1 3:1
Convex 450 1315 1955 3:1 5:1

Exemplar X
Data General 240 2400 3400 10:1 14:1
NUMALiiNE

Hal S1 240 1065 1365 5:1 6:1
Sequent 240 2500 N/A 10:1 N/A
NUMAQ

Table 1. Latencies and remote–to–local latency ratios on differ-
ent systems. The latencies are from processor request to the response
coming back to the processor.

For our measurements we use the native SGI cc compiler (MIP-
Spro Compilers: Version 7.30) and the –O2 optimization level.
The uniprocessor runs are done on a single node of the same
system.

4. Sequential Implementation

To computes(x(t), t), b(x(t), t) for each yeart the code dis-
cretizes the state variablex(t) in a 1–dimensional grid over the
interval [0, xmax] and approximates the functions by a set of
values on the grid, solving the equations (1) and (2) with the
method presented in Section 2.1.
The grid size may vary from a few tens of points to a few hun-
dred points to provide sufficient accuracy in approximating the
consumption policy function. In our work we set the grid size
always to 64 or 128. These are relatively small granularities; we
make these choices mainly because we are interested in com-
paring our work with existing results that have been obtained
so far with the original version of the code. The total number
of years in the life–cycle is not expected to vary much. The
model computes the consumption policy function for 45 years
of working life and 35 years of retirement. The rest of the input
parameters to the model are explained in [9].

Conceptually, each functionc(x(t), t), s(x(t), t), andb(x(t), t)
can be represented with two 2–dimensional arrays—one for
the working life and one for retirement as shown in Figure 1.
The major data structure of our sequential implementation fol-
lows this conceptual representation. Each row represents a year
of the life–cycle and columns represent grid points on which
c(x(t), t), s(x(t), t), andb(x(t), t) are approximated for each
year.

Values in
the first row
are initially
given

1 126 1270
Grid points

Years of Life Cycle

x(79)

x(n+1)
x(n)

x(1)
x(0)

Figure 1. The two 2–dimensional arrays computed by the applica-
tion, represented as a single larger array. Each element depends on a
varying set of elements in the preceding row.

The values for the last year of retirement are assumed to be
known and are used to compute the rest of the years in a back-
ward fashion. The first row in the working life array depends
on the last row of the retirement array. The model computes the
retirement period values first (K ≤ t < T) before proceeding
to the working life period (0 ≤ t < K). The major data depen-
dencies in the computation of each function are that each row in
the array depends on the values of the previous row (Figure 1).
Specifically, whenever an element needs a value from the pre-
vious year, this value is computed by linear interpolation from
the two nearest values of the previous year that already exist.
This computation may be repeated a number of times for each
array element point, resulting in multiple dependencies.

4.1. Problem sizes

The model input parameters affect the amount of computation
that is performed. For this reason we use in our evaluation a
number of problem sizes. However, due to space reasons and
the time required for complete benchmarking we present full
results for two problem sizes. Table 2 shows the input param-
eters for the problem sizes we run and their requirements on
memory. The authors in [9] provide a detailed explanation of
the effect of each input parameter.
The memory required by the application is exponential on the
grid sizes used to discretize each of the two state variables, age
t and cash on handx(t). Age is discretized in 80 values and
cash on hand in 128 resulting in the 2–dimensional array of

Figure 1. Thus, memory requirements are fairly small (in the
order of a few MBytes for shared data). However, future ex-
tensions to the model that make use of more state variables will
result in multi–dimensional grids and in much higher memory
requirements. Although the current model configuration is not
memory intensive, the dependencies between data and locality
issues make parallelization challenging.

Problem Grid xmax δ g Memory Uni Time
Size size (KBytes) (min)
PS1 128 3 0.10 0.03 ≈ 200 ≈ 8
PS2 128 9 0.09 0.02 ≈ 400 ≈ 126

Table 2. Input parameters for the two problem sizes we consider.
The parameterρ is set to 6 for both problem sizes. The time reported
includes all optimizations of the sequential code.

4.2. Sequential Code Optimizations

The application uses mostly floating point (double) operations.
The original application code is written in GAUSS [3]. GAUSS
favors the use of arrays and array operations as the basic con-
structs in programs. Thus, the original program uses a 2–
dimensional array as the general data structure for all variables.
All computation is performed by manipulating arrays. This re-
sults in a number of inefficiencies.
As the first step in our work we translate the application code
from GAUSS to C. Initially we use similar data structures as
the GAUSS program and perform the computation in a simi-
lar way. The C version is about 1.5 times slower since it has
all original inefficiencies and in addition uses dynamic memory
management. Before parallelizing the code we provide an op-
timized C–based implementation of this sequential algorithm.
We optimize the code in the following ways:
Eliminating dynamic memory management: The first step
in optimizing the code was to eliminate dynamic memory man-
agement and multi–dimensional array operations. This resulted
in code that performed comparably to the original GAUSS ap-
plication.
Improving convergence and eliminating array operations:
The computation for each year involves the convergence of the
value for each of the grid points to a specified convergence
condition. The original GAUSS implementation of the com-
putation involved performing the iterations for each grid point
until the maximum value among all grid points has converged.
By using separate convergence conditions for each grid point
we remove unnecessary iterations for grid points that converge
faster than others. Moreover, the new code does not require
multi–dimensional array operations. The resulting version of
the code executes about one order of magnitude faster than the
original version.
Loop optimizations: Computing each grid point involves a
number of nested loops. Moving invariant loop computations
outside of loops reduces the sequential execution time by ap-
proximately 10%. Moreover, the values of some of the vari-

ables in the loop–invariant code were leading to the identical
repetition of loop iterations in different levels of the computa-
tion. Eliminating extra repetitions due to zero–valued variables
led to an additional increase in performance of approximately
20%.
Reducing element dependencies: As explained earlier, each
element in the 2–D array requires for its computation elements
in the previous row. The original code would result in more de-
pendencies than necessary. Eliminating the extra dependencies
improved sequential execution time by about 5%. More impor-
tantly, it reduced the risk for higher wait times in the parallel
version of the code (see Section 5). Furthermore, we explored
the possibility of eliminating the linear interpolation to reduce
the number of dependencies. However, this changes the ac-
curacy of the computed results and interacts with other model
parameters such as the grid size. Since the implications of these
changes on the economic model under hand are not well under-
stood we do not explore this direction any further.
Summary: Table 2 shows the time for running the optimized
sequential code. The final version of the sequential code is
highly optimized and executes about 15 times faster than the
original version.

5. Parallel Implementation

As explained in Section 4, the computation performed by the
application generates a set of values for each element of the
two 2–dimensional arrays. We parallelize the code using the
M4 macros and the threads model. The only form of synchro-
nization among threads is barriers and point–to–point synchro-
nization implemented with either locks or flags. The major data
structures of the parallel version are similar to the sequential
implementation (Figure 1).
To understand the computational behavior of this class of appli-
cations and to provide an efficient implementation we explore
four major parameters of the configuration space:
(i) Granularity of parallelization: Given the data dependencies
induced by the model we use, the most natural granularity of
parallelization is the array element level; the computation for
each array element is a single task assigned to one thread. This
results in a producer–consumer memory access pattern with
multiple consumers for each element.
(ii) Task size: The number of array elements that are assigned
to each thread within a single row, or task size. The minimum
task size is one array element per task. Small task sizes result in
better load–balancing but have worse memory locality and may
result in false sharing.
(iii) Task assignment: Assignment of row elements to threads
can be either static or dynamic. Static assignment reduces
bookkeeping overheads and does not require lock synchroniza-
tions, whereas dynamic assignment improves load–balancing,
but introduces fine–grain lock synchronization.
(iv) Inter–row synchronization: The dependencies among array
elements (Figure 1) result in the need for inter-row synchro-

nization. The simplest solution is to use barrier synchronization
among all threads. However, this is unnecessary in many cases;
Point–to–point synchronization that checks only for elements
of the previous row that are needed for computing the current
element can reduce wait time.
To represent the different versions of the code we use the nota-
tion {B,P}{S,D}G{0,1,4}, where:
{B,P} specifies whether barriers or point–to–point synchro-
nization is used for inter–row synchronization.
{S,D} specifies whether static or dynamic allocation of tasks is
performed within each row. Dynamic allocation implies the use
of lock synchronization.
G{0,1,4} specifies the task size. A value of 0 means that the
system automatically sets the task size to G/T, where G is the
grid size and T the number of compute threads. A value of 1 or
4 means that the task size is either 1 or 4, respectively.

5.1. Results

In our work we explore all the above configurations. However,
due to time and space constraints we present full results for all
processor counts only for BSG0 and PDG1 that are the most
representative of the configuration space.
We present both speedups and execution time breakdowns for
configurations up to 64 processors. Execution time is divided
into the following components: (i)Barriers is the time spent in
barrier synchronization. This time is measured by instrument-
ing the library code that is used for barrier synchronization. (ii)
Locks is the time spent in lock synchronization. This time is
also measured by instrumenting the library code. (iii)Flag syn-
chronization is the time spent in point–to–point synchronization
and is measured in the application itself. (iv)Memory time is
the stall time for memory requests. (v)Compute time is the
time the processor spends executing instructions. The sum of
the memory stall and compute times is the exact time spent pro-
cessing user instructions. However, the division to memory stall
and compute time is approximate. We use pixie and prof to cal-
culate the number of instructions the program executes and then
conservatively translate this to compute cycles (MIPS R12000
is a quad issue processor). We attribute the rest of the time to
memory stalls.

0 8 16 24 32 40 48 56 64

Number of Processors

0
8

16
24
32
40
48
56
64

Ideal
PS1
PS2

S
p

e
e
d

u
p

0 8 16 24 32 40 48 56 64

Number of Processors

0
8

16
24
32
40
48
56
64

Ideal
PS1
PS2

S
p

e
e
d

u
p

Figure 2. Speedups for BSG0 (left) and PDG1 (right).

Figure 2 presents speedups for both BSG0 and PDG1 for each
problem size. We see that the small problem size (PS1) per-
forms reasonably up to 32 processors with BSG0 but does not
scale any further, whereas the larger problem size (PS2) does
not perform well at all. Replacing global with point–to–point
synchronization in PDG1 improves things dramatically for the
small problem size. However, the larger problem size does not
seem to scale beyond 16–32 processors. Thus, although fine–
grain synchronization and dynamic task assignment help sig-
nificantly they do not seem to address all problems. Figure 3
shows the execution time breakdowns for PDG1. We see that
most of the time for the larger problem size is spent in flag syn-
chronization. This is somewhat counter–intuitive, since usually
increasing the problem size improves parallel performance. In
the next section we proceed to better understand this problem
and deal with the underlying issues.

1 16 32 64 1 16 32 64

Number of Processors

0

20

40

60

80

100
barriers

locks

flag

mem. stall

comp.

E
xe

cu
ti

on
 T

im
e

(%
)

PS1 PS2

Figure 3. Average breakdowns of execution time for PS1 (left) and
PS2 (right) for PDG1.

6. Addressing Computational Imbalances

Figure 4 shows the number of iterations required for each ele-
ment of some rows to converge to the final value. We see that
elements require very different numbers of iterations. More-
over, we find that the time for each element to converge is pro-
portional to the number of iterations.

Figure 4. Number of iterations required for convergence for each
element ofs(x(t), t) in years (rows) 35-44 for PS2. The x-axis rep-
resents the elements in one row of the array and each curve shows the
number of iterations for the respective row.

The reason for the different number of iterations is that the
computation for a particular element starts by making an ini-
tial guess for each control variable, e.g.s(x(t), t). The algo-
rithm then proceeds until it reaches a final value ofs(x(t), t)
which satisfies the convergence criterion. Observing the way
elements approach the final value ofs(x(t), t) we notice that
values converge very slowly. Thus, the initial guess for each
element affects the number of iterations. This suggests that for
some elements the initial guess is closer to the final value than
it is for other elements.
To address this issue we need to either improve the initial guess
for each element or improve the speed of convergence.
Improving initial guesses: The original code uses as the ini-
tial guess for each row element the value of the same element
in the previous row. This is based on the fact that the values
of each function do not change in the model dramatically from
year to year. Figure 5 shows the final values ofs(x(t), t) for all
elements in the same rows as in Figure 4 for the large problem
size. We see that values in the same year (row) follow approxi-
mately a linear pattern. Also, elements in successive years incur
higher differences for larger values ofx(t). The diverging val-
ues of the functions for larger values ofx(t) and the very slow
convergence result in very high computation imbalances.

Figure 5. Final values fors(x(t), t) for all elements in years 35-44
for PS2.

To address this issue we compute the initial guess by linearly
extrapolating the two previous values of the same year. This is
based on the observation that the output function is almost lin-
ear. Figure 6 shows the number of iterations for each element
for one problem size. We see that almost all elements converge
much faster. The only exception is elements where the com-
puted function changes form, in which case linear extrapolation
from the previous values does not help. Although other forms
of extrapolation may address this issue, we do not explore this
direction further since linear extrapolation gives good results
and the exact form of the computed functions is not known.
Improving the initial guesses makes the computation of each
element more balanced and reduces execution time of the se-
quential code by about one order of magnitude. Although this
approach addresses the problem of computational imbalance, it
introduces more dependencies and cannot be used in the paral-
lel version of the code since all elements of a row are computed
in parallel by different processors.
Improving the speed of convergence: In the process of con-
verging from the initial guess to the final value, new values can

Figure 6. Number of iterations for elements ofs(x(t), t) in years
35-44 for PS2 using linear extrapolation.

fluctuate and they do not always move towards the final value.
However, we notice that in practice new values always move
towards the final value (at very small steps as noted above). We
use this observation to introduce a heuristic, which we call the
min–max heuristic, to improve the speed of convergence.
We implement a bisection–like algorithm to search for the final
value. We first attempt to find a range in which the final value
resides. We conservatively pick a fairly large interval as fol-
lows. For the lower bound of the interval we use the final value
of the corresponding element in the previous year (row). To get
the upper bound we add to the lower bound the difference of
the final values of the elements of the two previous rows.
The obtained values for the minimum and maximum of the
range are still only guesses at this stage. We then verify that
these values are reasonable by making sure that if we use the
lower bound as an initial guess the next value computed is
above the lower bound and similarly if we use the upper bound
as an initial guess the new value is less than the upper bound.
As a fail–safe mechanism, if the chosen interval does not seem
to contain the final value we pick another interval. This pro-
cess continues a small number of times and if we are unable to
find a reasonable initial interval we revert to using the original
method for solving the set of equations.
Once the initial interval is obtained, a bisection method is used
to find the final value. We pick the mid–point of the current
interval as the initial guess and solve the system of equations
to obtain a new value. If the new value is less than the value
at the mid–point then we assume that the final value will be
less than the value at the mid–point as well and we make the
mid-point the upper bound of the current interval. If the new
value is above the value at the mid–point then we make the
mid–point the lower bound. Thus, each iteration reduces the
size of the interval by half. Again, as a fail–safe mechanism, if
the next value computed happens to be outside the range, then
this element is declared to be an irregular one and we use the
original method for solving the set of equations.
This method works very well and dramatically reduces the
number of iterations for the expensive elements. Figure 7 shows
the number of iterations required for each array element for the
large problem size. Moreover, the min–max heuristic reduces
the variation in execution time between different problem sizes.
A side–effect is that, besides reducing the number of iterations
for elements that converge slowly, it also increases the num-

ber of iterations for elements that would converge after one or
two iterations in the original code; in the min–max heuristic we
need to compute two initial values—one for the lower and one
for the upper bound. We believe that we can improve this by
using the min–max method only when necessary. However, for
the purpose of this work this would result in second–order ef-
fects and we do not explore this direction any further. Finally,
it is important to note that the min–max heuristic does not in-
troduce any new dependencies and can be used in the parallel
version of the code.

Figure 7. Number of iterations for elements ofs(x(t), t) in years
35-44 for PS2 using the min–max heuristic.

Figure 8. Number of iterations for elements ofs(x(t), t) in years
35-44 for PS2 using both the min–max heuristic and linear extrapola-
tion.

Input Original Linear Extr. Min–max Both
PS1 8min 7min 29min 20min

1, 406, 10.1 1, 319, 3.5 1, 19, 5.7 1, 103, 4.0
PS2 126min 15min 31min 22min

1, 841, 100.2 1, 447, 5.5 1, 18, 5.8 1, 103, 4.1

Table 3. For each problem size, the first row presents the unipro-
cessor execution time in minutes, whereas the second presents the min-
imum, maximum, and average number of iterations across all array ele-
ments.

Although it is possible to combine the two heuristics, the ad-
ditional improvement is not significant as shown in Figure 8.
Table 3 shows the execution time and the minimum, maximum,
and average number of iterations across all elements for each
heuristic. In summary, although finding better initial guesses by
using linear extrapolation (or a combination of linear extrapola-
tion and the min–max heuristic) seems to perform slightly bet-
ter, the min–max heuristic for improving the speed of conver-
gence is easier to parallelize and also reduces the dependence of
the convergence speed on the initial values, overall. Thus, we
next incorporate the min–max heuristic in the parallel version
of our code.

0 8 16 24 32 40 48 56 64

Number of Processors

0
8

16
24
32
40
48
56
64

Ideal
PS1
PS2

S
p

e
e
d

u
p

0 8 16 24 32 40 48 56 64

Number of Processors

0
8

16
24
32
40
48
56
64

Ideal
PS1
PS2

S
p

e
e
d

u
p

Figure 9. Speedups for BSG0 (left) and PDG1 (right) with the min–
max heuristic.

6.1. Results

Figure 9 shows the speedups for both BSG0 and PDG1. We
see that BSG0 performs and scales comparably for both prob-
lem sizes, but results in sub-linear speedups. When point–to–
point synchronization and dynamic task assignment are used
(PDG1), performance and scalability improve dramatically for
both problem sizes for all processor counts.
Most of the remaining overhead in the best version of our code
(PDG1) is due to wait time in flag synchronization. Figure 10
shows the execution time breakdowns for PDG1 for each prob-
lem size. The execution time breakdowns show that the ratio of
memory stall time to compute cycles is about the same between
the sequential and the parallel implementations or better in the
parallel implementation. This shows that the parallel imple-
mentation exhibits very good locality, that the per–processors
caches are helpful, and that there is no or very little false shar-
ing.

1 16 32 64 1 16 32 64

Number of Processors

0

20

40

60

80

100
barriers

locks

flag

mem. stall

comp.

E
xe

cu
ti

on
 T

im
e

(%
)

PS1 PS2

Figure 10. Average breakdowns for execution time for PS1 (left)
and PS2 (right) for PDG1 with the min–max heuristic.

We should note here that the breakdown of the execution time
in compute cycles and memory stall time is approximate, so it
can only be used as a hint of what the actual costs are. The

less–than–ideal speedup in the parallel version for larger pro-
cessor counts, e.g. speedup of about 48 for PS2 on 64 proces-
sors, is due to the increased flag synchronization time. Further
reduction in synchronization time to improve overall perfor-
mance would require finer–grain parallelization. Although at
the processor scales we examine this would most likely result
in second–order improvements, it may be important to explore
this direction for systems with larger processor counts.

6.2. Increasing the number of state variables

The min–max heuristic we present to improve the speed of con-
vergence results in uniform convergence times for all combina-
tions of input parameters. Thus, the computational demands
of this class of applications arises now only from the inher-
ent complexity of the model that is used. The model that we
started with, has now a relatively short execution time—about
one half hour on a single processor and a few minutes on the
64–processor SGI Origin2000.
To demonstrate the effectiveness of our approach we now
present preliminary results for a more complex model that, to
our knowledge, has not been presented to date in the economics
literature. In this model the next period stock return can be pre-
dicted by current variables. Therefore, a factor is introduced
as an extra state variable, as described in Section 2. Table 4
shows the execution time of this model on a system with up to
24 processors and all our code optimizations (PDG1 with the
min–max heuristic). Since for these runs we are not interested
in detailed timing measurements, we do not obtain exclusive ac-
cess to the system. Although the system was not heavily loaded
at the time of the runs, speedups may not be accurate. For this
reason we report only the absolute execution times.

Processors 1 4 8 16 24
Time(min) N/A 62 32 17 14

Table 4. Time and speedup for the more complex model with 5 con-
trol and state variables. The input parameters arexmax=10.0,ρ=3.0,
δ=0.1,g=0.03, with a grid of 50 elements.

7. Related Work

The proliferation of computational methods in economics and
their use in making models in economics and finance more re-
alistic is illustrated in [2, 13, 15, 16, 18, 23].
Examples of recent work in the area of household portfolio
choice models include [9, 10] that solve for the optimal sav-
ings/stock market allocation decision in the presence of undi-
versifiable labor income risk, an infinite planning horizon, and
liquidity constraints. Also, [7, 20] solve similar models over
the life–cycle determining the optimal savings and asset allo-
cation decision as a household ages. Interesting issues that
are addressed involve scientific advice on optimal asset allo-
cation over the life–cycle, the determination of asset prices in

an economy with changing demographics, and the optimality
of the currently operating social security system. Examples of
strategic asset allocation models are presented in [4, 5].
The stochastic optimal control method we use in this work may
be contrasted with the stochastic linear programming approach
that has been followed by, for instance, [16] for solving simi-
lar asset management problems. Currently both methodologies
are being used to address problems in the area. Stochastic lin-
ear programming has made progress with large scale applica-
tions in asset management precisely due to parallelization [23].
To our knowledge, our work is the first effort to parallelize a
portfolio choice stochastic optimal control model over the life–
cycle with undiversifiable labor income risk.
There are alternative methods for solving equations (1) and (2).
The authors in [7], for instance, use grid search [13] to find
the optimal policy functions. Grid search involves evaluating
the function being maximized at a fine grid over the different
control variables and then picking the points that maximize the
function. We chose the bisection method for its simplicity but
future work in this area should explore alternative methods for
solving these systems. In [15] the authors present an extensive
survey of alternative methods to solve non–linear systems of
equations, such as weighted residual methods (chapter 6), the
parameterized expectations approach (chapter 7) and finite dif-
ference methods (chapter 8). As the authors in [2] point out,
however, there is no consensus as to what constitutes thebest
method to use at this point.
In the parallel computer architecture community, there has
been work on architectures that efficiently support a distributed
shared address space [1, 14, 21]. Another body of work [12,
17, 22] has focused on understanding the behavior of different
classes of applications on shared address space systems. Fi-
nally, a number of studies, such as [19], have compared shared
memory and message passing architectures for different classes
of applications. Our work is complementary to all these efforts
providing a new application that can be used to evaluate parallel
architectures.

8. Conclusions

In this paper we study an emerging and important class of ap-
plications in computational economics and finance. We show
how parallelism can be exploited to reduce the computational
time in an important class of applications in computational eco-
nomics. This work is (to our knowledge) among the first that
examines the parallelization and behavior of portfolio choice
models over the life–cycle. We start with an existing sequen-
tial implementation of a realistic computational model. We first
optimize the sequential implementation using problem specific
knowledge. Then we provide an efficient and scalable parallel
implementation.
We find that the major challenges in this class of applications
are computational imbalances and the induced synchronization
due to algorithmic dependencies. Improving the speed of con-

vergence in the sequential version of the code, replacing global
with point–to–point synchronization, and using dynamic task
scheduling result in a parallel implementation that performs and
scales well to large numbers of processors. Moreover, memory
requirements are not an important issue in the particular mod-
els we use. We find that the producer–consumer relationship
dominates shared memory accesses. Despite this access pat-
tern and the fine–grained data accesses, we find that data place-
ment and false sharing are not an issue even at large processor
counts. This is due to the small computation to communication
ratio. Future extensions that are now computationally possible
to these models may result in much higher memory require-
ments. However, we do not expect that this would affect the
fundamental memory access patterns. The final version of our
code performs and scales very well up to 64 processors.
In summary, in this work we have substantially improved the
execution time of the sequential model implementation and we
have provided an efficient and scalable parallel implementation
for realistic financial economics problems. Our work makes
feasible the computation of complex, real–life models with
multiple states and multiple control variables that have not been
analyzed by financial economists to date due to their computa-
tional requirements. Thus, parallelism can indeed provide one
solution to computationally intensive problems that arise in a
wide array of economic models, and future work should con-
centrate on using parallel architectures in computing solutions
to more realistic models in economics and finance.

9. Acknowledgments

We would like to thank Shezad K. Okhai and Rajit Jhaver for
helping with implementing intermediate versions of the code,
William G. Wichser and Courtney Gibson for their help with
runs on the Origin2000 and Christina Christara, Kostas Platan-
iotis, and Stavros A. Zenios for useful comments on aspects
of this work. The authors thankfully acknowledge the sup-
port of Natural Sciences and Engineering Research Council of
Canada, Nortel Institute of Technology, Communications and
Information Technology Ontario, and University of Cyprus and
European Union through the HERMES Center of Excellence
in Computational Finance and Economics at the University of
Cyprus.

References

[1] G. A. Abandah and E. S. Davidson. A comparative study of
cache-coherent nonuniform memory access systems. InPro-
ceedings of the 12th Ann. Int’l Symp. on High Performance Com-
puting Systems and Applications, May 1998.

[2] H. M. Amman, D. A. Kendrick, and J. Rust.Handbook of Com-
putational Economics, volume 1. Elsevier, The Netherlands,
1996.

[3] I. Aptech Systems. Gauss. http://www.aptech.com.
[4] N. Barberis. Investing for the long run when returns are pre-

dictable. InJournal of Finance, volume 55:1, 2000.

[5] M. Brennan, E. Schwartz, and R. Lagnado. Strategic asset al-
location. InJournal of Economic Dynamics and Control, vol-
ume 21, pages 1377–1403, 1997.

[6] C. D. Carroll. Buffer stock saving and the life cycle / permanent
income hypothesis. InQuarterly Journal of Economics, volume
CXII:1, pages 3–55, 1997.

[7] J. Cocco, F. Gomes, and P. Maenhout. Portfolio choice over the
life cycle. InWorking Paper, 1999.

[8] A. Deaton. Saving and liquidity constraints. InEconometrica,
volume 59:5, pages 1221–48, 1991.

[9] M. Haliassos and A. Michaelides. Computation and calibration
of household portfolio models. InHousehold Portfolios. Editors:
L. Guiso, M. Haliassos, and T. Japelli. MIT Press, 2001.

[10] J. Heaton and D. Lucas. Portfolio choice in the presence of back-
ground risk. InThe Economic Journal, volume 110, pages 1–26,
2000.

[11] G. Hubbard, J. Skinner, and S. Zeldes. The importance of pre-
cautionary motives for explaining individual and aggregate sav-
ing. In The Carnegie Rochester Conference Series on Public
Policy. Editors: A. Meltzer and C. I. Plosser, volume XL, Ams-
terdam, North Holland, 1994.

[12] D. Jiang and J. P. Singh. Does application performance scale
on cache-coherent multiprocessors: A snapshot. InProceedings
of the 26th International Symposium on Computer Architecture
(ISCA), May 1999.

[13] K. Judd. Numerical Methods in Economics. MIT Press, Cam-
bridge, MA, 1998.

[14] J. P. Laudon and D. Lenoski. The SGI Origin2000: a scalable
cc-numa server. InProceedings of the 24rd Annual International
Symposium on Computer Architecture, June 1997.

[15] R. Marimon and A. Scott.Computational Methods for the Study
of Dynamic Economies. Oxford University Press, Oxford, UK,
1998.

[16] J. Mulvey and H. Vladimirou. Stochastic network programming
for financial planning problems. InManagement Science, vol-
ume 38, pages 1642–1664, 1992.

[17] T. A. Ngo and L. Snyder. On the influence of programming
models on shared memory computer performance. InScalable
High Performance Computing Conference, Apr. 1992.

[18] J. Rust. Numerical dynamic programming in economics. In
Handbook of Computational Economics. Editors: H. M. Amman
and D. A. Kendrick and J. Rust, Amsterdam, The Netherlands,
1996. Elsevier.

[19] H. Shan and J. P. Singh. Comparison of message passing,
SHMEM and cache-coherent shared address space programming
models on the SGI Origin 2000. InInternational Conference on
Supercomputing, June 1999.

[20] K. Storesletten, C. Telmer, and A. Yaron. Persistent idiosyn-
cratic shocks and incomplete markets. InWorking Paper, 2001.

[21] H. J. Wasserman, O. M. Lubeck, Y. Luo, and F. Bassetti. Per-
formance evaluation of the SGI Origin2000: A memory-centric
characterization of LANL ASCI applications. InSupercomput-
ing ’97, Nov 1997.

[22] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Method-
ological considerations and characterization of the SPLASH-2
parallel application suite. InProceedings of the 23rd Interna-
tional Symposium on Computer Architecture (ISCA), May 1995.

[23] S. Zenios. High-performance computing in finance: The last ten
years and the next. InParallel Computing, volume 25, pages
2149–2175, 1999.

